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ANALYTIC PHENOMENA IN GENERAL
FUNCTION ALGEBRAS

C. E. RICKART

Let 3 be a locally compact Hausdorff space and U an

algebra of complex-valued continuous functions on Y which
contains the constant functions. Assume that Y carries the
weakest topology in which every function in % is continuous
and that each homomorphism of U onto the complex numbers
is given by evaluation at a point of 2, Then ¥ is called a
natural algebra of functions on 2. The motivating example
for most of this paper is the algebra .Z° of all polynomials
in # complex variables. It is readily verified that <7 is in
fact a natural algebra of functions on the n-dimensional com-
plex space C". In the general setting an abstract analytic
function theory is constructed for X with the natural algebra
A playing a role analogous to that of <7 in the case of C”.
For example, the concepts of U-holomorphic functions and, in
terms of these functions, U-analytic varieties in ¥ are in-
troduced. The first main result obtained is that every %U-
analytic subvariety of a compact U-convex subset of Y is
itself -convex. Next let 2 be any compact UA-convex subset
g’ and U a relatively open subset of £ disjoint from the
Silov boundary of 2 with respect to 2. Consider a connected
subset . of the space C(U) of all complex-valued continuous
functions on the closure U of the set U. Let each function in
< be A-holomorphic in U and assume that some but not all of
the functions in % have zeros in U. Then the second main
result is that % must contain a function with zeros on the
topological boundary of U relative to the space 2. This im-
plies a local property of U-convex hulls which generalizes an
important result due to K. Oka for polynomially convex hulls
in C~,

The theorems obtained below contain well-known results for C*
which depend more-or-less directly on the fundamental contributions
made by K. Oka [5] to the theory of analytic functions of several
complex variables. (See, for example, [9, (A. 21) p. 285] for convexity
properties of subvarieties and [5, pp. 13, 14] or [9, (1.4) p. 264] for
the local properties of convex hulls in C”.) The proofs of the general
theorems are entirely in the spirit of function algebras and consequently
are quite different from the usual proofs for C". In fact, the theory
of analytic functions of several complex variables is involved only in-
directly through the use of H. Rossi’s local maximum modulus principle
for general function algebras [8] whose proof does depend on several
complex variable theory.
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In Section 1 a few notations, definitions and elementary properties
of natural algebras of functions are introduced; Section 2 contains a
discussion of functions that are holomorphic in an appropriate sense
relative to a natural algebra; Section 3 contains the results on con-
vexity of subvarieties; and Section 4 contains the local property of
convex hulls mentioned above along with a few other related results,

1. Preliminaries. Let ¥ be a locally compact Hausdorff space.
We will be concerned with complex-valued functions defined and con-
tinuous (but not necessarily bounded) on the space 3 or on a subset
thereof. The algebra operations involving such funections will always
be the pointwise operations for functions. If f is defined on a set
X< ¥ and if Y X, then the function obtained by restricting f to
the set Y is denoted by f|Y. We also define

| fly = §gglf(0)l .

Let %A be an algebra of complex-valued continuous functions defined
on all of 2. We call such an algebra a natural algebra of functions
on Y provided it contains the constant functions and has X as its
carrier space [6, p. 110]. The first condition means that 20 has an
identity element. The second condition amounts to the assumption
that every homomorphism ¢ of 20 onto the complex numbers be of
the form @: f — f(0,), where ¢, is a point of ¥, and that the topology
in 3 be the weakest under which all functions in 2 are continuous
[6, p. 110]. We call this topology the U-topology for X. It can also
be defined as the topology determined by neighborhoods of the form

Voy={0:0€2,[f0) = filo) | <1(i=1,---, k)},

where f;, ---, f, is an arbitrary finite set in 2. It is evident from
this remark that, if X carries the -topology and X is an arbitrary
subset of 5, then the relative topology in X coincides with the 2 | X-
topology, where 20| X is the algebra of functions on X obtained by
restricting functions from 2 to X. Note that elements of U separate
the points of ¥. If Y is compact, then the condition that 2 separate
the points of % is sufficient as well as necessary for the topology in
Y to be the -topology.

Throughout the remainder of this paper, we will always require
that 20 be a natural algebra of functions on X, although in some
places the full assumption is not needed.

As was remarked in the Introduection, the algebra <7 of all poly-
nomials in # complex variables is a natural algebra of functions on
C" [6, p. 149]. Although this is the example that guides most of
what we do, another important example of a natural function algebra
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is the algebra of functions obtained from the Gelfand representation
of an arbitrary commutative Banach algebra with identity [6, p. 119].
In this case the space ¥ is compact, being the carrier space (space of
maximal ideals) of the Banach algebra.

Let X be an arbitrary subset of 2. Then the set

{oroe, [fo) =[flx, fe}

is called the A-convexr hull of X in ¥ and is denoted by hully X. If
hully X = X, then X is said to be an A-convexr set. Notice that the
A-convex hull of a set X is always closed, contains X, and is %UA-
convex, Now let © denote another algebra of continuous functions
on X. Indicate by U the closure of 2 in the topology of uniform eon-
vergence on compact subsets of ¥, If X is compact and ® & ¥, then
it is readily proved that

hully X € hullg X .
Thus, if A and D have the same closure, then

hully X = hully X .
In particular, we have

hully X = hullg X .

Let X be a compact set in ¥ and let 2 = hully X. Then, for
each feUA, we have

[fla=1Flx < eo.

Therefore A | 2 is a normed algebra, The completion of 2|2 under
its norm can obviously be identified with the algebra U, of continuous
functions on 2 which are uniform limits on 2 of elements of 2| Q.
Evidently 2, is isometrically isomorphic with the algebra 2, obtained
by closing 2| X in the Banach algebra C(X). The following lemma,
which depends in an essential way on the assumption that 2 be
natural, will be used frequently below.

LEMMA 1.1, Let X be a compact set with U-convexr hull 0.
Then 2 1is also compact and A, is a natural algebra of functions
on 2.

Proof. Denote the carrier space of 2, by @. For each we 2 set

Fl@,) = fl@)  for fed,.

Then ¢, € @ and the mapping @ — @, is the natural embedding of 2
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in @. Since the topology in 2 is the 2| 2-topology, it follows that
the embedding is a homeomorphism. We show that £ maps onto @.
Let

o f—F@), fe¥,
be any homomorphism of 2, onto the complex numbers. Then the:
mapping
P
a—all—(a|2)p) for ae?,

defines a homomorphism of 2 onto the complex numbers. Since 2 is
natural on %, there exists o,€ Y such that

S

(a] 2)p) = alo,) for ae .

Now U, is a Banach algebra with norm |f|, so we have

|7 @) = |fla for fe¥,.

Therefore, in particular,
la(o,)| = |al,=aly  for ac?.

This means that o,€ 2. Since A |2 is dense in 2, it follows that
F(@) = f(o,) for all feA, In other words, the image of 2 in @
under the mapping @ — ¢, exhausts @. Therefore 2 and @ are homeo-
morphic and 2, is a natural algebra of functions on 2. That 2 is
compact follows from the faet that the ecarrier space of a Banach
algebra with identity element is compact.

COROLLARY 1.2, Let Q be an arbitrary compact UA-convexr subset
of 2. Then A, is a natural algebra of function on 2.

Lex X be a compact subset of ¥, A closed set BE X is called
a boundary of X relative to A, or simply an -boundary of X, if
for every fe ¥, it is true that

sup | £(0)| = sup | f(0) | .

There always exists a unique minimal 9-boundary for X which is called
is Silov boundary of X relative to 2 and denoted by 0yX [6, p. 133].
If © is any subalgebra of C(X) whose closure in C(X) is equal to
the closure of 2| X in C(X), then we have 05X = 9y X. In particular,

Oy X = 0y X .
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A necessary and sufficient condition for a point § in X to belong to
0y X 1is that, for every neighborhood V of 4, there exist an element
feqA with

Sup | flo)] < sup |f@)| =1flx.

If such an f exists with |f(0)| = |f|s, then 0 is called a strong
boundary point of X relative to A. In the case of a closed sub-
algebra of C(X), strong boundary points are dense in the Silov
boundary [6, p. 141]. Thus strong boundary points of X relative to
Ay are dense in JdyX. As an immediate consequence of definitions,
we have

The Silov boundary provides a kind of global maximum modulus
principle for functions in 2. Its existence depends only on the con-
dition that the algebaa 2 separate the points of X. On the other
hand, since A is assumed to be natural, a local maximum modulus
principle within compact -convex subsets of X is valid. This, by
Lemma 1.1, follows immediately from the local maximum modulus
principle established by H. Rossi [8, 6.1, p. 9]. We note in passing
that the proof of Rossi’s theorem depends in a nontrivial way on the
theory of analytic functions of several complex variables, Now, for a
statement of the local maximum-principle, let 2 denote a compact -
convex set in X and let bdry,U denote the topological boundary of
U (a subset of Q) with respect to the space Q.

1.3. Local maximum modulus principle. Let U be a subset of
2 — 0y which is open in Q. Then, for every feU,

sup | f(w)| = sup |f(w)].
weU wE€bdryo U
Thus
Oy U< bdry,U.

2. U-holomorphic functions. Consider a complex-valued fune-
tion % defined on a subset E of 3. We say that & is U-holomorphic
at a potnt o€ K provided there exists a neighborhood V of ¢ such
that % is a uniform limit on V N E of functions from 2. Evidently
if h is UA-holomorphic at ¢ then it is A-holomorphic at every point of
E in the prescribed neighborhood V., Therefore the set of points at
which & is 2-holomorphic is open relative to E. If & is 2-holomor-
phic at each point of E, then we say that it is U-holomorphic on
(or tn) the set E.
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The class of all functions that are 2[-holomorphic on a given set
E will be denoted by 2S75(E). Obviously S7(E) is an algebra of
continuous functions on K. Note that 54 (F) contains all functions
on K which belong locally to 2 on E. We have A, & 57 (E), and
the inclusion will in general be proper. In fact, even when E is a
compact A-convex set, there may exist functions which belong locally
to A on E but which do not belong to 2, [4, p. 822]. On the other
hand, when E is a compact U-convex set, the closure in C(E) of the
functions that belong locally to 2 on E is a natural algebra of fune-
tions on K [10]. Whether or not the closure of ZZ(E) in C(E) is
also natural under these conditions remains an open question.

We now establish some basic properties of 2-holomorphic funec-
tions.

LemmA 2.1, If h is A-holomorphic on a set E and if h(&) = 0
for each &e E, then h™ ts also A-holomorphic on E.
Proof. Let o be an arbitrary point of E. Consider the disc
D, ={Z[C—h(o)| < 0o},

where 30 = |h(0)|, and let V be a neighborhood of ¢ such that
Mé&eD, for £e VN E and h is a uniform limit on V N E of fune-
tions from A, Sinee 0¢ D,, there exists, for arbitrary ¢ > 0, a poly-
nomial P({) such that

IP(C)—C"11<% for LeD,.
Choose 0 with 0 < 0 < p such that |{, — (| < d and £, L, e D, imply
|P(Z) — P(L)] < _‘;—
Now choose a < 2 such that
la(§) — h(&) | < o for e VNE.
Since (&) e D,, it follows that a(&) e D,, and hence that
|P(a)(&) — h (&) <e for e VNE.

Thus A~ is U-holomorphic at ¢ and the lemma is proved.

Next we show that a local maximum modulus principle is valid
for A-holomorphic functions. (See also [2, proof Theorem 3.2].)
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THEOREM 2.2. Let Q be a compact W-convex set in X and let U
be a subset of 2 — 0yQ which s open in Q. If h is a function
which is continuous on U and A-holomorphic in U, then

sup [h(w)| = sup |h(w)].
bdryo U

w€U (215
Proof. Consider the closed subalgebra © of C(U) generated by
A | U plus the function h. The theorem will follow if we show that
UnoylU= @. Let w, be an arbitrary point of U and choose a neigh-
borhood V of w, in 2 such that V< U and h|Ve¥Uy. Then D|V =
Ar. Suppose w, € dg U. Then there exists fe¢® and 6 € V such that
[f(0)| > sup |flw)|= sup |[f(w)].
w€bdryg ¥V

wEU -V

But, since f|V e, this cop_tradicts the local maximum modulus
principle for A. Thus UNozU = @ and the theorem is proved.

The result in Theorem 2.2 can be improved somewhat as follows.
Suppose that % is only defined and 2(-holomorphic in U, For arbitrary
o< I|hly, set

K,={w:wecU, | hw]|=p}.

Then K, is nonvacuous, compact, contained in U, and o, < p, implies
K, C K,. Therefore

K= N K.+0.
172

p<|h|

Observe that
KNU={w:ocl, | w)|=|hls.

We prove that KN bdry,U == @. If this were not true then there
would exist an open set W in £ such that

KcWcWcU.

Then KNbdry, W= @. But, since & |We C(W), this contradicts
Theorem 2.2, Therefore there exists de KNbdry,U. If V is any
neighborhood of 4, then K,NV = @ for every p < |h|,. Thus we
obtain the following corollary.

COROLLARY 2.3. Assume that h is only defined and -holomor-
phic within U. Then there exists o0¢€bdry,U such that, for every
neighborhood V of 0,

sup | h(w) | = sup |h(w)].
w€U wEV U
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Applying the theorem to the case U= Q — 0,2, we obtain the
next corollary.

COROLLARY 2.4, Let Q2 be any compact W-convex set in 3. Then
the Silov boundary of Q relative to S7;(2) is equal to 0yQ.

3. 2analytic varieties. Let 4 and 2 be subsets of 3. The
set 4 will be called an W-analytic variety within Q if 4< Q and for
each M e 4 there exists a neighborhood V of N\ such that VN 4 is an
intersection of zero sets of functions (possibly infinite in number)
which are 2(-holomorphic in V' N 2. In other words, if we VN2 — 4,
then there exists a function 2 which is 2-holomorphic on V' N Q2 and
vanishes on VN 4 but not at the point w. It is obvious that, if
I' = 2, then 4N I is an W-analytic variety within /. If 4 is rela-
tively closed in £, then it will be called an -analytic subvariety of
Q. If VN4 is the zero set of a single function A-holomorphic in
VN Q, then A is called an U-analytic hypersurface. Trivial examples
of -analytic subvarieties (actually hypersurface) of a given set 2 are
the empty set and the set 2 itself.

We establish next an important lemma for the proof of the main
theorem concerning varieties. It’s proof can also be adapted to give
a related lemma obtained by Glicksberg [2, Lemma 2.1] for quite a
different purpose. It is convenient to make another definition before
stating the lemma. Let X and 2 be subsets of ¥ with X € 2 and
let 0e Q2. Then the set X is said to be locally determining tn Q at
o if for every neighborhood U of ¢ there exists a neighborhood V of
0 such that VS U and any function which is U-holomorphic on
U N 2 and vanishes on U N X must also vanish on V N Q.

LemMA 3.1. Let Q = hully X where X is a compact set in 2.
If X + Q, then there extsts a potnt 6 <€ bdry, X at which X is locally
determining in 2.

Proof. Set G =02 — X. Then G is open in 2. If D denotes the
closure of the algebra |G in C(G), then by the local maximum
modulus principle for 2, we have

8®@ = 8,21@ C bdry, G = bdry, X .

Let 6 be a strong boundary point of G relative to ®. Then d € bdry, X
and we will show that X is locally determining in 2 at 6. Let U be
an arbitrary open neighborhood of the point o. Then there exists
be D such that
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sup |b(w)| < [b(d)| = 1blz.

wEG@-U

Since A |G is dense in D, it is straightforward to obtain ue? such
that

sup | u(®)] < %

weG—U E’: ’ lu(a) I >1.
Define
V={w:welU, uw)| >1}.

Then V is an open neighborhood of d and V& U, Also let
W:{co:we U, | w(w) | <§}

Then VE W< Uand WNGcUNG.

Now suppose that % were %UA-holomorphic on UNR and that
(U N X) = (0) while i(g) # 0 for some o€ VN R, Since L is con-
tinuous on UN Q2 and zero on UN X, it follows that % is bounded
on WNG and

]h‘ﬁfnZ‘: lh]’ﬁmg-

Hence there exists an integer m such that

2 m
CIRLIRIVICIR
Define
g(®) = u(w)"h(w) , welny.

Then ¢ is also 2-holomorphic on UN 2 and g(UN X) = (0). Since
|u(g)| > 1, we have

| (o) | < [w(o)[" [Wo)| = 19(a)]| =19 lwna -

By the local maximum modulus principle for 2(-holomorphic functions
(Theorem 2.2) and the fact that g is 2-holomorphic on W N 2, there
must exist a point 7€ bdry, (W N Q) such that

| (0) | < lg(0)].

Note that ¢ must belong to G since g(UN X) = (0). From the defi-
nition of W and the fact that WN G cU NG, it follows that | u(z) | =
2/3. Therefore

1901 = (2)10@)1 = (2) 1hlwne < 1)) -
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This is a contradiction and completes the proof of the lemma.

We are now ready to prove the main theorem concerning con-
vexity properties of 2-analytic varieties.

THEOREM 3.2. Let Q be any compact U-convex set in 2. Then
every W-analytic subvariety of 2 is WU-convex.

Proof. Let A be an -analytic subvariety of 2 and set
4 = hully 4.

Since 2 is U-convex and 4 & 2, we also have 4 = 2. The problem
is to show that 4= 4. From the compactness of Q2 and the fact
that 4 is closed in £, it follows that 4 is also compact. Hence, if
A== 4, then Lemma 3.1 applies giving a point dc bdry, 4 at which
A is locally determining in 4. Since A is closed, de 4 and there
exists a neighborhood U of é such that U N 4 is an intersection of
zero sets of funetions A-holomorphic in U N 2. Now choose a neigh-
borhood V of ¢ in accordance with the local determining property.
Since a function which is 2-holomorphic in U N 2 is automatically A-
holomorphic in U N 4, it follows that any function which is 2-holomor-
phic in UN 2 and zero on U N 4 will also be zero on V N 4. There-
fore VN 4c 4. But this is impossible since V' is a neighborhood of
a boundary point of 4 within the space 4. Hence we must have
4 = 4, completing the proof of the theorem.

Since a closed polynomial polyhedron in C™ is polynomially con-
vex we have the following corollary for C”.

COROLLARY 3.3. Ewery analytic subvariety of a closed polynomial
polyhedron in C™ is polynomially convex.

We obtain next a generalization of another version of the result
for C* [9, (A. 21) p. 285]. For an arbitrary finite set {a, ---, a,} of
elements of 2, the set

0 ={o:oeZ af0)| <1,(@=1,---,m)}

will be called an open U-polyhedron in Y. (If “<” is replaced by
“<” then O is a closed UA-polyhedron.)

THEOREM 3.4. Let A be an W-analytic subvariety of an open
A-polyhedron & in 3. Then X S A implies hully X & 4, for X any
compact set.



ANALYTIC PHENOMENA IN GENERAL FUNCTION ALGEBRAS 3711

Proof. Let @ be defined by the elements a, --:,a,cU and let
X be any compact subset of 4. Then hully X is also compact. If
o € hully X, then

la(o)| = |aly, ae¥A.
In particular, since X & 4 < 6,
laio)| < lailx <1, 4=1,--,m.

Therefore hully X C#. From the assumption that 4 be a subvariety
of ® we have that 4 is relatively closed in 6 and so 4 N (hully X) is
closed. In other words, 4N (hully X) is a subvariety of hully X.
Hence, by Theorem 3.2, 4N (hully X) is A-convex. Since X & 4N
(hully X), it follows that .

hully X = 40 (hully X) S 4,

and the theorem is proved.

The next theorem generalizes a result of Oka in which an analytie
polyhedron in C™ is represented as a polynomial convex set in higher
dimension. [5, p. 21; 1, p. 115]. We must first extend the concept
of analytic polyhedron to the general case. Let G be an open set in
Y and let h,, ---, h, be -holomorphic in G. Set

4d=1{0:0€@G, hi(0)| £1,2=1,.--,m}.

Then 4 will be called an U-analytic polyhedron in G. Now consider
the product space X x C™ consisting of all pairs (¢, {) where e ¥
and

= (Cla ""Cm)ecm'
Let
I'= {(0, C). g€ Ar C = (hl(a)r M hm(a))} .

Thus I” is the “graph” in ¥ x C™ of the vector-valued function (-),
where

Lo) = (h(0), -+, kul0)), 0€4.
If II denotes the unit polydisec in C™, then
rcaxincGxcr,

Note that G x C™ is an open set in ¥ x C™. If 4 is a closed set in
S, then it is not difficult to verify that I’ is a closed set in ¥ X C™.
Next let &%, denote the algebra of all polynomials in m complex
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variables {;, « -+, {,, with coefficients in . Each P e .27 can be regarded
as a funection defined on ¥ x C™ of the form

P(o,0) = X, (001 -0 Oy

where the number of terms in the sum is finite and each coefficient
Aok, belongs to 2A. It is a routine matter to show that &7 is a
natural algebra of functions on ¥ x C™ Furthermore, if we define

Hi(o, ) = hi(o) — &
for (0,{)e G x C™ then H; is Fy-holomorphic in G x C™. Since
I'={(0,9:(0,0)eG x C", Hy0,{) = 0,7 =1, -+-, m}

we see that I" is a FA-analytic variety within G x C™. We can now
prove the generalization of Oka’s theorem. The latter is obtained
from the general theorem in the usual way by taking ¥ = C” and

A= 7.

THEOREM 3.5, If the W-analytic polyhedron 4 1is compact, then
its associated graph I is Fyrconvex 1 X X C™.

Proof. Let Q denote hully4 in ¥, Then 2 is compact. Con-
sider the compact set @ X II in ¥ X C™. We prove that Q x I is
Fy-convex. Let

(9, 8) € hullgsy (2 x M)
and consider the function
Zi0,0) =84, (0,0)eXxCm.
Then Z;e &y for each © =1, -+, m so we have

Sl =120, 8) ] §|Zi{:z><nzs}1pfcil =1.
cen

It follows that e 7I. Next consider, for a €, the function
Ao, Q) = a(o) (0,)eX x C™.
Then A e & and hence
[a(d)| = [AQ, §)| = [ Aloxn = sup|a(o) | .
Therefore 0€ Q. In other words, (0,5)eQ x [T so 2 x Il is Py
convex. We now have I' as a Z-analytic subvariety of 2 X II.

Therefore, by Theorem 3.2, I' is ZA-convex and the theorem is
proved.
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4. A local property of -convex sets. Let £ be a compact
U-convex set in Y and let U be a subset of Q2 — 0y which is open
in the space 2. Denote by & a family of functions each of which
is continuous on U and A-holomorphic in U. For each fe & set

4; ={w: w e U, f(w) = 0} .

In this situation we have the following lemma.

LEMMA 4.1, Assume that & is a connected subset of C(U) and
that there exist g, he & for which

4,0U+@ and 4,0NU=0Q.
Then there also exists ke & for which

A, Nbdry, U= @ .

Proof. Consider the collection of all those functions which are
continuous on U and 2A-holomorphic in U. This is a subalgebra of
C(U) whose closure in C(U) we denote by ®©. Then & < D and,
by Theorem 2.2,

deU < bdry, U .

Identify U in the usual way with its natural embedding in the carrier
space P4 of the Banach algebra © [6, p. 120]. Then we have

0505 S 05U S bdry, U .

Observe that, by Lemma 2.1, a function which is continuous on U
and A-holomorphic in U will be singular in ® if and only if it has
a zero in U.

Now let &, denote those elements of & that are singular in ®
and .#, those that are regular in ®©. Then ge &, so that &, is not
empty. In case &, = &, then in particular the element & is singular
and accordingly must have a zero in U. Since 4, NU = @&, it follows
that 4, Nbdry, U # @, so we can take k = h in this case. In case
., + #, then both &, and &, are nonempty. Since & is con-
nected in C(U), it follows that either &, N .F, # @ or .7, N Z, + Q.
From the fact that the singular elements constitute a closed set in a
Banach algebra, we conclude that the first possibility cannot occur.
Hence .7, N ., # @. In other words, .#, contains an element & which
is a limit of regular elements. But then % is a topological divisor of
zero in D [6, p. 22; 7, p. 1066], and therefore its image in the Gel-
fand representation of ® must have a zero on the Silov boundary,
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03P [6, p. 137; 7, p. 1076]. Since 0@y < bdry, U, it follows that
A, Nbdry, U # @ and the proof is complete,

We obtain next the local property of U-convex hulls in 3 which
generalizes the Oka result for polynomial convex hulls in C* mentioned
in the Introduction. This involves the concept of a continuous family
of -analytic hypersurfaces which we now describe, Let G be an
open set in Y. For each t¢[0,1] let A, be a funetion which is U-
holomorphic in G and consider the hypersurface

A, ={o:0€@, h,{0) =0}.

We say that {4,} is a continuous family of hypersurfaces within G
if the mapping (¢, 0) — k(o) of [0,1] X G into the complex plane is
continuous. The family is said to intersect a set X if 4, NX# ©
for some ¢. It is said to imtersect X nmontrivially if 4, N X is closed
relative to X for each ¢ and the set {¢ : 4, N X = @&} is a proper, closed,
nonempty subset of [0,1]. In the case of C", Oka [5, p. 14] calls an
analytic hypersurface a ‘“characteristic surface” and Stoltzenberg [9,
p. 264] calls a continuous family of analytic hypersurfaces a “curve”
of analytic hypersurfaces.

THEOREM 4.2. Let X be a compact subset of Y. Then every
continuous family of U-analytic hyperswrfaces which intersects
hully X nontrivially must intersect X.

Proof. Set 2 =hully X and let {4,:tc][0,1]} be a continuous
family of hypersurfaces within the open set G. Assume that {4,}
intersects 2 nontrivially but that it does not interseect X, Consider

the set
T={t:4N02+*Q}.

By hypothesis, T is a proper, closed, nonempty subset of [0,1] and
therefore its complement in [0,1] must contain an open interval with
at least one end-point in the set T. Hence, by a simple change of
parameter ¢, we can reduce to the case in which 4,N 2+ @ and
A4, N2 =@ for 0<t<1, Since 4,N 2 is compact and contained in
G — X, there exists a relatively open subset U of 2 such that

UcG—-X and 4. N2cU

for all ¢€[0,1]. Let {h,:tc][0,1]} be the family of 2-holomorphic
functions which determines the family {4,}). Then each &, is 2-
holomorphic in G and hence on the set U. Also, by the continuity
condition, it is obvious that the functions h, restricted to U con-
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stitute a connected subset of C(U). Therefore, by Lemma 4.1,
A, Nbdry, U+ @

for some ¢t. Since 4, N 2C U, this is impossible so the theorem fol-
lows.

We are indebted to John Garnett for pointing out that Theorem
4,2 is actually false if in the definition of nontrivial intersection we
drop the requirement that the set T be closed. Furthermore, the
result for C™ claimed by Oka [5, p.14] is also false. However, Oka’s
proof does yield a result for C" which may easily be deduced from
Theorem 4.2,

Although the result for C" follows from Theorem 4.2, it should
be noted that the proof of Theorem 4.2 involves the local maximum
modulus prineciple whose proof in turn involves results from the theory
of analytic functions of several complex variables as deep as those
involved in the proof of the Oka theorem. In fact, one of the nicest
proofs of the local maximum principle can be obtained from the Oka
theorem [9, p. 265]. Similarly one can easily deduce the general
local maximum principle from the property of 2-convex hulls proved
in Theorem 4.2. In other words these two properties of A-convex
hulls are equivalent.

Lemma 4.1 will now be used to obtain some further properties of
2A-holomorphic functions. These properties, in the case of functions
in 2, can be obtained from known results for Banach algebras of
functions [6, Section 3.3]. The first is a partial extension of Rouché’s
theorem. For functions in A, Theorems 4.3 and 4.4 follow from
theorems due to John Holladay [3; 6, (3.3.22), (3.3.23)]. As before,
2 will denote a compact 2-convex set in ¥ and U will be a subset
of Q2 — 0y which is open in Q.

THEOREM 4.3. Let f and g be continuous on U and A-holomor-
phic in U. If
[fl@) —g(@) | <|f(@]|  for webdry,U,

then f will have a zero in U tf and only +f g does.

Proof. Consider the family of funections
h,=Q0—=080f+tg, tel0,1].

Then each &, is continuous on U and U-holomorphic in U. Obviously
{h,} is a connected subset of C(U). Furthermore, for arbitrary we
bdry, U and ¢ € [0, 1],
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0<|fl@) = [f(w) —g@)] =[fl@]|—1t]fl®)—gw)]
= [f(@) =t f(@) — g(@)]]
= h(@)].

Hence /, does not have a zero on bdry,U. Therefore, by Lemma 4.1,
either every h, has a zero in U or no h, has a zero in U. Since
h, = f and h; = g, the theorem follows.

THEOREM 4.4. Let f be continuous on U and UA-holomorphic in
U. Let w, be a point of U and define

6= min |f(w) — fl®)].

w€bdryQ U

If 6 > 0, then f(U) contains the disc
{(:CeC |0 — flw)| < d}.

Proof. Consider the family & of functions of the form f; =
f— &, where { is an arbitrary point of the given disc. Then each
fz is continuous on U and 2A-holomorphic in U. Obviously & is a
connected subset of C(U). Furthermore, if |{ — f(w,)| < & and we
bdry, U, then

| F@) | Z | f(@) — fl@) | — | fl@) — |
=0 —|fl@)—C]>0.

Therefore none of the functions in % has a zero on bdry,U. Since
felw)) =0 for C = f(w,), it follows from Lemma 4.1 that every func-
tion f; has a zero in U, In other words, {e f(U) for every ( in the
dise.

THEOREM 4.5. If f is continuous on U and UA-holomorphic in
U, then
bdry. f(U) € f(bdry,U) .

Proof. Let {, be a boundary point of f(U) and set
30 = min |[f(w)— .

wEbdryo U

Suppose {, € f(bdry,U). Then ¢ > 0. Since , is on the boundary of
f(U), there exists w, € U such that |f(w,) — {,| < 0. We then have

min [ f(®) — f(@,)| = 20.

w€Ebdry o

Hence, by the preceding theorem
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{{ = flw) | < 20} f(U) .

Since

IC_f(wo)iélC—Co|+|Co—‘f(wo)|
<lC—Co|+3y

it follows that
{1 -8C < oycrf(U).

But this is impossible because {,€bdry.f(U). Therefore we must
have {, € f(bdry, U) and the theorem follows.
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