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A CONVEXITY PROPERTY

RAYMOND W. FREESE

There exist a variety of conditions yielding convexity of a
set, dependent upon the nature of the underlying space. It
is the purpose here to define a particular restriction involving
^-tuples (the ^-isosceles property) on subsets of a straight
line space and study the effect of this restriction in estab-
lishing convexity. By a straight line space is meant a finitely
compact, convex, externally convex metric space in which the
linearity of two triples of a quadruple implies the linearity
of the remaining two. The principal theorem states that the
^-isosceles property is a sufficient condition for a closed and
arcwise connected subset of a straight line space to be convex
if and only if n is two or three.

In such a space S we use two of the definitions stated
by Marr and Stamey (4).

DEFINITION 1. If p, q, r are distinct points of S such that at least
two of the distances pq, pr, qr are equal, then the points p, qf r are
said to form an isosceles triple in S.

DEFINITION 2. A subset M of S is said to have the double-isosceles
three-point property if two connecting segments of each of its isosceles
triples belong to M.

A proof of (2) together with (4) shows that if M is a closed
•connected subset of S and possesses the double isosceles property, then
M is convex.

DEFINITION 3. A subset M of S is said to have the w-isosceles
property (n ^ 2) provided for every (n + l)-tuple pu p2, , pn+1 of
distinct points of M such that PiPi+1 = pi+1pi+2, i = 1, 2, , n - 1, at
least n of the connecting segments lie in M.

A comparison of the double isosceles property and w-isosceles
property shows that in S the two are equivalent for n = 2. For n
greater than 2, the double isosceles property clearly implies the n-
isosceles property but it is not immediately evident whether the two
are equivalent. The question may be raised concerning the conditions
under which the n-isosceles property is sufficient to replace the double-
isosceles property in the above-mentioned theorem yielding convexity.
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This question is answered in part by the following theorem.

THEOREM 1. Let M be a closed subset of S such that every pair
of points of M can be joined by a rectifiable arc in M. If M has-
the three-isosceles property, then M is convex.

Proof. Let p, q be any two points of M and let A denote a
rectifiable arc in M with endpoints p, q. Then there exists a shortest
arc in M joining p, q, say Ay. Let r, s be points of Ay such that
pr — rs — sq. Then since M possesses the three-isosceles property and
Ay is a geodesic arc in M, consideration of the cases reveals S(p, q) c M
or A1 is the union of a finite number of noncollinear metric segments,
or all three connecting segments of triples p, r, s or q, r, s are contained
in M.

We shall suppose S(p, q) (£ M. If Ay is the union of a finite
number of noncollinear metric segments, then by the metric transitiv-
ities of the space, r or s is noncollinear with p, q. Hence for at
least one of the points r, s say r, that point is the terminal and initial
point, respectively, [when traversing Ay from p to q\ of metric segments.
^ c M Π Ay, S2aM Π Ay, which in turn contain point pairs ulf u2 and
vlfv2, respectively, such that uxu2 — u2v1—v1v2 while u2v1 is strictly
less than u2r + rvx. Applying the three-isosceles property to the points
uu u2, vu v2, it follows that S(u{, v3) c M for some i,j = l,2 which
violates the shortest arc hypothesis for Ay.

Now suppose all three connecting segments of a triple (say p, r, s)
are contained in M. If ps is less than pr + rs and p, r, s are met
in this or reverse order, a contradiction is encountered. A similar
argument holds if the order is p, s, r. We may then assume the
labeling such that p, r, s are encountered in this order and ps = pr + rs .
Consider the longest segment containing S(p, s) with one endpoint p
and contained within M and denote its remaining terminal point by s\
Considering the subarc A'(s\ q), it follows as above that it consists
of a finite number of metric segments (and hence Ay, which was
discussed previously) or else there exists a metric segment contained
in A Π M with either s' or q as endpoint.

Repeating this latest procedure at most once, it follows that either
Ay consists of a finite number of metric segments or there exist two
noncollinear metric segments contained in Ay Π M with a common
endpoint. Applying the three-isosceles condition to the appropriate
four points of these two segments results again in a contradiction.

We conclude M is convex.

The following sequence of lemmas will lead to a strengthening of
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the above theorem. In each of these lemmas, S is assumed to be a
straight line space and M to be a closed, arcwise connected subset of
S possessing the three-isosceles property.

LEMMA 1. Let A denote an arc in M with endpoίnts p, q. If
p, q are not joined by a rectifiable arc, then one of the two points
(to be termed 'exceptional') has the property that every arc joining
it to other points is nonrectifiable.

Proof. Let α, b be points of A such that pa — ab — bq. Then
since M possesses the three-isosceles property, the existence of three
of the six segments within M implies that either there exists an arc
with endpoints p, q consisting of one, two, or three segments each
contained within M (and hence there exists a rectifiable arc with
endpoints p, q) or all three connecting segments of some triple (say
α, 6, q) of the quadruple are contained within M.

In the latter case, given a positive ε less than α&/4, by the method
of proof of Lemma 23.1 (1), there exists a finite sequence pu p2, , pn

of distinct points of the arc such that PiPi+1 — ε, p{pά ^ ε for i Φ jf p =
pu and 0 < pna ^ ε for i, j = 1, 2, 3, , n, where pn+1 is defined as
follows. If none of the piy i — 1, 2, , n are elements of S(a, b) let
Pn+u Pn+2 be two points of S(α, b) such that pnpn+1 = pn+1pn+2 = ε.

Applying the three-isosceles property to pn_u pn, pn+u pn+2y it follows
that at least one other connecting segment of the quadruple must
form with S(pn+1, pn+2) a connected set and be contained within M.
Hence there exists a rectifiable arc from b to pn_t or pn contained
within M and consisting of a finite union of metric segments. Suppose
P% [or Pn-i] is the endpoint of this arc. Then there exists a point,
which may be denoted by rn [ s^J such that pnrn — ε and S(pn, rn) c M.
[p»-iS»-i = e a n ( i S(pn_u sw_!)cikf ]. Then applying the three-isosceles
condition to the appropriate quadruple, it follows that there exists a
rectifiable arc from 6 to pn_x or pn_2. Repeating this process a finite
number of times shows the existence of a rectifiable polygonal arc
contained in M with one endpoint b and the other endpoint pt or p0 where
Po is any point of M with popλ = ε. Hence the lemma is valid, for in
the contrary case, if px and some point u are the endpoints of a recti-
fiable arc A(pu u), then, given that all segments of α, 5, q are contained
in M, the above method of proof can be followed for a positive δ less
than min [αί>/4, up] and hence there exists a rectifiable arc A(pu t)
where t is in A(pu u) such that pxt — δ. Then by the preceding it is
not possible for t to be p{ for any i — 1, 2, , n + 2 for then there
exists a rectifiable arc with endpoints 6, pl9 whereas if t is distinct
from these points we may set t — pQ and observe that there exists a
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rectifiable arc with endpoints pu b which implies the existence of a
rectifiable arc contained in M and joining p, q, contrary to hypothesis.

If S(a, b) n {pi} is not null, let pd denote the point with minimum
index and delete the members of the sequence with higher index.
Then relabel as ps+1 a point of S(a, b) such that pάpά+1 + e, and in
the above proof replace n by j — 1.

LEMMA 2. There exists at most one 'exceptional' point.

Proof. Suppose the contrary, and let x, y denote two such points.
The method of proof of the preceding lemma involving p, q and now
applied to x, y shows that there exists a rectifiable arc A(x, yQ) a M
where x Φ y0 or a rectifiable arc A(y, x0) c M, where y Φ X0, which
violates our supposition.

LEMMA 3. The set of points of M that is not 'exceptional9 is
convex.

Proof. Denote by x the 'exceptional' point of M if such exists.
Given any two points p, q of M — {x}, p Φ q, it follows from Lemma
2 that neither p nor q is 'exceptional' and hence by Lemma 1 they
are the endpoints of a rectifiable arc in M. As in Theorem 1, con-
sidering M as a finitely compact metric space it follows that there
exists in M a geodesic arc A joining p, q. Since x is an 'exceptional'
point, x is not in A. Again as in Theorem 1, there exist two points
of A which, with p, q, form a quadruple to which the three-isosceles
condition can be applied. Again x is not a point of any of the con-
necting segments in M whose existence is determined since it is
'exceptional'. Hence the proof proceeds as in Theorem 1, yielding a
contradiction unless the segment joining p, q is contained in M — {x}.

LEMMA 4. The set M is convex.

Proof. In view of Lemma 3, it suffices to show that if x denotes
the 'exceptional' point and p is a point of M — {x}, there exists a
point of M between p and x.

Since M is connected, let {xn} denote a sequence of points of
M — {x} such that lim xn = x. Denote by mn the midpoint of y, xn

for n = 1, 2, . Since M is finitely compact, there exists a point
m of M such that m is the limit of a subsequence {mi%} of {mn}.
Hence lim xin = x and pmin + ^in^in = pxιn for all n implies pm + mx ~
px.

From these lemmas, it follows that the theorem below is valid.
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THEOREM 2. Let M be a closed arcwise connected subset of a
straight line space S. If M has the three-isosceles property, then M
is convex.

The above theorem is not valid when the condition that M possess
the three-isosceles property is replaced by the demand that M possess
the ^-isosceles property with n ^ 4. This may be observed by con-
sidering any nonlinear isosceles triple q, r, s of the euclidean plane.
Let Mo be the union of the equal segments S(q, r), S(r, s). Since MQ

clearly is not convex, it suffices to show that Mo possesses the ^-isos-
celes property for all n greater than three.

Let pu p29 , pn+1 be any n + 1 distinct points of Mo such that
p{pi+1 = pi+1pi+2, i = 1, 2, , n — 1. If n is even the minimum number
of segments lying entirely within Mo will occur when n/2 points lie
on one of the two segments comprising MQ and (n + 2)/2 points on the
other segment. Hence there always exist at least n(n — 2)/8 + n(n + 2)/8
connecting segments contained within MQ which is greater than or
equal to n for n ^ 4. If n is odd, the minimum number of segments
lying entirely within Mo will occur when (n + l)/2 points lie on each
segment. Hence since (n2 — l)/8 + (n2 — l)/8 ^ n for n Ξ> 5, it follows
that Mo has the ^-isosceles property for % ^ 4 .
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