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ON THE CHARACTERISTIC ROOTS OF THE PRODUCT
OF CERTAIN RATIONAL INTEGRAL

MATRICES OF ORDER TWO

LORRAINE L. FOSTER

This paper deals with a special case of the following
problem: Let A, B be matrices of order n over the rational
integers. Compare the algebraic number field generated by
the characteristic roots of AB with those generated by A, B,

We let M(r, s) denote the companion matrix of x2 + rx + s,
for rational integers r and s, and let N(r, s) = Mir, s)iMir, s))'.
Further let F(M(r, s)) and F(N(r, s)) denote the fields generated
by the characteristic roots of Mir, s) and N(r, s) over the rational
field, R. This paper is concerned with F(N(r, s)), especially
in relation to F(M(r, s))m The principal results obtained are
outlined as follows:

Let S be the set of square-free integers which are sums
of two squares. Then F(N(r, s)) is of the form RiVΊΓ), where
ceS. Further, F(N(r, s)) = R if and only if rs = 0. Suppose
ceS. Then there exist infinitely many distinct pairs of integers
ir, s) such that F(N(r, s)) = R(V~cj.

Further, if ceS, there exists an infinite sequence {(rn, sn)}
of distinct pairs of integers such that F(M(rn, sn)) = R(V c)
and F(N(rnf sn)) = R(V odn) for some integers dn such that
(c, dn) = 1. If ceS and c is odd or c = 29 there exists an
infinite sequence {(r'n, s'n)} of distinct pairs of integers such that
F(N(rr

n, s'J) = R{VΊΓ) and F(M(rf

n, s'J) = R(V cd'n) for some in-
tegers d'n such that (c, df

n) = 1.

There are five known pairs of integers (r, s) with rs Φ 0
and s Ψ — 1 such that F(M(r, s)) and F(N(r, s)) coincide. For
s ~ 2(mod 4) and for certain odd integers s the fields F(M(τ, s))
and F(N(r, s)) cannot coincide for any integers r.

Finally, for any integer r Φ 0 (or s Φ 0, — 1) there exist
at most a finite number of integers s (or r) such that the two
fields coincide.

Let A — (ai3) be a matrix of order n with elements in the complex
field. We say A is normal if and only if A!A — AA' where A! ~
(aH). It is known that if A is normal, with characteristic roots Xiy

i=l, ,n, then1 the characteristic roots of AA! are given by
λi λί, ί — 1, , na Conversely, if the characteristic roots of AA! can
be written as λ-λδ., i — 1, , n, where {du , dn} is some permuta-

This follows immediately from Theorem 1, [1],
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tion of {1, •••,%} then A is normal.2 Hence it seems of interest to
study the characteristic roots of AAf in comparison with the charac-
teristic roots of A in the case of nonnormal matrices A. Results are
known which compare the magnitudes of these roots. Here a different
point of view is adopted. The matrices A are restricted to a set of
matrices of order two over the rational integers, I, and the algebraic
number fields in which the characteristic roots of A and AAf lie are
compared.

Specifically, we let M(r, s) denote the companion matrix of the
polynomial x2 + rx + s and consider the set {M{r, s) \ r, s e I}. We
define N(r, s) = M(r, s)-(M(r, s))\ We observe that ikf(0,1) is normal
and M(r, — 1) is normal (and in fact symmetric) for all re I. Other-
wise, M(r, s) is nonnormal.

We define functions <5(r, s) and Δ(r, s) as follows:

δ(r, s) — r2 — 4s

Δ(r, s) = (r2 + s2 + I)2 - 4s2 .

We note that Δ(r, s) can also be expressed in the forms

(r2 + (s + l)2)(r2 + (β - I)2) , 4rV + (r2 - s2 + I)2 ,

and 4r2 + (r2 + s2 — I)2. We denote the fields which the characteristic
roots of M(r, s) and N(r, s) generate over the rational number field,
R, by F(M(r, s)) and F(N(r, s)), respectively. Then F(M(r, s)) =
R{Vδ(r,8)) and F(N(r, *)) = R{V Δ{τ,s)). We definte g,(r, s) to be
the square-free part of δ(r, s) if <?(r, s) Φ 0, and g5(r, s) = 1 otherwise.
Similarly, we define gΔ(r, s). This work is therefore concerned with
the relationships between gh{r, s) and gA(r, s). Clearly F(M{τ, s)) and
F(N(r, s)) coincide if and only if gδ(r, s) — gΔ{r, s).

Many of the conjectures proven in this work were suggested by
calculations performed on the IBM 7090 computer. The question of
the number of pairs (r, s), with s Φ — 1 and rs Φ 0, such that F(M(r, s))
and F(N(r, s)) coincide is still unanswered. (We can easily see that
gs(r, -1) = gj(r, - 1 ) and gh(r, 0) = g/r, 0) for all re I. Also, g,(0, s) =
gj(0, s) if and only if3 s = — D.) The computer data and a number
of results lead us to conjecture that there exist only finitely many
pairs (r, s) satisfying these conditions.

1* The Nature of F(N(r, s)). We will conclude in this section

that the set of fields {F(N(r, s)) \ rs Φ 0} is precisely the set {R(Vc) \ c —

a2 + δ2 Φ 1}. We first note

2 This was proven by A.J. Hoffman and 0. Taussky, [2].
3 In this paper, '*•" will always denote an integral square.
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THEOREM 1.1. gΔ{r, s) = 1 if and only if rs — 0.

Proof. Without restricting generality, we assume r, s ^ 0. We
observe that J(r, s) = (r2 + s2 - I)2 + 4r2 = (r2 + s2)2 + 2(r2 -s 2 ) + 1
and that (r2 + s2 + I)2 = (r2 + s2)2 + 2(r2 + s2) + 1. Hence if r > s > 0
we have (r2 + s2)2 < 4(r, s) < (r2 + s2 + I)2, while if 0 < r < s we have
(r2 + s2 - I)2 < zf(r, s) < (r2 + s2)2. Also, Δ{r, r) = 4r4 + 1. Hence
J(r, s) ^ D for rs Φ 0 and the necessity of the condition is proven.
To prove sufficiency we observe that J(0, s) = (s2 — I)2 and A(ry 0) =
<r2 + I) 2 .

Since gΔ(r, s) is the square-free part of 4rV + (r2 — s2 + I)2, we
conclude that ^ ( r , 5) is of the form α2 + δ2, where α and b are rela-
tively prime integers, and, ab = 0 if and only if rs = 0. The next
theorem demonstrates that each form with ab Φ 0 is represented by
some gΔ{r, s). We prove, in fact, rather more. We first recall the
following lemma:

LEMMA.4 Let d > 1 be an integer of the form Π PP where each
prime P 4 is of the form AN + 1, Then there exists at least one pair
of integers (α, b) such that d = a2 + b2 and (α, b) = 1.

THEOREM 1.2. (i) Le£ c = α2 + b2 Φ Π. Then there exists a
sequence {(rn, sn)}, 1 ^ n < co? sue/?, ίfeαί rw < rw+1, sΛ < sΛ+1, and
^ s , ) = c D.

(ii) Further, if c is a product of primes of the form 4ΛΓ+ 1,
there exists a sequence { « , s'n)}, 1 ^ n < 00, ŝ cfe ίfcαί

< < K+1, s'n < s'n+1, zί(r'w, «;) = c D

and δ(r'n, s'n) = cd% D, where dn is some integer relatively prime to c.

Proof. Let f0 + ^oτ/ c denote any solution of the equation
f - eg2 = l,/ 0, ^0 > 0. Write c = Π^i-Pf* where the primes P 4 are
distinct and each βt > 0. Further, write gQ~ k ΠΣU PfS where each
ofi ^ 0 and (&, c) = 1. Define c' = go/k and d = (c'fe. Then we have

(1.1) fl - k2d = /2

0 - ^2

0c = 1 .

We define fn + g%V~d = (/0 + kVdfn and a;, + i / . τ / T = (Λ + QnVΊί)2 =
/ ϊ + ^ ^ + 2fngnV~d, n ^ 1, so that / 2 - gr2d = 1 = a?; - ^ d , αn = /2 n,
and yn = ^r2π. Clearly α̂ w > x ^ and ]/Λ > yn_u n > 1. We can write
d = α2 + b\ for some integers au b± > 0. If each P 4 = 1 (mod 4) then
by the lemma we can choose ax and 6X to be relatively prime. We

4 A proof of this result can be found in [3], pp. 164-6.
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now define

un + vnV"d =(d + byT){xn + ynV~d)

= d(xn + b,yn) + {bxxn + dyn)VT, n ^ 1 .

It is clear that

(1.2) ui - vld = d2 - bid .

Further, un = 0, vn = 6X (mod d), since x% = f\ = 1 (mod d), n ^ 1. It
follows that 2ujd, 2(vn — feJ/cZ are integers which we shall denote by
mn, kn, respectively, n ^ 1. Clearly ^w > un_x so that /bw > fcΛ_i. From
(1.2) we have 4ώ2 - 46Jd = dm\ - d(dkn + 262)

2. Simplifying and divid-
ing by d\ we get

(1.3) dkl + 4bjcn + 4 - ml .

We now define

rn = &„«!, sn = &A + 1 , w ^ 1.

Then τn < rn+1, sn < sn+1, r\ + (sn ~ I)2 = kid, and rl + (sn + I)2 = ml,
from (1.3). Clearly Λ(rΛ, sn) = d Π == c D, n ^ 1, so that (i) is proven.

Let us suppose that each P ^ l (mod 4) and that we have chosen
alf &! to be relatively prime. We observe that

(1.4) fn=l(moάd)f n^l.

For, f1 = f0+ k2d = 2k2d + 1 = 1 (modd) by (1.1). Also, if fn_, = l(modd)r

then fn — fn^1f1 + Qn^gίd = 1 (modcί). We also observe that

(1.5) (gu d) - (2/ofc, d) = (2/o, d) = 1 ,

by (1.1) and the fact that d is odd. Further, we show by induction
that

(1.6) gn = ng1 (mod d) , n ^ 1.

We assume that gn_1 = (n — 1)^ (modd), ^ ^ 2. Then

gn = flfn-i/i + /n-ifl̂ i = ^ - i + ^i = ^ffi (™ά d)

by (1.4) and the induction is complete. We consider the equation
f(y) = y2 + 1 - ; 0 (mod P^, i = 1, . . . , m. Since each Pt=l (mod 4),
we can find a solution ^ to this equation, for each ί. Then we can
choose5 integers y[ such that yi = ^ (modP^), /(?/•) = 0 (mod P f ί + β ί ) ,
since /'(#») ^ 0 (mod P^, i = 1, , m. By the Chinese Remainder
Theorem we can choose z such that z = y\ (mod Pfi+βi) for all i, and

5 For a proof of this statement, see for instance [4], page 87.
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hence

<1.7) z2+l = 0 (mod d) .

Since (2bu d) = 1, by (1.5) and (1.6) it is clear that the integers
2&i0id+i, i = 1, , ώ, represent a complete residue system modulo d,
for any integer t ^ 0. Hence we can choose an integer N > 0 such
that 2bλgN = 2b1gtd+N = z — 1 (mod d), for every £ Ξ> 0. Then

(2bigtd+N + I)2 + 1 = 0 (mod d)

by (1.7). Moreover

(1.8) δ(rίcZ+i^, 8 ί i+jy) = - {ktd+Nbt + 2)2 + k2

td+Nd

= - (fc ί d +A + 2)2 (mod d)

In general, we can show that

k
n
 = 2(6^ + */„ - bj/d

= 2(61(/ί + g\d - l)/d + 2Λflrn) = 4 ( 6 ^ + flrn) (mod d),

using (1.4). Hence

(1.9) ktd+Λ + 2 = ( 2 6 ^ , ^ + I)2 + 1 = 0 (mod d) ,
so that by (1.8), 3(rtd+N, std+N) = 0(modd), ί ^ 0. We can show that
((δ(rtd+N, std+N))/d, d) = 1. For, assume the contrary. Then

for some i. By (1.9) we know that P?°i+w \ (A?ίd+A + 2)2. Hence,
by (1.8), Pfί+βi+11 fc?d+^ so that P, | ^ ί(Z+^. This is however a contra-
diction by (1.9). Hence δ(rtd+ir, std+N) = dd't+1 = cd t+1 D where (df+1, c) =
(d ί+1, c) = 1, ί S 0. If we set m = (n ~ l)d + N, r'n = rm, s'n = sm, the
proof of (ii) is complete.

2. Further relations between F(M(r, s)) and F(N(r, s)). The
following theorems are concerned with various comparisons of the
fields F{M{r, s)) and F(N{r, s)). We observe from Theorem 1.2 (ii)
that, for every square-free odd integer c = α2 + δ2 there exist infinitely
many pairs (r, s), rs ^ 0, s ^ — 1, such that ^ ( r , s) | ^δ(r, s) and
^ ( r , s) = c. In this section we will demonstrate that if c — α2 + b2 is
a square-free integer then there exist infinitely many pairs (r, s), rs ^ 0,
s Φ — 1, such that gL(r, s) \ gj(r,,s) and #δ(r, s) — c. We first prove
the following theorem, which essentially states the conclusion of Theorem
1.2 (ii) for the case c = 2.

THEOREM 2.1. T%erβ exίsίs α sequence {(rw, sw)}, l ^ w < oo, 0/
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pairs of integers such that gΔ(rny sn) = 2, g?>{rni sn) = 2dni where dn is
some odd integer and \ sn | < | sn+11, n ^ 1.

Proof. Define integers xn, yn by the relation xn + # n i / 2 =
(1 + l / T ) 2 * - 1 , n^l. Then x2 - 2?/2 = - 1 and xn = yn==l (mod 2). Also
define integers fn, sn by the relations: \fn\ = χn,\sn\ = yn, fn= sn~
— I(mod4), n^l. Further define rn—fn + sn. Then r2

n—sl+l—2rnsn —
0 so that Δ(rn, sn) = (r2 - s2, + I)2 + 4r2X = 8 r X . Hence ^ ( r . , βn) =
2, w ^ 1. Furthermore, δ(rn, sn) = 4((/Λ + sJ2/4 — sn), and since
fn + s«, Ξ ~ 2 (mod 4), we have δ(rΛ, sn)/4 = 2 (mod 4). Hence #δ(rw, sΛ) =
2dπ, where dn is odd, ?̂ ̂  1.

We will prove the following theorem:

THEOREM 2.2. Let c = α2 + b2 be a square-free integer. Then
there exist infinite sequences {rn}, {sn}, and {s'n), such that rn < rn + 1,

cc'n, where cn and cr

n are integers relatively prime to c, n — 1, 2, .

We first prove three lemmas:

LEMMA 1. Suppose c — t2u > 0, u odd. Further suppose that
c I r2 + 4, for some integer r > 0. Then there exists an integer

where c' is some integer relatively prime to c.

Proof. We define an integer / to be c or c/4 according as c is
odd or even. Now r2 + 4 φ 0 (mod 16) so that it is clear that / =
1 (mod 4). We define an integer d = (r2 + 4)//. Clearly ( J Ξ O O Γ

I(mod4). We can therefore define a positive integer k as follows:

(2fd + 1 i f i s l (mod 4)

k = \f(d + 1) + 1 if d = 0 (mod 8)

(3/(d + 1) + 1 if d Ξ 4(mod8) .

Observe that &2 = d (mod 4). Define the integer s = f((d - &2)/4) - 1.
Evidently s < — 1. Also, S(r, s) = fk2. Furthermore, since (/, rk) = 1
it is clear that Δ(r, s) = fcu where c, - (k2 + f((d - fc2)/4)2)(r2 + (s + I)2)
and (c15 /) = 1. Hence F(M(ry s)) = 2e(i/7), ^(JSΓίr, s)) = i2(l/"cc7), and
if c is odd, (c, cx) = (/, cx) = 1 and the proof is complete. If c is even
then k2 = d = 0 (mod 4), (d - &2)/4 =έ 0 (mod 2) and r2 = 0 (mod 4). Hence
Ci is odd and (c, cx) = 1.

LEMMA 2. Suppose c — t2u > 0, w odd. Suppose also that c | r 2 + 4
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for some even integer r > 0. Then there exists an integer s > 0 such

that F(M(r, s)) = R(V—c) and F(N(r, s)) = R(V~ccϊ) for some integer

cx relatively "prime to c.

Proof. (Observe that the requirement that r be even is necessary
since c > 0, c \ r2 + 4, and <5(r, s) = 0 or 1 (mod 4).) We define an
integer r1 — r/2 and define integers / and d as in the preceding proof.
We also define an integer e = d/4 and can choose an integer j > 0
such that (j,f) — l and e ^ i ( m o d 2 ) , since / is odd. The reader
may verify that if we choose s — f(e + f) — 1, the lemma is proven.

LEMMA 3. Suppose c — 2fu > 0 where u is a square-free odd
integer. Suppose also that c | r2 + 4 and e — ± 1. Then:

(i) / / r 2 + 4 = 0(modS) there exists an integer s Φ 0, —1 s^cΛ
that F(M(r1 s)) — R{λ/ ec) and F(N(r, s)) = JB(τ/ ccx) where cx is some
integer relatively prime to c.

(ii) // r2 + 4 Ξ 4 (mod 8) there exist no integers s and cx such

that F(M(r, s)) = R{VTc), F(N(r, s)) = R(V~ccd and (clf c/f) = 1.

Proof. We can define an integer r1 — r/2. To prove (i) we sup-
pose that r2 + 4 == 0 (mod 8) and define integers d and e as in the
proof of Lemma 2. We also define / = c/4 or c according as c Ξ 0 or
CΞΞ2(mod4). We can further define an odd integer f1 — f/2 and
choose an even integer j > 0 so that (fu j) — 1, j > 2e. To complete
the proof of (i) we define s = f(e — εj2) — 1 and note that f = 1 =
e(mod4), rx = I(mod2). Details are left to the reader.

To prove (ii) we assume that r2 + 4 = 4 (mod 8), and assume the
conclusion false. Then there exist integers s and cx (we may assume
cx is square-free) such that

(2.1) #δ(r, s) = 2eu

(2.2) gΔ(r, s) = 2cλu , (clf 2u) = 1.

Define an odd integer g = (r2 + 4)/4%. Then, by (2.1),

δ(r, s) -

for some integer A; > 0. We conclude that k/2 is an integer, m say,
since % is odd. We also conclude that

J(r, s) - ^(2&2ε + u(g - 2m2ε)2) (Art + u2(# - 2m2ε)2) = I(mod2) ,
which contradicts (2.2). Hence (ii) is proven.

Proof of Theorem 2.2. Write c = Π U L ^ * where the Pt are distinct
primes of the form 4N + 1 or 2. Let xt be an integer such that
x\ + 1 = 0 (mod P^, i = 1, , t and choose s such that z = Xι (mod Pt)t
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£ = 1, . . . , t. Also, define rn = 2(z + (n~ l)c), n ^ 1. Clearly r 2 + 4 =
4(#2 + 1) ΞΞ 0 (mod c), w ^ 1. Assume c is odd. Then by Lemma 1 there
exists an integer sn Φ 0, —1 such that g&{rn, sn) = c and gΔ(rn, sn) = ccn,
where cn is some integer relatively prime to c. Further, since rn is even,
by Lemma 2 there exists an integer s'n > 0 such that g*(rn, s'n) — — c
and gA(rni s'n) — cc'n, where (c, cr

n) — 1. Hence if c is odd the theorem
is proven. We assume c is even. Then z is odd so that rJ2 = 1 (mod 2)
and hence r\ + 4 = 0 (mod 8), w ^ 1. We take ε = 1, —1 sucessively
in Lemma 3 and the theorem is proven.

Taking a different viewpoint we have:

THEOREM 2.3. For every integer r > 0 there exist infinitely many
distinct integers s such that gb(r, s) | gΔ(r, s)9 \ g&(r, s) \ Φ 1.

Proof. Assume first that r Φ 2. Then, since r2 + 4 φ 0 (mod 16),
we know that r2 + 4 has an odd square-free divisor c, say, c > 1.
We define d — (r2 + 4)/c and choose an integer e > 0 such that β2 =
d (mod 4) and (β, c) = 1. We then define fcw = 2c ι̂ + e, n ^ 0. Clearly
~k\ = d (mod 4) and (fcTO, c) = 1. Hence we can define sΛ = (c(d — fcJ)/4) — 1,
ti ^ 0, and, as in the proof of Lemma 1 ( w i t h / = c), we conclude that
gs(r, sn) — c, gΔ{r, sn) = ccn, where cn is some integer relatively prime
to c. Hence if r Φ 2 the theorem is proven. In the case r — 2
we define s% = 1 - 2^2, % ̂  1, and observe that Δ(2, sn) = 32cJ,, δ(2,sn) =
2 D, where < is odd.

3. O n the coincidence of F(M(r, s)) and F(N(r, *))• The fol-
lowing known theorem, which is a special case of a theorem by C.L.
Siegel [5], will be applied frequently in this section.6

THEOREM A. Let f(x) be a polynomial of degree n ^ 3 with
integral coefficients and distinct zeros and let A be a nonzero integer.
Then the equation f(x) — Ay2 has at most a finite number of integral
solutions (x,y).

Computations for pairs of integers (r, s) satisfying the inequalities
0 ^ I r I ^ 600, 0 ^ I s | ^ 800 revealed five pairs (r, s) with rs Φ 0,
s Φ — 1 such that the fields F(M(r, s)) and F(N(r, s)) coincide. These
are: (r, s) = (6, 7), (14, 47), (11, -76) (141, -236) and (40, 31). The cor-
responding values of gΔ(r, s) are: 2, 2, 17, 17, 41. In this section we
will prove several theorems which resulted from a study of these five

f pairs, and which in some sense, limit the number of pairs (r, s) for
6 A proof of this theorem is given in [6], pp. 155-7.
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which coincidence occurs.
We first observe that in three cases of coincidence we have

δ(r, s) — 8. This leads us to inquire if any additional pairs (r, s) exist
with these properties. We find

THEOREM 3.1. Suppose gδ(r, s) — gΔ(r, s), δ(r, s) = 8, and r ^ 0.
Then (r, s) = (2, - 1 ) , (6, 7), or (14, 47).

Proof. Under the above hypotheses, r2 — 4s = 8, r2 + (s + I)2 =
(s + 3)2, r2 + (s - I)2 = (s + I)2 + 8, and J(r, s) = 2 D ^ 0. Hence
there exists an integer k > 0 such that (s + I)2 + 8 = 2k2. Define an
integer x — r/2. Clearly (x2 — I)2 + 8 = 2k2 so that a? is odd and k is
even. Define y — k/2 and observe that

(3.1) ((x2 - l)/8)2 = (y2 ~ l)/8 .

We can then define7 integers u and v by x = 2u — 1, /̂ = 2^ — 1 so

that (3.1) becomes ί g ) ~ (o) ^ ^ e o n ^ solutions8 of this equation

are (u, v) = (1,1), (2, 2) and (4, 9) and these solutions correspond to

(r, s) = (2, - 1 ) , (6, 7), and (14, 47), respectively.
In the preceding theorem we required that δ(r, s) = 8. We now

suppose that δ(r, s) — K, a constant. We have:

THEOREM 3.2. There exist at most a finite number of pairs (r, s)
such that gδ(r, s) = gΔ{r, s) and δ(r, s) = K, a constant.

Proof. If K — 0 the fields coincide only for (r, s) = (0, 0). Hence
we assume Kφ 0. We may also assume K Φ 8, by Theorem 3.1. We
write K = k2Q where Q is square-free. Suppose gs(r, s) — gd(r, s).
Then we must have Δ(r, s) = h2Q for some integer h. Since δ(r, s) =
r2 — 4s = k2Q, this implies

(3.2) (k2Q + 4s + (s + l)2).(k2Q + (s + I)2) = VQ .

The left-hand side of (3.2) is a polynomial in s of degree four with
roots s = — 3 ± (s — ¥Q)112, — 1 ± kV —Q, and, under our hypotheses,
these four roots are distinct. Hence by Theorem A we conclude that
(3.2) has at most a finite number of solutions (s, h). This proves the
theorem since K and s determine | r \ uniquely.

We apply a similar argument to prove the following more interest-
ing result:

7 The author is indebted to H. Hasse for this transformation.
8 For a proof of this assertion, see [7], pages 202-7.
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THEOREM 3.3. For any integer s Φ — 1, 0, there exist at most a
finite number of integers r such that g5(r, s) = gΔ{r, s).

We require the following lemma:

LEMMA. g5(r, 1) Φ gΔ(r, 1) for all r.

Proof. Suppose the lemma false. Then, for some r > 0 there
exist integers h, k such that r2 - 4 = VQ, (r2 + 4)r2 = h2Q, where Q =
gs(r, 1) = gΔ(r, 1) > 0. We observe that we must have hk Φ 0, r Φ 0.
Since Q is square-free, r \ h. Hence we can define an integer j =
h/r. Thus we conclude that 8 = (f - ¥)Q and Q = 1 or 2. If Q =
1 then r2 = k2 + 4 and if Q = 2 then / = &2 + 4 and both equations
are impossible since k Φ 0.

Proof of Theorem 3.3. By the lemma we may assume s Φ 1.
Hence let s and Q be fixed integers such that s Φ 0, ± 1 and Q > 0 is
square-free. Observe that the equation gΔ(r, s) — Q has at most a
finite number of solutions r. For this equation implies that

(3.3) J(r, β) = &2Q .

Now A(r, s) is a polynomial of degree four in r with distinct roots
r — ± i(s ± 1), (i = V — 1) and hence for fixed s =£ ± 1, 0, equation
(3.3) has at most a finite number of pairs of solutions (r, h), by
Theorem A.

Now observe that for fixed s Φ — 1 there exist at most a finite
number of square-free integers Q such that

(3.4) g,(r, s) = #,(r, s) = Q .

For this equation implies, by (3.2), that (s + l)2(s2 + 6s + 1) = 0 (mod Q).
Combining these results, we have the theorem.

A similar theorem for fixed r is true:

THEOREM 3.4. For a given integer r Φ 0 there exist at most a
finite number of integers s such that #δ(r, s) — gΔ(r, s).

Proof. We observe that for fixed square-free integers Q and r > 0
equation (3.3) has at most a finite number of solutions (s, h). For, the
roots s = ± 1 + ir (i — V — 1) are distinct and Theorem A applies. Further
it is clear that if (3.4) is satisfied then Q \ (r4 + 24r2 + 16)(r2 + 4).
Hence, as above, the theorem is proven.

We observe that the pairs (r, s) such that g8(r, s) = gΔ(r, s) have
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the property that s ^ 2 (mod 4). This must always be the case as is
seen by the following theorem

THEOREM 3.5. Suppose g$(r, s) — gA(r, s). Then s =έ 2 (mod 4).

Proof. Suppose the theorem is false, for some (r, s), s = 2 (mod 4).
Then there exist integers h and k such that

(3.5) δ(r, s) = r2 - 4s = WQ

(3.6) Δ(r, s) = (r2 + (s + l)2) (r2 + (s - I)2) = h2Q

where Q = g6(r, s) = gΔ(r, s) > 0. We can see by Theorem 1.1 and the
fact that 8 ΞΞΞ 2 (mod 4) that hk Φ 0. Now Q is a square-free product
of primes of the form 4N + 1 or twice such a product. Hence Q = 1,
2 or 5 (mod 8). We show that Q is odd. For, (3.5) and (3.6) imply
(3.2) which yields:

since s is even. Hence Q = 1 or 5 (mod 8). We assume first that
Q Ξ 5 (mod 8)1 Equation (3.5) implies r 2 = 5k2 (mod 8) so that r is even
and (r2 + (s + l)2) (r2 + (s - I)2 = 1 (mod8). This contradicts (3.6).
Hence we can assume Q = 1 (mod 8). We can write

(3.7) r 2 + (s + I)2 =

(3.8) r2 + (s~ I)2 -

where βu β2, Qu Q21 n are integers such that QXQ2 — Q and n is square-
free. Combining (3.5) and (3.7) we have 4s + k2Q,Q2 + (s + I)2 = βlQ.n
so that

(3.9) 4s + (s + I)2 = 0 (mod Qx) .

Similarly, (s + I)2 = 0(modQ2) so that Q2 \ s + 1. Now Q, = Π Λ ,
where the P{ are distinct primes of the form AN + 1. We assert that
each Pi = I(mod8). For, let x be the integer s/2 and observe that
(3.9) implies (2x + 3)2 = 8 (mod P,).

Now9 ( - ^ - ) = ( - | - ) - - 1 if Pi = 5 (mod 8) .

Hence P{ = 1 (mod 8) so that Q1 = 1 = Q2 (mod 8). Now from (3.5) we
have r 2 = ¥ + 8 or 9A2 + 8 (mod 16) so that r2 = 1 or 9(mod 16). Clearly
(s + I)2 =fc (s — I)2 (mod 16). Hence there are four possible cases

1. (s + I)2 = 1, (s - I)2 = 9, r 2 = 1 (mod 16)

2. (s + I)2 = 9, (s - I)2 = 1, r 2 = 1 (mod 16)

9 For a proof of this result see for instance [9], p. 75.
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3. (s + I)2 = 1, (s - I ) 2
 Ξ 9, r 2

 Ξ 9 (mod 16)

4. (s + I)2 = 9, (β - I ) 2
 Ξ l f r 2 = 9 (mod 16)

In cases 1 and 4 we have r 2 + (s + I ) 2 Ξ 2, r2 + (s - I ) 2 = 10 (mod 16).
Hence from (3.7) and (3.8) we have

(3.10) βlQλn = 2, βlQ2n = 10 (mod 16) .

Clearly βλ and β% a re odd and n is even so t h a t β\Qι = 1 = /9*Q2 (mod 8)
and n{β\Q1 - β\Q2) = 0 (mod 16) which is impossible by (3.10). Similarly
in cases 2 and 4 we deduce a contradict ion.

We recall from t h e lemma to Theorem 3.3 t h a t gB(r, 1) Φ gA(r, 1) for
all r. F o r certa in other odd integers s we can also demonstrate
t h a t gό(r, s) Φ gΔ(r, s) for all r . We have

T H E O R E M 3.6. Suppose g8(r, s) = gΔ{τ, s). Then s Φ 1, 3, 5 ,11,15,
— 3, —5, and —13.

Proof. Let s Φ 1 be one of the values listed and assume the
theorem is false. Then from (3.2),

g(s) = (β + l)((s + I) 2 + 4s) = 0 (mod Q)

where gδ(r, s) = ^ ( r , s) = Q > 0 is square-free and g(s) is defined by
this equation. We tabulate g(s) for each s Φ 1 in the statement of the
theorem and find that in each case Q can only be 1 or 2. It is clear
by (3.5) and Theorem 1.1 that Q Φ 1 for the given values of s. Hence
Q can only be 2 so that (3.5) becomes

(3.11) τ\ - 2kl = s -

where rx — s/2 and k± = k/2 are integers. Now the fundamental solu-

tion of the equation x2 — 2y2 = 1 is 3 + 2τ/~2". Hence, if (3.11) has

solutions,10 one of them must satisfy

0 ^ kx S VT\2 if s > 0, 0 < k, g τ/~ίΊΓ| if s < 0 .

For each s Φ 1 listed we test all possible & and discover that in fact
(3.11) has no solutions and thus the theorem is proven.

We recall that #δ(6, 7) = ^(6, 7). We ask if there are other in-
tegers r such that g8(r, r + 1) = gΔ(r, r + 1) or such that g&(r, 7) =
gΔ(r, 7). The following two theorems answer these questions.

THEOREM 3.7. g5(r, r + 1) = gA(r, r + 1) if and only if r = — 1,

10 Here we have used Theorems 108, 108a, [4].
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- 2 or 6.

Proof. Sufficiency is clear. Hence we assume

(3.12) <?δ(r, r + 1) - gΔ(r, r + 1)

for some r Φ 0. Let s = r + 1. Then there exist positive integers
ft, k and Q such that Q is square-free and

(3.13) δ(r, β) - s2 - 6s + 1 = ¥Q

(3.14) J(r, s) = 2r2(s2 + 1) = 2r2ft2Q .

Hence

(3.15) s2 + 1 = h2Q

(3.16) 6s = (&2 - ft2)Q .

Equation (3.16), together with (3.13) and (3.14) implies Q = 1 or 2.
If Q = 1 then r = 0 or - 1 by Theorem 1.1. If r = 0, equation (3.12)
is not satisfied.

Hence we assume Q = 2. Then, combining (3.15) and (3.16) we have

(3.17) ((ft2 - ¥)βf = 2ft2 - 1 .

We will show that (3.17) has only two solutions which correspond to
r = - 2 , 6. Let y = | ft - k |, a? = (h2 - fc2)/3 and suppose ft ^ 30. We
consider the cases ί / ^ 5 , ?/=4, τ/ = 3 and find that in each case
x2 > 2h2 - 1. Also, if y = 1 or 2 then x2 < 2ft2 - 1 so that for ft^30
equation (3.17) has no solutions. Equation (3.17) implies that 2ft2 — 1 =
• and the solutions of this equation such that ft < 30 are ft = 1, 5,
29. Substituting in (3.17) we find solutions (ft, k) = (1, 2), (5, 2), so
that r = — 2 , 6.

THEOREM 3.8. #θ(r, 7) = ^ ( r , 7) if and only if \ r \ = 6.

Proof. Suppose #δ(r, 7) = ^ ( r , 7) = Q for some r > 0. Then there
exist positive integers ft and k such that

(3.18) ί(r, 7) = r2 - 28 -

(3.19) J(r, 7) = (r2 + 36)(r2 + 64) = h2Q

so that Q I 32-23. Hence Q = 1 or 2. By Theorem 1.1, Q = 2. By
(3.18), r2 = 4 (mod 8) so that r2 + 64 = 4 (mod8). Hence from (3.19) we
can easily see that r2 + 64 = • and r2 + 36 = 2 D. Hence r/2 is an
integer, x, and α;2 + 9 — 2̂ /2 for some y > 0. Hence, from (3.18),
y* — z2 — 8, where 2 is the integer fc/2. Hence y = 3, « = 1 so that
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r = 6.
This research is part of the author's doctoral thesis submitted

April, 1964 at California Institute of Technology. The author is
indebted to Dr. Olga Taussky Todd for suggesting the problem and
for her helpful guidance in preparation of the thesis. Further, the
author is indebted to the National Science Foundation and the California
Institute of Technology for financial assistance.

REFERENCES

1. M. P. Drazin, J. W. Dungey, and K. W. Gruenberg, Some theorems on commutative
matrices, J. London Math. Soc. 26 (1951), 221-8.
2. A. J. Hoffman, and 0. Taussky, A Characterization of Normal Matrices, J. of
Research of the National Bureau of Standards, 52 (1954), 17-19.
3. G. L. Dirichlet Zahlentheorie, (1863)
4. T. Nagell, Introduction to Number Theory, New York, (1951).
5. C . L . S i e g e l , The Integral Solutions of the Equation y 2 = a x n + bxn~1 + • • • + & , J .
London Math. Soc, 6 (1926), 66-8.
6. W. J. LeVeque, Topics in Number Theory, II, Reading, (1956).
7. Wilhelm Lundgren, Solution Complete de Quelques Equations du Sixieme Degre ά
Deux Indeterminees. Archiv for Math, og Naturv., 48, 177-211.
8. L.E., Dickson, History of the Theory of Numbers, II, New York, (1920).
9. G.H., Hardy, and E. M. Wright An Introduction to the Theory of Numbers, New
York, (1960).

Received September 22, 1964.




