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A CONVEXITY PROPERTY

RaymMOoND W, FREESE

There exist a variety of conditions yielding convexity of a
set, dependent upon the nature of the underlying space. It
is the purpose here to define a particular restriction involving
n-tuples (the n-isosceles property) on subsets of a straight
line space and study the effect of this restriction in estab-
lishing convexity, By a straight line space is meant a finitely
compact, convex, externally convex metric space in which the
linearity of two triples of a quadruple implies the linearity
of the remaining two. The principal theorem states that the
n-isosceles property is a sufficient condition for a closed and
arcwise connected subset of a straight line space to be convex
if and only if » is two or three,

In such a space S we use two of the definitions stated
by Marr and Stamey (4).

DerFINITION 1. If p, q, r are distinct points of S such that at least
two of the distances pgq, pr, gr are equal, then the points p, q, r are
said to form an isosceles triple in S,

DEFINITION 2. A subset M of S is said to have the double-isosceles
three-point property if two connecting segments of each of its isosceles
triples belong to M.

A proof of (2) together with (4) shows that if M is a closed
connected subset of S and possesses the double isosceles property, then
M is convex.

DEFINITION 3. A subset M of S is said to have the mn-isosceles
property (n = 2) provided for every (m + 1)-tuple p,, D, *++, Duys Of
distinct points of M such that p;p;1, = PiyPiss, t =1,2, -+, — 1, at
least » of the connecting segments lie in M.

A comparison of the double isosceles property and n-isosceles
property shows that in S the two are equivalent for = = 2. For n
greater than 2, the double isosceles property clearly implies the -
isosceles property but it is not immediately evident whether the two
are equivalent. The question may be raised concerning the conditions
under which the m-isosceles property is sufficient to replace the double-
isosceles property in the above-mentioned theorem yielding convexity.
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This question is answered in part by the following theorem.

THEOREM 1. Let M be a closed subset of S such that every pair
of points of M can be joined by a rectifiable arc in M. If M has
the three-isosceles property, then M s convex.

Proof. Let p,q be any two points of M and let A denote a
rectifiable arc in M with endpoints p, q. Then there exists a shortest
arc in M joining p, q, say AY. Let »,s be points of A* such that
pr = rs =sq. Then since M possesses the three-isosceles property and
A is a geodesic arc in M, consideration of the cases reveals S(p,¢9)C M
or A” is the union of a finite number of noncollinear metric segments,
or all three connecting segments of triples p, 7, s or q, r, s are contained
in M.

We shall suppose S(p, ¢) & M. If A” is the union of a finite
number of noncollinear metric segments, then by the metric transitiv-
ities of the space, r or s is noncollinear with p, q. Hence for at
least one of the points », s say 7, that point is the terminal and initial
point, respectively, [when traversing A” from p to ¢q] of metric segments
S,.cMnA, S, Mn A, which in turn contain point pairs w,, u, and
v, v,, respectively, such that wu, = w,w, =v,v, while uw, is strictly
less than u.,r + rv,. Applying the three-isosceles property to the points
Uy Uy, Vg, Vy, it follows that S(u,, v;) c M for some 4,7 = 1,2 which
violates the shortest arc hypothesis for A>.

Now suppose all three connecting segments of a triple (say p, 7, s)
are contained in M. If ps is less than pr + rs and p, r,s are met
in this or reverse order, a contradiction is encountered. A similar
argument holds if the order is p,s,r. We may then assume the
labeling such that p, r, s are encountered in this order and ps = pr + rs.
Consider the longest segment containing S(p, s) with one endpoint p
and contained within M and denote its remaining terminal point by s’.
Considering the subarc A’(s’, ¢), it follows as above that it consists
of a finite number of metric segments (and hence A?, which was
discussed previously) or else there exists a metric segment contained
in A’ N M with either s’ or ¢ as endpoint.

Repeating this latest procedure at most once, it follows that either
A’ consists of a finite number of metric segments or there exist two
noncollinear metric segments contained in AN M with a common
endpoint. Applying the three-isosceles condition to the appropriate
four points of these two segments results again in a contradiction.

We conclude M is convex,

The following sequence of lemmas will lead to a strengthening of
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the above theorem. In each of these lemmas, S is assumed to be a
straight line space and M to be a closed, arcwise connected subset of
S possessing the three-isosceles property.

LEMMA 1, Let A denote an arc in M with endpoints p,q. If
P, q are not jorned by a rectifiable arc, then one of the two points
(to be termed ‘exceptional’) has the property that every arc joining
it to other points is nonrectifiable.

Proof. Let a,b be points of A such that pa = ab = bgq. Then
since M possesses the three-isosceles property, the existence of three
of the six segments within M implies that either there exists an arc
with endpoints p, ¢ consisting of one, two, or three segments each
contained within M (and hence there exists a rectifiable arc with
endpoints p, ¢) or all three connecting segments of some triple (say
a,b, q) of the quadruple are contained within M.

In the latter case, given a positive ¢ less than ab/4, by the method
of proof of Lemma 23.1 (1), there exists a finite sequence p,, p,, -+ -, D,
of distinct points of the arc such that p;p,,, = ¢, p;p; = ¢ for 7 # 7, p =
p, and 0 < p,a <¢ for 4,57=1,2,3, ---,n, where p,,, is defined as
follows. If none of the p;,,72=1,2, ---, n are elements of S(a, b) let
Dus1y Puse be two points of S(a, b) such that p,p,., = p,psr = &

Applying the three-isosceles property to »,_i, Duy Dnt1, Pnss, it follows
that at least one other connecting segment of the quadruple must
form with S(p,.1, Pni2) @ connected set and be contained within M,
Hence there exists a rectifiable arc from b to p,_, or p, contained
within M and consisting of a finite union of metric segments. Suppose
p.[or p,_;] is the endpoint of this arc. Then there exists a point,
which may be denoted by », [s,_;] such that p,r, = ¢ and S(p,, »,) C M.
[Dn_i8n_: = € and S(Pn_i, 8,—) © M ]. Then applying the three-isosceles
condition to the appropriate quadruple, it follows that there exists a
rectifiable are from b to p,_, or p,._,. Repeating this process a finite
number of times shows the existence of a rectifiable polygonal are
contained in M with one endpoint b and the other endpoint p, or p, where
P, is any point of M with p,p, = ¢. Hence the lemma is valid, for in
the contrary case, if p, and some point % are the endpoints of a recti-
fiable arc A(p,, u), then, given that all segments of a, b, ¢ are contained
in M, the above method of proof can be followed for a positive o less
than min [ab/4, up] and hence there exists a rectifiable are A(p, t)
where ¢ is in A(p,, ) such that p,t = d. Then by the preceding it is
not possible for ¢ to be p; for any ¢ =1,2, ..., n + 2 for then there
exists a rectifiable arc with endpoints b, p,, whereas if ¢ is distinect
from these points we may set ¢ = p, and observe that there exists a
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rectifiable are with endpoints p,, b which implies the existence of a
rectifiable arc contained in M and joining p, g, contrary to hypothesis,

If S(a, b) N {p;} is not null, let p; denote the point with minimum
index and delete the members of the sequence with higher index.
Then relabel as p;,, a point of S(a, b) such that p;p;,, + ¢, and in
the above proof replace n by 7 — 1.

LEMMA 2, There exists at most one ‘exceptional’ point.

Proof. Suppose the contrary, and let z, ¥y denote two such points.
The method of proof of the preceding lemma involving p, ¢ and now
applied to x, y shows that there exists a rectifiable arc A(x,y)C M
where ¢ = y, or a rectifiable arc A(y, x,) C M, where y # x,, which
violates our supposition.

LEMMA 3. The set of points of M that ts not ‘exceptional’ s
convez,

Proof. Denote by « the ‘exceptional’ point of M if such exists,
Given any two points p, ¢ of M — {}, p # ¢, it follows from Lemma
2 that neither p nor ¢ is ‘exceptional’ and hence by Lemma 1 they
are the endpoints of a rectifiable arc in M. As in Theorem 1, con-
sidering M as a finitely compact metric space it follows that there
exists in M a geodesic arc 4 joining p, q. Since x is an ‘exceptional’
point, x is not in A, Again as in Theorem 1, there exist two points
of A which, with p, ¢, form a quadruple to which the three-isosceles
condition can be applied. Again x is not a point of any of the con-
necting segments in M whose existence is determined since it is
‘exceptional’. Hence the proof proceeds as in Theorem 1, yielding a
contradiction unless the segment joining p, ¢ is contained in M — {x}.

LEMMA 4. The set M is conve.

Proof. In view of Lemma 3, it suffices to show that if x denotes
the ‘exceptional’ point and p is a point of M — {x}, there exists a
point of M between p and x.

Since M is connected, let {x,} denote a sequence of points of
M — {x} such that lim x, = «. Denote by m, the midpoint of ¥, z,
for n=1,2,-.-.. Since M is finitely compact, there exists a point
m of M such that m is the limit of a subsequence {m;} of {m.,}.
Hence lim «;, = « and pm;, + m; &; = px; for all n implies pm + mx =
2.

From these lemmas, it follows that the theorem below is valid.
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THEOREM 2. Let M be a closed arcwise comwnected subset of a
straight line space S. If M has the three-isosceles property, then M
18 convex.

The above theorem is not valid when the condition that M possess
the three-isosceles property is replaced by the demand that M possess
the m-isosceles property with n = 4. This may be observed by con-
sidering any nonlinear isosceles triple ¢, r,s of the euclidean plane.
Let M, be the union of the equal segments S(q, ), S(r,s). Since M,
clearly is not convex, it suffices to show that M, possesses the n-isos-
celes property for all n greater than three,

Let p,, psy ¢, Duss be any n + 1 distinet points of M, such that
DiPirs = DipPiaey t=1,2, «eo . m — 1, If nis even the minimum number
of segments lying entirely within M, will ocecur when /2 points lie
on one of the two segments comprising M, and (n + 2)/2 points on the
other segment. Hence there always exist at least n(n — 2)/8 + n(n + 2)/8
connecting segments contained within M, which is greater than or
equal to n for n = 4. If n is odd, the minimum number of segments
lying entirely within M, will occur when (n + 1)/2 points lie on each
segment, Hence since (»* — 1)/8 4+ (»* — 1)/8 = n for n = 5, it follows
that M, has the wn-isosceles property for n = 4,
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