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FIXED-POINT THEOREMS FOR FAMILIES OF
CONTRACTION MAPPINGS

L. P. BELLUCE AND W. A. KIRK

Let X be a nonempty, bounded, closed and convex subset
of a Banach space B. A mapping fιX-*X is called a con-
traction mapping if 11 fix) — f(y) \\ ̂  11 x — y |1 for all x, y e X.
Let % be a nonempty commutative family of contraction
mappings of X into itself. The following results are obtained.

(i) Suppose there is a compact subset M of X and a
mapping /i6% such that for each xe X the closure of the set
{fi(%)' w = 1,2, •} contains a point of ikf (where / * denotes
the nth iterate, under composition, of /i). Then there is a
point xeM such that fix) = x for each / e g .

(ii) If X is weakly compact and the norm of B strictly
convex, and if for each / e g the /-closure of X is nonempty,
then there is a point xeX which is fixed under each / e g .
A third theorem, for finite families, is given where the hy-
potheses are in terms of weak compactness and a concept of
Brodskii and Milman called normal structure.

Fixed-point theorems for families of continuous linear (or affine)
transformations have been obtained by Kakutani [6], Markov [8],
Day [2], and others. Recently De Marr [3] proved the following
fixed-point theorem: If X is a nonempty, compact, convex subset of
a Banach space B and if g is a nonempty family of commuting con-
traction mappings of X into itself, then the family g has a common
fixed point in X. In Theorem 1 of this paper hypotheses of a type
considered by Gδhde in [5] are used to obtain a generalization of De
Marr's result.

Throughout this paper we shall denote the diameter of a subset
A g δ b y δ(A), i.e.,

δ(A) = sup {|| x - y\\:x,yeA} .

THEOREM 1. Let X be a nonempty, bounded, closed, convex
subset of a Banach space B let M be a compact subset of X. Let g
be a nonempty commutative family of contraction mappings of X
into itself with the property that for some fe% and for each xe X
the closure of the set {f?(x):n = 1,2, •••} contains a point of M.
Then there is a point xe M such that f(x) — x for each / e g .

Proof Let K be a nonempty closed convex subset of X such
that f(K) C K for each / e g . Select a point xeK. Since f(K) g K,
we have {fΓ(x)} a K. Hence it follows that
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K n M^ {fr(χ)} n MΦ 0 .

Thus we may apply Zorn's Lemma to obtain subset X* of X which
is minimal with respect to being nonempty, closed, convex and mapped
into itself by each / e g . Let M* — X* Π M; from the above remarks
we know M* Φ 0 . By a theorem of Gohde [5, p. 54], / has a non-
empty fixed-point set H in M*. Since H is the set of all fixed-points
of / , it is closed. Let x e H and y = f(x). Then we have

A(v) = Λ[f(χ)] = f[fi(χ)] = /(*) = 1/

since the set g is commutative and x is a fixed-point of / . Hence
7/G ί ί and /(iϊ) S JET for each / e g . We are therefore able to find a
subset i ϊ* of H which is minimal with respect to being nonempty,
closed and mapped into itself by each / e g .

Let ge g. Since H* is compact and g continuous, g(H*) is-closed.
For each / e g , f[g(H*)] = g[f(H*)]S g(H*). Thus if g(H*) is a
proper subset of H* for some # e § , then the minimality of if* is
contradicted. Hence if * is mapped o^ίo itself by each member of g.
Let TF denote the convex closure of H *. Since if * is compact, so is
TΓ. If δ(TF) > 0 it follows (see De Marr [3; Lemma 1]) that there is
a point x e W such that

sup{ | | x — z | | :ze W} = r < δ(W) .

We shall show that this leads to a contradiction and thereby
conclude that δ(W) = 0. Thus, let

C1 = {weW: \\w-z\\Sr for all zeH*} ,

C2 = { w e Γ : || w - s | | g r for all 2 6 H*} .

Clearly Cί = C2 Π W. Since if * is mapped onto itself by each member
of g, it is easily seen f(C2) g C2 for each / e g . Since C2 is a non-
empty closed convex subset of X*, the minimality of X* implies
C2 = X*. Therefore Cx = W. But since δ(ff*) = δ(W) there are
points a?, yeH* such that || x — y \\ > r. However H* £Ξ W = C±

implies || a; — 2/1| ̂  r. This contradiction shows δ( TF) = 0 and if * (hence
X*) consists of a single point which must be fixed under each mapping
in g.

That De Marr's theorem follows from the above is evident.
The following definition may be found in [4].

DEFINITION. Let X be a nonempty subset of a Banach space B
and let' f:X—»X be a contraction. The f-closure of X, denoted by
X J, is the set of points yeB such that for some xe X a subsequence
of {fn(x)} converges to y.
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THEOREM 2. Suppose X is a nonempty, weakly compact, convex
subset of a Banach space B whose norm is strictly convex. Suppose
% is a nonempty commutative family of contraction mappings of X
into itself such that for each f£%, Xf Φ 0 . Then there is an xe
X such that f{x) — x for each fe%.

Proof. It follows from a result of Edelstein [4; p. 441, II] that
each member of g has a nonempty fixed point set in X. (Although
the mappings in [4] are defined on the entire Banach space the same
results can be obtained when the domain is restricted as in this
theorem.) Because the norm of B is strictly convex, and the mappings
considered are contractions, it is easily seen that each of these fixed-
point sets is convex (and closed). As closed convex subsets of the
weakly compact set X, they are themselves weakly compact. Thus
we need only show that these fixed-point sets have the finite intersec-
tion property to conclude that there is a point common to all of them.

We make the inductive assumption that each n members of %
have a common fixed-point in X. Let f, f2, , fn+1 e g. Let M be
the set of common fixed points of f, •••,/*. Then M is weakly
compact and if yeM, fi[fn+1(y)] = fn+iiMv)] = fn+i(v) for each i =
1,2, , n. Hence fn+1(y) e M and fn+1(M) £ M. Let y be a point of
X fixed under fn+1. The strict convexity of the norm together with
the weak compactness of M enable us to obtain a unique point xe M
nearest to y. Since fn+1 is a contraction it then follows that fn+1(x) =
x. Thus x is a common fixed point of f, , fn+1. The proof is now
complete.

The concept defined below was first introduced by Brodskii and
Milman in [1].

DEFINITION. A bounded convex set if in a Banach space B is
said to have normal structure if for each convex subset H of K
which contains more than one point there is a point xe H which is
not a diametral point of H, (i.e. sup {\\ x ~ y \\: y e H} < d(H)).

By replacing strict convexity of the norm by normal structure
and removing the requirement that Xs Φ 0 we obtain the following
theorem for weakly compact sets X. Unfortunately, we have only
been able to establish this theorem for finite families (or, of course,
finitely generated families) of commuting contractions.

THEOREM 3. Suppose X is a nonempty, weakly compact, convex
subset of a Banach space B and suppose that X has normal structure.
If % is a finite family of commuting contraction mappings of X
into itself then there is an xe X such that f(x) — x for each / e g .
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That this theorem holds if g consists of a single mapping follows
from [7]. However, we take this opportunity to establish a slightly
more general result which also serves our purpose.

THEOREM 4. Let X be a bounded, closed, convex subset of a
Banach space B and suppose that X has normal structure. Let M
be a weakly compact subset of X. Assume f is a contraction mapping
of X into itself with the property that for each xe X, the closure
of {fn(x):n— 1,2, •••} contains a point of M. Then there is an
xe M such that f(x) = x.

Proof of Theorem 4. Since closed and convex subsets of X are
weakly closed and since M is weakly compact, Zorn's lemma gives us
a subset X* of X which is minimal with respect to being nonempty,
closed, convex, mapped into itself by /, and having points in common
with M. By normal structure, if d(X*) > 0 then there is a point
xe X* such that

sup {|| x -z\\:zeX*} = r < δ(X*) .

Assume, then, that δ(X*) > 0. Let

C = {zeX*:\\z-y\\^r for each p Γ } .

Then C is nonempty. Let K denote the convex closure of /(X*).
Since K s X*, then f(K) S f(X*). The closure of f(X*) is contained
in K and the hypotheses on / imply that this set intersects M.
Hence M ΓΊ K Φ 0 . By the minimality of X* we conclude that K~
X*. Let

C, = {zeX*: \\z-y\\^r for all yef(X*)} .

Clearly C S Clβ But if zeC^ then any spherical ball of radius r
centered at z must contain f(X*), and hence it must contain K = X*.
Consequently C1 gΞ C, and therefore Cί = C.

Let zeC and y e /(X*). Then y = f(x) for some x e X* and we
have

\\f(z) - y || = \\f(z) -f{x)\\S\\z-x\\Sr.

Therefore f(C) S C. This implies, by the minimality of X*, that
C = X*. But δ(C) ^ r < δ(X*)m This contradiction shows that
δ(X*) = 0. Therefore X consists of a single point which must be
fixed under /.

We now return to Theorem 3.

Proof of Theorem 3. Suppose % — {fu f2, , /„}. Since X is
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weakly compact we can find a subset X* of X minimal with respect
to being nonempty, closed, convex and mapped into itself by each
element of %. Let W denote the set of points of X* fixed under
/1/2 •••/». By Theorem 4, W Φ 0 . Furthermore fi(W) = W for i =
1, 2, , n. Let H be the convex closure of W. By normal structure
H contains a point x such that

sup {\\x-z\\:zeH} = r < δ(H)

provided δ(H) > 0. As before, we assume δ(H) > 0 and obtain a
contradiction. Let

C = {xe X*: II x - z || ^ r for all 2 e # } .

Then C is a nonempty closed convex subset of X* and, moreover,

C = {xeX*:\\x-z\\^r f o r e a c h z e W } .

Thus fi(C) S C a n d C = I * , which is impossible since δ(C f) H) ^ r <
δ(H). Hence δ(H) — 0, so H consists of the desired fixed point.

Several questions remain unanswered, the most notable perhaps
being:

(1) Is Theorem 2 true with strict convexity deleted?
(2) Is Theorem 3 true with the hypothesis of normal structure

deleted?
The answers to these questions are not even known in the case

that % consists of a single mapping (cf. [4], [7]).
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