THE SUM OF TWO INDEPENDENT EXPONENTIAL-TYPE RANDOM VARIABLES

E. M. BOLGER

Let X_1, X_2 be nondegenerate, independent, exponential-type random variables (r.v.) with probability density functions, (p.d.f.) $f_1(x_1; \theta), f_2(x_2; \theta)$, (not necessarily with respect to the same measure), where $f_i(x_i; \theta) = \exp \{x_i p_i(\theta) + q_i(\theta)\}$ for $\theta \in (a, b)$ and $p_i(\theta)$ is an analytic function of θ (for $Re \ e \in (a, b)$) with $p'_i(\theta)$ never equal to zero on (a, b). If X_1, X_2 are neither both normal nor both Poisson type r.v.'s, then $X_1 + X_2$ is an exponential-type r.v. if and only if $p'_1(\theta) = p'_2(\theta)$.

2. Lemmas. It follows from Patil's result ([3]) that a r.v. X is of exponential type if and only if the cumulants, $\lambda_j(\theta)$, exist and satisfy

(1)
$$\lambda_j'(heta) = p'(heta)\lambda_{j+1}(heta)$$
 for $j = 1, 2, 3, \cdots$.

Lehmann ([2], p. 52) has shown that $q(\theta)$ and hence also $\lambda_j(\theta)$ are analytic functions of $p(\theta)$. Then $\lambda_j(\theta)$ is an analytic function of θ for $Re \ \theta \in (a, b)$.

Let $\lambda_{j,i}(\theta)$ be the j^{th} cumulant of X_i and $\lambda_j(\theta)$ the j^{th} cumulant of Y. Then

(2)
$$\lambda_j(\theta) = \lambda_{j,1}(\theta) + \lambda_{j,2}(\theta)$$

(3)
$$\lambda'_{j,i}(\theta) = p'_i(\theta)\lambda_{j+1,i}(\theta)$$
 for $j = 1, 2, 3, \cdots$.

Let $h_j(\theta) = \lambda_{j,1}(\theta)\lambda_{2,2}(\theta) - \lambda_{j,2}(\theta)\lambda_{2,1}(\theta)$ and $c(\theta) \equiv \lambda_{2,2}(\theta)/\lambda_{2,1}(\theta)$.

LEMMA 1. If $h_3(\theta) \equiv 0$ and if $c'(\theta) \equiv 0$, then either X_1 and X_2 are both normal or $p'_1(\theta) \equiv p'_2(\theta)$.

Proof. Since $h_3(\theta) \equiv 0$,

(4)
$$\lambda_{3,2}(\theta) = c(\theta)\lambda_{3,1}(\theta) .$$

Since $c'(\theta) \equiv 0$,

(5)
$$\lambda'_{2,2}(\theta) = c(\theta)\lambda'_{2,1}(\theta) .$$

From (3), (4) and (5) it follows that

$$p_2'(heta)\lambda_{3,2}(heta)=c(heta)p_1'(heta)\lambda_{3,1}(heta)=p_1'(heta)\lambda_{3,2}(heta)$$
 .

If $\lambda_{3,2}(\theta) \equiv 0$, then $\lambda_{3,1}(\theta) \equiv 0$ and X_1, X_2 are both normal. If there is a point θ_0 such that $\lambda_{3,2}(\theta) \neq 0$, then there is a neighborhood, $N(\theta_0)$, in which $\lambda_{3,2}(\theta) \neq 0$. For $\theta \in N(\theta_0)$, $p'_1(\theta) = p'_2(\theta)$. By analyticity, $p'_1(\theta) = p'_2(\theta)$ for $\theta \in (a, b)$.

LEMMA 2. If $h_j(\theta) \equiv 0$ for j > 2 and if $c'(\theta) \not\equiv 0$, then X_1 and X_2 are Poisson type r.v.'s.

Proof. Since $h_i(\theta) \equiv 0$,

(6)
$$\lambda_{j,2}(\theta) = c(\theta)\lambda_{j,1}(\theta)$$
.

Differentiating (6) and using (3), we get

$$c(heta)\lambda_{j,1}'(heta)+c'(heta)\lambda_{j,1}(heta)=p_2'(heta)\lambda_{j+1,2}(heta)$$
 .

Then,

(7)
$$c(\theta)p'_1(\theta)\lambda_{j+1,1}(\theta) + c'(\theta)\lambda_{j,1}(\theta) = p'_2(\theta)c(\theta)\lambda_{j+1,1}(\theta) .$$

In particular,

$$(8) c(\theta)p_1'(\theta)\lambda_{3,1}(\theta) + c'(\theta)\lambda_{2,1}(\theta) = p_2'(\theta)c(\theta)\lambda_{3,1}(\theta) .$$

Multiplying (7) by $\lambda_{3,1}(\theta)$ and (8) by $\lambda_{j+1,1}(\theta)$, we find that

$$(\ 9 \) \qquad \quad c_{j}'(heta)[\lambda_{2,1}(heta)\lambda_{j+1,1}(heta)-\lambda_{3,1}(heta)\lambda_{j,1}(heta)]=0 \qquad \qquad ext{for} \ \ j \geqq 2 \ .$$

Since $c'(\theta) \neq 0$, there is a sub-interval M of (a, b) in which $c'(\theta) \neq 0$. For $\theta \in M$,

$$\lambda_{2,1}(heta)\lambda_{j+1,1}(heta)-\lambda_{3,1}(heta)\lambda_{j,1}(heta)=0\;,$$

or

(10)
$$\lambda_{j+1,1}(\theta) = \frac{\lambda_{3,1}(\theta)}{\lambda_{2,1}(\theta)} \lambda_{j,1}(\theta) .$$

By analyticity, (10) is true for all $\theta \in (a, b)$. Now let $a(\theta) = \lambda_{3,1}(\theta)/\lambda_{2,1}(\theta)$. Then, by (3),

$$p_1'(heta)\lambda_{4,1}(heta) = \lambda_{3,1}'(heta) = a'(heta)\lambda_{2,1}(heta) + a(heta)\lambda_{2,1}'(heta) \ = a'(heta)\lambda_{2,1}(heta) + a(heta)p_1'(heta)\lambda_{3,1}(heta) \; .$$

Since $\lambda_{4,1}(\theta) = a(\theta)\lambda_{3,1}(\theta)$, it follows that

$$a'(heta)\lambda_{\scriptscriptstyle 2,1}(heta)=0$$
 .

So $a'(\theta) = 0$ and $a(\theta) = d$. Then (10) becomes

(11)
$$\lambda_{j+1,1}(\theta) = d\lambda_{j,1}(\theta)$$
 for $j \ge 2$

This implies

(12)
$$\lambda_{j,1}(\theta) = d^{j-2}\lambda_{2,1}(\theta) \qquad \text{for } j \ge 2.$$

By (6),

(13)
$$\lambda_{j,2}(\theta) = d^{j-2}c(\theta)\lambda_{2,1}(\theta)$$
 for $j \ge 2$.

Now,

$$p_1'(heta) = \lambda_{1,1}'(heta) / \lambda_{2,1}(heta) \;, \ p_1'(heta) = \lambda_{2,1}'(heta) / \lambda_{3,1}(heta) = \lambda_{2,1}'(heta) / d\lambda_{2,1}(heta) \;.$$

So

(14)
$$\lambda_{1,1}(\theta) = d^{-1}\lambda_{2,1}(\theta) + k_1$$
 .

Similarly,

(15)
$$\lambda_{1,2}(heta) = d^{-1}c(heta)\lambda_{2,1}(heta) + k_2$$
 .

Using (12), (13), (14) and (15), we find that

$$egin{aligned} \log M_{\scriptscriptstyle 1}(t; heta) &= k_{\scriptscriptstyle 1}t + d^{_{\scriptscriptstyle 2}}\lambda_{_{\scriptscriptstyle 2,1}}(heta)(e^{dt}-1) \ \log M_{\scriptscriptstyle 2}(t; heta) &= k_{\scriptscriptstyle 2}t + d^{_{\scriptscriptstyle -2}}c(heta)\lambda_{_{\scriptscriptstyle 2,1}}(heta)(e^{dt}-1) \ , \end{aligned}$$

where $M_i(t; \theta)$ is the moment generating function corresponding to $f_i(x_i; \theta)$.

This concludes the proof of Lemma 2.

3. The sum of two independent exponential-type random variables.

THEOREM 1. If X_1, X_2 are neither both normal nor both Poisson type r.v.'s, then $X_1 + X_2$ is an exponential-type r.v. if and only if $p'_1(\theta) = p'_2(\theta)$.

Proof. If $p'_1(\theta) = p'_2(\theta)$, then if follows from (2) and (3) that

$$egin{aligned} \lambda_{j+1}(heta) &= \lambda_{j+1,1}(heta) + \lambda_{j+1,2}(heta) \ &= [p_1'(heta)]^{-1}\lambda_{j,1}'(heta) + [p_1'(heta)]^{-1}\lambda_{j,2}'(heta) \ &= [p_1'(heta)]^{-1}\lambda_j'(heta) \;. \end{aligned}$$

Conversely, assume $X_1 + X_2$ is an exponential-type r.v.. Then, using (1), (2), and (3), we find that

(16)
$$p'(\theta)[\lambda_{j,1}(\theta) + \lambda_{j,2}(\theta)] = p'_1(\theta)\lambda_{j,1}(\theta) + p'_2(\theta)\lambda_{j,2}(\theta) .$$

In particular,

E. M. BOLGER

(17)
$$p'(\theta)[\lambda_{2,1}(\theta)+\lambda_{2,2}(\theta)]=p'_1(\theta)\lambda_{2,1}(\theta)+p'_2(\theta)\lambda_{2,2}(\theta)$$

Multiplying (16) by $\lambda_{2,1}(\theta)$ and (17) by $\lambda_{j,1}(\theta)$ and then subtracting, we get

(18)
$$[p'(\theta) - p'_2(\theta)]h_j(\theta) \equiv 0 \qquad \text{for } j \ge 2.$$

Now, if for some $j_0 \ge 2$, $h_{j_0}(\theta) \ne 0$, then there is a subinterval, M, of (a, b) in which $h_{j_0}(\theta) \ne 0$. Then, for $\theta \in M$, $p'_2(\theta) = p'(\theta)$. By analyticity, $p'_2(\theta) = p'(\theta)$ for all $\theta \in (a, b)$. Substitution in (16) yields $p'_1(\theta) = p'(\theta)$ for $\theta \in (a, b)$. If, on the other hand, $h_j(\theta) \equiv 0$, for $j \ge 2$, the result follows from Lemmas 1 and 2 since we assumed that X_1, X_2 are neither both normal nor both Poisson type r.v.'s.

It should be noted that Girshick and Savage [1] proved that if X_1 and X_2 are independent identically distributed r.v.'s such that their sum is of exponential-type, then X_1 and X_2 are also of exponential-type.

The following theorem gives necessary and sufficient conditions for the sum of two Poisson-type r.v.'s to be exponential-type.

THEOREM 2. If $\log M_i(t; \theta) = C_i t + A_i(\theta)[l^{b_i t} - 1]$, then $X_1 + X_2$ is an exponential-type r.v. if and only if either $b_1 = b_2$ or $p'_1(\theta) = p'_2(\theta)$.

Proof. If $X_1 + X_2$ is an exponential-type r.v., then, as in the proof of the preceding theorem,

$$[p'(heta)-p_2'(heta)]h_j(heta)\equiv 0 \qquad \qquad ext{for } j\geq 2 \;.$$

Equivalently,

(19)
$$\begin{bmatrix} [\lambda_{j,1}(\theta)\lambda_{2,2}(\theta) - \lambda_{j,2}(\theta)\lambda_{2,1}(\theta)] \\ = p'_2(\theta)[p'(\theta)]^{-1}[\lambda_{j,1}(\theta)\lambda_{2,2}(\theta) - \lambda_{j,2}(\theta)\lambda_{2,1}(\theta)] & \text{for } j \ge 2. \end{bmatrix}$$

Since, for $j \ge 2$, $\lambda_{j,i}(\theta) = b_i^j A_i(\theta)$, (19) becomes

$$[b_1^j b_2^2 - b_2^j b_1^2] A_1(heta) A_2(heta) = p_2'(heta) [p'(heta)]^{-1} [b_1^j b_2^2 - b_2^j b_1^2] A_1(heta) A_2(heta)$$
 .

But $A_1(\theta)A_2(\theta) > 0$, so that

$$[b_1^j b_2^2 - b_2^j b_1^2] = p_2'(heta) [p'(heta)]^{-1} [b_1^j b_2^2 - b_2^j b_1^2] \; .$$

Now, if $b_1^i b_2^2 = b_2^j b_1^2$ for all $j \ge 2$, then $b_1^3 b_2^2 = b_2^3 b_1^2$, so that $b_1 = b_2$. On the other hand, if, for some $j_0, b_1^{j_0} b_2^2 - b_2^{j_0} b_1^2 \ne 0$, then $p_2'(\theta) = p'(\theta)$ and it follows that $p_1'(\theta) = p_2'(\theta)$.

Conversely, if $p'_1(\theta) = p'_2(\theta)$, then $X_1 + X_2$ is an exponential-type r.v. since (1) is satisfied. If $b_1 = b_2$, let

$$p'(heta) = [A_1'(heta) + A_2'(heta)]/b_1[A_1(heta) + A_2(heta)]$$
 .

It is easy to see that (1) is again satisfied.

The author wishes to thank William L. Harkness for his help in the preparation of this paper.

References

1. M. Girshick and L. Savage, *Bayes and minimax estimate for quadratic loss functions*, Second Berkeley Symposium on Probability and Statistics, University of California Press, Berkeley, 1951, 67-68.

E. L. Lehmann, Testing Statistical Hypotheses, John Wiley, New York, 1959.
G. P. Patil, A characterization of the exponential-type distribution, Biometrika 50 (1963), 205-207.

Received August 17, 1964, and in revised form February 26, 1965.

BUCKNELL UNIVERSITY