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SEMI-ALGEBRAS THAT ARE LOWER SEMI-LATTICES

E. J. BARBEAU

This paper is concerned with uniformly closed sets of
continuous real-valued functions defined on a compact
Hausdorff space that are at the same time semi-algebras
(wedges closed under multiplication) and lower semi-lattices.
The principal result is that any such set can be represented
as an intersection of lower semi-lattice semi-algebras of three
elementary types. This is an adaptation of a similar theorem
of Choquet and Deny for lower semi-lattice wedges. A
modified form of the theorem is also given for the case that
the lower semi-lattice semi-algebra is in fact a lattice.

Throughout, E denotes a compact Hausdorff space and C(E) the
family of all continuous real-valued functions defined on E. For two
functions / and g in C(E), the functions fΠg and fl)g, defined
respectively for any point rj of E by

(/ Π g) (V) = min{/07), g(rj)}; (/ U g) (η) = max {f(v)9 g{r])} ,

are also in C(E). A subset P of C(E) is

(a) a lower semi-lattice if and only if /, g e P => f Π g £ P,
(b) an upper semi-lattice if and only if /, g e P => f U ge P,
(c) a lattice if and only if P is both an upper and a lower semi-

lattice,
(d) a wedge if and only if /, g e P=> af + βg e P, for any non-

negative real numbers a, β,

(e) a semi-algebra if and only if P is a wedge and /, ge P =>

fgeP,

(f) closed under squaring if and only if feP=>f2eP.
Choquet and Deny [4] determined those uniformly closed wedges

contained in C(E) which are semi-lattices in terms of certain classes
of Radon measures which generate the dual wedge. The theorem for
the lower semi-lattice case can be formulated as follows. Let σ be a
positive Radon measure and ξ be a point of E. Define the sets

Each of these is a uniformly closed wedge which is a lower semi-
lattice. We use Wr to denote the dual wedge of all those Radon
measures which take nonnegative values on the wedge W, and <5f to



2 E. J. BARBEAU

denote the Radon measure with unit mass all concentrated at the point
ζ of E.

THEOREM 1 (Choquet-Deny). Let W be a uniformly closed wedge
which is a lower semi-lattice contained in C(E). Suppose that £fx

is the family of all pairs (σ, £), with ξ a point of E and σ a
positive Radon measure satisfying σ{{ξ}) = 0, such that δζ — σ e W\
suppose that ^Sf2 is the family of all positive Radon measures σ such
that - a e W. Then

?}] Π [ Π {!*; * e .2?}] .

For the proof, see [4]; the result is valid even if Sfλ is void or
consists of the zero measure alone. (The convention that a void

intersection is the whole of the space is adopted.) An analagous
theorem holds for upper semi-lattices. These results were originally
given in a more general setting with the underlying space not neces-
sarily compact, but with the function space given the topology of
uniform convergence on compacta.

F. F. Bonsall, [1], [2], considered the relationship between lattice
and algebraic properties of a function wedge. He showed that any
uniformly closed semi-algebra A containing the function 1 and contain-
ed in C+(E) (the set of all nonnegative functions in C(E)) is a lattice
if and only if it has the "type 1 property", i.e.,

feA=*f/(l+f)eA.

In addition, he gave an interesting characterization of such semi-
algebras as sets of functions monotone with respect to certain quasi-
orderings on E. In [2], Bonsall gave intersection theorems for certain
closed wedges and semi-algebras contained in C+(E) which were upper
semi-lattices and permitted reduction by constants. (A subset K of
C(E) permits reduction by constants if and only if fe K, λ ̂  0 ==>
(f-X){j0eK.)

The main purpose of the present paper is to show that any
uniformly closed lower semi-lattice semi-algebra contained in C(E) is an
intersection of ones of certain elementary types. The result obtained
does not require the full force of the multiplication property of a
semi-algebra, but only closure under squaring; its proof depends heavily
on Theorem 1. In the final section, a similar intersection theorem for
lattices is deduced. Unlike earlier results for semi-algebras, the
theorems here are not restricted to nonnegative functions.

Because of the asymmetry introduced into the situation by the
multiplication, one cannot trivially obtain a corresponding result for
upper semi-lattice semi-algebras. It seems that the class of these
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semi-algebras is much more extensive and varied than the class of
lower semi-lattices, so that a complete determination is still in the
future.

By abuse of notation, we use, for any Radon measure σ, the
symbol σ to refer both to the continuous linear functional defined on
C(E) and to the corresponding regular measure defined on the Borel
subsets of E, but no confusion will result from this. The support of
a in E is denoted by S(σ).

2. The Principal Result* Let σ be a positive Radon measure
with support S(σ), ζ and ζ be two points of E and N a closed subset
of E. Then it is clear that each of the sets

A,* = {/: / e C(E), σ(f) <Z /(£), 0 £ f(η) <£ f(ξ) (vy e S(σ))}

CN = {/: fe C(E), f(y) = 0 (vV e N)}

is a uniformly closed semi-algebra which is a lower semi-lattice, and
that any intersection of sets of these forms is such a semi-algebra.
It will be shown that every uniformly closed lower semi-lattice semi-
algebra is an intersection of sets of the forms Aσtζ, Bξ}ζ and C#.

LEMMA 1. Let A he a closed subwedge of C(E) closed under
squaring, and suppose that δξ — σ e A! where σ is a positive Radon
measure on E and ζ is a point of E. Then, for feA,

whenever η e S(σ).

Proof. If fe A, then/ 2 e A. Suppose/(£) = 0. Then ( - σ)(f2) =
0, so that f2 vanishes almost everywhere (σ). Hence f{rj) = f\rj) = 0
whenever η e S(σ).

On the other hand, if fe A and f(ξ) = λ Φ 0, then g = λ~2/2e
A Π C+(E) and g(ξ) = 1. Define

G Ξ {77:77G £7, ̂ ) > 1} = {η: ηe E, \f(η) \ > \f(ζ) |} .

If G is void, then \ f(η) \ S \ f(ζ) I for η belonging to E, and, a fortiori,
to S(σ). If G is nonvoid, then G, being open, is σ-integrable. Let K
be any compact subset of G, and let λ^ = inf {g(η): ηe K}. Since g
attains its minimum on K, Xκ > 1. For m any power of 2, #m belongs
to A, and 0^, the characteristic function of K, satisfies φκ g ^κ~

m9m,
so that

σ(K) g λ77^σ(^m) ^ Xκmgm(ζ) = λi» .
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Hence σ(K) = 0. Since σ(G) = sup{σ(K): incompact, iΓg G} = 0, then
G Π S(σ) = ^ and the result follows.

LEMMA 2. Let S^ and ^ be the families defined as in Theorem
1 with respect to the uniformly closed wedge A, and suppose that A
is closed under squaring. Let
N = {η: ηeE, f(η) = 0 (v/e A)}. Then:

(a) σ 6 .2? i/ αwd o?% i/ S(σ) £ iV;
(b) if (σ, ζ) e i^J and every function in A takes a nonnegative

value at the point ξ, then A S A^ς;
(c) if (σ, ζ) e J5% and some function in A takes a negative value

at the point ζ, then there exists closed disjoint subsets MQ and M1

of S(σ) (either possibly void) such that
( i ) MoUM^Siσ),
(ii) MogiV,
(iii) ^ e J l ί ^ A g BξtΊI,
(iv)

Proof, (a) If i g i , and feA, then ( - σ) (p) = 0, from which
f\ and hence /, vanishes on S(σ). This part is now clear.

(b) It must be shown that whenever ηeS(σ) and feA, then
0 ^ f(η) ^ f(ζ). By Lemma 1, we know that | f{η) \ ̂  f(ζ). Suppose,
if possible, that, for some point ζ in S(σ), some positive ε and some
feA, f(ζ) — — ε. Choose a positive integer m such that /(£) < me,
and let h = / Π m/. Then λ e i and | Λ(ζ) | - - Λ(ζ) = me > /(f) =
Mf)> so that Lemma 1 is contradicted.

(c) Let /, ge A and suppose that f(ξ) = - 1, #(£) = + 1. Then
/ + g e A and (/ + g) (ξ) = 0, so that, by Lemma 1, (/ + g) (η) = 0
for every point ~η in S(σ). In particular, ( / + /2) (̂ ) = 0 for ηe S(σ),
with the consequence that / takes only the values 0 and — 1 on S(σ).
Define MQ = S(σ) Π {57: /(^) - 0} and Λf, = 5(σ) Π {η: f(v) = - 1}.
Evidently Λf0 and ilί̂  are closed, disjoint sets satisfying (i).

Let he A. If h(ξ) = 0, then, by Lemma 1, h vanishes everywhere
on S(σ). If h(ξ) > 0, then the argument of the last paragraph with
g replaced by (fe(i))""1^ yields f(η) + (Hζ^hiη) = 0 for each point ΎJ
in S(σ). If h(ξ) < 0, then ( - h(ζ))~1heA, and the argument of the
last paragraph applied to (— h(ξ))~ιh and / 2 yields (

= 0 for each point rj in S(σ). In any case

0 0?

so that (ii) and (iii) are true. Part (iv) may be seen by noting that,
for he A, h(ξ)σ(M1) = σ(h) ^ h(ξ) and both positive and negative



SEMI-ALGEBRAS THAT ARE LOWER SEMI-LATTICES 5

values are possible for h at ξ.

THEOREM 2. Let A be a uniformly closed subwedge of C{E) such
that (i) A is a lower semi-lattice,

(ii) A is closed under squaring.
Let J?\ be the family of all pairs (σ, ζ), with ξ a point of E and
σ a positive Radon measure satisfying σ{{ζ}) = 0, such that A £ A^;
let J^\~ be the family of all pairs (f, ζ) of distinct points of E such
that A £ Bζ,ζ; let N={V:VeE, f(η) = 0 (V/e A)}.
Then:

(1) A = [ n {Ar,t: (σ, ξ) e j^}] n [ Π {Bξ,ζ: (f, ζ) e j^}] n CN .

Proof. By Theorem 1, with jZl and jSfl defined with reference
to A, we have that A is the intersection of all sets of the form Lσ>ς

with (σ,ζ)eSf1 and of the form Lσ with σ e Sf2. Denote by F the
set on the right hand side of (I). Clearly, A e F , On the other hand,
if fe F, then, by Lemma 2(a), fe L* for each σ e £f2. Let (σ, ζ) e &x.
If every function in A is nonnegative at ξ, then, by Lemma 2(b),
A £ Aσ,ζ, so that (σ, ξ)ej^ and F £ Aσ,ζ £ Lσ,€. If some function in
A is negative at £, then there is a decomposition {MQ, ilfj of S(σ)
satisfying the conditions of Lemma 2(c). Let feF. Then / belongs
to CN and so vanishes on Mo £ ΛΓ. Also, if τ)£Mu then A £ J5ί)7?, so
that {ζ,η)e^l and feBζ>ΎJ, i.e., f(rf) = f(ζ). Since tf(^i) = 1, this
yields /(£) - /(£) ̂ (ΛίO = σ(f), so that / e Lσ i€. In either case, F £ L^.
Hence

A £ F £ [ Π { L o - . € : (^ί)e-Sfϊ}] Π [Π {W. σe^f2}] = A.

REMARK. The result is valid if any of ^ 7 , ^l and JV are void.
If ^ 7 is void, A is a lattice, so that the property of being a lower
semi-lattice but not a lattice forces all the functions in A to be non-
negative at least on a nonvoid subset of E.

CONSEQUENCES OF THEOREM 2. (a) Since all sets of the forms
Aσ,ξ, Bξfζ and CN are semi-algebras, the wedge A satisfying the condi-
tions of Theorem 2 is automatically a semi-algebra.

(b) Theorem 2 holds if the condition (ii) is strengthened to "A
is a semi-algebra".

(c) Any wedge A contained in C+(E) which satisfies the conditions
of Theorem 2 is an ideal of some semi-algebra T which has the type
1 property. For (σ, ζ) e J^, let

Tσ,ζ = {/: fe C+(E), f{η) £ f(ξ) (v? 6 S(σ))} .

Then Aσ,ζ Π C+(E) is an ideal of Γ^, so that T may be taken to be
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T = [ ΓΊ {Γσ,<: (σ, ί) G ̂ Γ } ] Π [ Π {Bζ>ζ: (ξ, ζ) e &}] n C* .

(d) Any wedge A contained in C+(E) which satisfies the conditions
of Theorem 2 and in addition contains the function 1 has the type 1
property, and hence is a lattice.

3* Semi-algebras which are lattices* In this section, let A be
a uniformly closed semi-algebra contained in E which is a lattice.
Since A is in particular a lower semi-lattice, the representation (I)
given in Theorem 2 is valid, and, in fact, when j ^ \ is void, expresses
A as an intersection of lattices. However if ^\ is nonvoid, then (I)
is unsatisfactory since semi-algebras of the form Aσ>ξ are not lattices
unless σ is either the zero measure or has all of its mass concentrated
at one point. This section will be concerned with modifying the family
J?\ so that A is given as the intersection of certain elementary lattices.

Suppose ^\ contains the pair (σ, ξ) with S(σ) containing at least
two points. For rje S(σ), define the function p = pσ,ξ by

(There is no loss of generality in supposing that the supremum is
taken over a nonvoid set, for otherwise S(σ) (J {?} would be a subset
of N, defined as in Theorem 2.) Note that 0 <̂  p(τj) g 1 for each
point Ύ] of S(σ) and that p(rj) = 0 if and only if η e N. The set

iVe = {/: /e C(E), p(η)f(ξ) ̂  f{η) £ 0 (vη e S(σ))}

= CNf]S{σ) Π [ n {Ap,ξ: p - ptyn, η e S(σ)\N}]

is a uniformly closed lattice semi-algebra which contains A. We show
that Pσtξ S Aσ,ξ, so that

g [ n { P σ , ξ : ( σ , ί ) G j ^ } ] n [ n {BU;(ζ,ζ)G j*7}] n c,,

S [ n {Aσ,ξ; (σ, ξ) G ̂ Γ } ] n [ n {Be,ff: (?, ζ) G ̂ } ] Π CN = A .

Let uePσfξ. If %(£) = 0, then tt(^) = 0 for each η belonging to
S(σ) so that σ(u) = 0 = w(£) and we Aσ,e. If u(ξ) Φ 0, suppose, with
no loss of generality, that u(ζ) — 1. Since u{ή)<*p(η) for ηeS(σ)
and since w is continuous, for given positive ε and given point ζ e S(σ),
there exists a function fζ£ A and an open subset Vζ of i£ such that
C e y ί f Λ(f) = 1 and fζ(η) > u(η) - ε for each point 37 of F<r ΓΊ S(σ).
Because S(σ) is compact, there exists a finite set d, ζ2, , ζ4 of points
of S(σ) such that

S(σ)S U{V? 4:i = 1,2,...,*;}.

The function f = fζlΌfζ2U U /^ belongs to A and /(£) = 1,
f{rj) > u(η) — ε for each point rj of S(σ). Hence
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σ(u) ^ σ(f + e) = σ(f) + σ(e)

σ(ε) = 1 + σ(ε) .

Since σ(u) S. 1 + tf(ε) for each positive ε, σ(u) <̂  1. It is deduced
that for any function u in Pσ>ξ1 u belongs to Aσtξm

We can now obtain the following result.

THEOREM 3. Let A be a uniformly closed subwedge of C(E)
which is a lattice and closed under squaring. Let J^l1 be the family
of all pairs (σ, ξ), with ξ a point of E and σ a positive Radon
measure which either is the zero measure or has total mass at least
unity all concentrated at a point distinct from ξ, such that A £ Aσiζ\
let j^l and N be defined as in Theorem 2. Then the equation

A = [ n {Aσ,ξ: (σ, ξ) e J^1}] Π [ Π {Bξ,ζ: (£, ζ) e ̂ } ] n CN

expresses A as an intersection of uniformly closed lattice semi-
algebras.

REMARK. If the wedge A is contained in C+(E), then a simpler
representation for A is possible. Define for 0 ̂  a ^ 1 and points ξ,
7] of E the set

Q..* , = {/: / e C+(E), af(ζ) ϊ> f(η)} .

Then A can be expressed as an intersection of semi-algebras of the
form Qa,ξfV. (Observe that C+(E) § A0,ξ, t h a t Bς,ζ n C+(E) = Q1>ξtζ Γ) Qlfζt9

and that CN n C+(E) = n {Q0.e.,: ξeE,Ve N}.)
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