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OSCILLATION CRITERIA FOR THIRD ORDER
NONLINEAR DIFFERENTIAL EQUATIONS

PAUL WALTMAN

Two oscillation theorems are provided for certain nonlinear
nonautonomous third order differential equations. Both results
involve integral conditions and are of the form that any
solution which has one zero is oscillatory. Theorem. Let p(t),
q(t) be continuous and let p'(t) be nonpositive. Define Q(t) =

[tq(s)ds. If A + Bt - \ Q(s)ds < 0 for t sufficiently large,
Jo Jt0

any A and B, if γ is positive and the quotient of two odd
integers, then any continuable solution of yfΠ + p(t)yr + q(t)yy = 0
which has a zero is oscillatory.

THEOREM. Let pit) and q(t) be continuous and nonnegative
and let f(y)ly ^ a > 0 for some a. If aqit) — p'it) is positive

S oo

t(aq(t) — pf(t))dt = oo then any continuable solution of

y!" + p(t)yf + q(t)f(y) = 0 which has a zero is oscillatory.

A nontrivial solution of a differential equation is said to be oscil-
latory if it has zeros for arbitrarily large values of the independent
variable. Finding oscillation criteria is a problem of general interest
in the theory of ordinary differential equations. The oscillation of
solutions of the linear nonautonomous second order equation

(1) y" + a(t)y = 0

and third order equation

( 2 ) y ' " + p ( t ) y ' + q(t) y = 0

has been widely studied and has a vast literature. Oscillation theorems
for nonlinear generalizations of (1), in particular in the form

y" + α(% 2 w + 1 = 0 ,

are known [l], [3], [41, [5], [6], but oscillation criteria for nonlinear
counterparts of (2) seem to have been ignored.

Here, the linear term y, in equation (2), will be replaced by a
nonlinear function and two oscillation criteria established. Both of
these yield the conclusion that any solution which has a zero is oscil-
latory. Before stating the theorems, the author wishes to cite a very
interesting paper of Hannan [2] on the third order linear equation
which was the starting point for this investigation.

THEOREM 1. Let p(t), q(t) be continuous and nonnegative and
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S t rt

q(s)ds. If A+Bt—\ Q(s)ds < 0
0 JO

for t sufficiently large, any A and B, if y is positive and is the
quotient of two odd integers, then any continuable solution of
(3) y'" + p{t)yf + q(t)yy = 0 ,
which has a zero is oscillatory.

REMARK. q(t) > 1/t is sufficient to satisfy the above integral
condition.

Proof. Suppose y(t) is a solution of (3) which has a zero but
does not oscillate. Then it has a last zero which we will denote by
tQ. Since — y(t) is also a solution of (3), we may assume that for
* > *o» !/(*) > 0, and thus that y'(t) > 0 in some interval (t0, a). Let
ί0 < t1 < a. For t^ti equation (3) may be rewritten as

y"'(t) p{t)y'(t) = ( )

Λ(*) γ (0

Integration from tx to t yields

y w _ y VΊ) _|_ Λy\ i y v̂ ; ψ / sw s _|_ \ v\b)y \

Expanding the first integral gives

7(7 + 1), (7)[/(^)] ,
2^+1(ί) 2

s = K - Q(t)

where all of the constants have been combined. Integrating again
produces

y'{t) 37f' M £ ) Γ & , 7(7+1) [' (t-s)[y'(s)f
2)y+\) 2 )yy(t)

dβ = J f + g t - [Q(s)ds
Jo

Q(s)ds

Suppose that /(ί) > 0 for all t > tx. Then

Ά <M+ Kb- Γ Q(s)ds .
lΛ(ί) Jo

Since, by hypothesis, M + Kt — \ Q(s)ds < 0 for t sufficiently large,
Jo
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and since y(t) > 0 for all t > t0, it follows that y'(t) < 0 for t suf-
ficiently large, contradicting the assumption that y'(t) > 0 for t > tlm

Thus there exists a point t2 > t0 such that y'(t2) = 0.
The theorem will be established by showing that y(tQ) = y\t2) — 0

contradicts y(t) > 0, t > t0. Multiplying equation (3) by y(t) and inte-
grating from t0 to t yields

Γ q(s)yy+1(s)ds - Γ

At any zero of yf(t) it follows that y"{i)y(t) < 0. Hence, since y(t)>Q,
t2 is the only zero of y\t) ίΞ>ί2, so that y'(t) < 0 for t > t2, and
hence limί_>Oo2/(ί) exists. If y"(t) eventually remains negative, if follows
immediately that y(t) has a zero. If y"{t) eventually remains positive,
then lim^ool/'ίt) exists. Writing the last equation as

( 4 ) lϋψ. = ί^oll + y"(t)y(t) +
Δ Δ

and noting that all right hand terms are nonnegative and that the
last term is increasing, it follows that lim^oo y'(t) ~ a < 0, and from
this, that y(t) has a zero in (ί2, co). If y"(t) changes sign for arbi-
trarily large t, y'{t) has maxima for arbitrarily large t. Since
limt_oo2/(ί) exists and y\t) < 0, lim sup^^^/^^) = 0. The set of maxima
must then contain a subsequence sn such that lim y'(sn) = 0. Putting
sn into equation (4), it follows that lim^^ly'isj]2 > 0, which is the
desired contradiction. This exhausts the possibilities for y"(t) and com-
pletes the proof of the theorem.

The concluding argument above is essentially Lemma 5.2 of [2].
It is included here because of some ambiguity in the proof in the
reference for the case y"(t) oscillates. If equation (3) is linear (T = 1),
then (4) shows that the condition, p'(t) is nonpositive, can be replaced
by 2q(t) - p'(t) > 0.

THEOREM 2. Let p(t) and q(t) be continuous and nonnegative
and let f(y)/y > a > 0 for some a. If aq{t) — p'(t) is positive and if

Γ t(aq(t) - p'(t))dt = oo

then any eontinuable solution of

( 5 ) y"' + p(t)yT + q(t)f(y) = 0
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which has a zero is oscillatory.

Proof. Suppose that there exists a nonoscillatory solution y(t) of
(5) which has a zero. Then the solution has a last zero which we
label t0. Suppose that y(t) > 0, t > t0 (a similar proof follows if
y(t) < 0, t > tQ). If there exists a tx>tQ such that y'(tύ = 0, then
it can be shown that there exists a t2 > tx such that y(t2) = 0, con-
tradicting the fact that t0 was the last zero of y(t). The proof of
this is similar to the proof of the same fact in the concluding part of
Theorem 1 and will be omitted. Since y'(t) > 0 for t immediately to
the right of tQ, it follows that y'(t) > 0 for all t > t0. Then since
p(t) and q(t) cannot both be identically zero on (ί0, oo), and since

3/'"(«)= -P(t)y'(t) - q(t)f(y(t))f

Vm(t) ^ 0 and y"' ^ 0. Thus y"(t) is a decreasing function for t > t0.
Suppose there is a tx > tQ such that y"(t)^ίθ. Then there is a

t2 > tx such that y"(t) < 0, t > t2. Hence y'(t) is positive and monotone
decreasing and must therefore tend to a nonnegative limit. But

- y\U) = Γ y"(s)ds
J ί 2

Since y"(t2) < 0, it follows that y'(t)—* — °o as ί —> oo? which is a
contradiction since ?/(ί) > 0.

Thus it may be assumed that y"(t) is nonnegative for t > t0. For
any tx > t0, y(t) > y'{Q{t — t,). Integrating the equation and eliminat-
ing nonnegative terms

^ \* (q(»)f(y) - P'(8)y(8))ds

^ \ y(s)[aq(s) - p'(s)]ds

= l/'fe) \ ( s ~~ ti)[<xq(s) — p'(s)]ds .

The left side is independent of t and thus the integral on the right
must converge as ί—>oo. The convergence of this integral is equivalent
to the convergence of 1 t[aq(t) — p'(t)]dt which proves the theorem.

The concluding argument above follows the concluding argument
of Theorem 5.12 of [2], Theorem 2 generalizes this theorem of [2]
not only by introducing a nonlinear term but by eliminating a hy-
pothesis concerning a related second order equation.

REFERENCES

1. F. V. Atkinson, On second order non-linear oscillations, Pacific J. Math. 5 (1955),



OSCILLATION CRITERIA FOR THIRD ORDER 389

643-647.
2. M. Hannan, Oscillation criteria for third order linear differential equations, Pacific
J. Math. 11 (1961), 919-944.
3. R. A. Moore and Z. Nehari, Non-oscillation theorems for a class of nonlinear dif-
ferential equations, Trans. Amer. Math. Soc. 93 (1959), 30-52.
4. Z. Nehari, On a class of second order differential equations, Trans. Amer. Math.
Soc. 95 (1960), 101-123.
5. W. R. Utz, Properties of solutions of u" + a{t)u2n~ι — 0, Monatshefte Fur Math-
ematik 67 (1963), 50-54.
6. P. Waltman, An oscillation criterion for a nonlinear second order equation, J. Math.
Anal. Appl. 10 (1965), 439-441.

Received December 17, 1964, and in revised form May 5, 1965. This work was sup-
ported by the United States Atomic Energy Commission. Reproduction in whole or
in part is permitted for any purpose of the U. S. Government.






