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A CLASS OF BISIMPLE INVERSE SEMIGROUPS1

R. J. WARNE

The purpose of this paper is to study a certain generalization
of the bicyclic semigroup and to determine the structure of
some classes of bisimple (inverse) semigroups mod groups.

Let S be a bisimple semigroup and let Es denote the
collection of idempotents of S. Es is said to be integrally
ordered if under its natural order it is order isomorphic to
1°, the nonnegative integers, under the reverse of their usual
order. Es is lexicographically ordered if it is order isomorphic
to 1° X 1° under the order (n, m) < (k, s) if k < n or k = n and
s < m. If <^f is Green's relation and Es is lexicographically
ordered, S\^f ^ (I0)4 under a simple multiplication. A gen-
eralization of this result is given to the case where Es is n~
lexicographically ordered. The structure of S such that Es is
integrally ordered and the structure of a class of S such that
Es is lexicographically ordered are determimed mod groups.
These constructions are special cases of a construction
previously given by the author. This paper initiates a series
of papers which take a first step beyond the Rees theorem in
the structure theory of bisimple semigroups.

The theory of bisimple inverse semigroups has been investigated
by Clifford [2] and Warne [7], [8], and [9].

If S is a bisimple semigroup such that Es is lexicographically-
ordered, S\3ίf is shown to be isomorphic to the semigroup obtained
by embedding the bicyclic semigroup C in a simple semigroup with
identity by means of the Bruck construction [1], We denote this
semigroup by CoC. An interpretation of this construction introduced
by the author in [10] is used.

In [2, p. 548, main theorem], Clifford showed that S is a bisimple
inverse semigroup with identity if and only if S = {(α, b): a, b e P},
where P is a certain right cancellative semigroup with identity iso-
morphic to the right unit subsemigroup of S, under a suitable multi-
plication and definition of equality. In the special case Sf (Green's
relation) is a congruence on P(equivalently, ^f is a congruence on S),
Warne showed [8, p. 1117, Theorem 2.1; p. 1118, Theorem 2.2 and
first remark] that P = U x P/Sf, where U is the group of units of
P (of S), under a Schreier multiplication or equivalently, S =
{((α, 6), (c, d)): a,ceU, b,deP/£f}. Warne also notes [8, p. 1118,
second remark and p. 1121, Example 2] that a class of semigroups

1 Some of the results given here have been stated in a research announcement
in the Bull. Amer. Math. Soc. [12].
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studied by Rees [6, p. 108, Theorem 3.3] may be substituted as a
class of P in the above construction (here, P/J*f ~ (P, +), [8, p.
1118, Equation 2.9]). By [2, p. 553, Theorem 3.1], this substitution
will yield the multiplication for the class of bisimple (inverse with
identity) semigroups such that Es is integrally ordered in terms of
ordered quadruples. We carry out the indicated calculations, which
are routine, in detail here to yield Equation 3.4, which with the
equality definition ((g, n), (h, m)) = {{gu n,), (hu m,)) if ggT1 — hhr1, n^n,
and m = mu is the structure theorem in terms of ordered quadruples.
(The author was aware of this result in the spring of 1963.)

N. R. Reilly informed us he had a multiplication for these semi-
groups (*, p. 572) in terms of ordered triples. His elegant formulation
follows from our quadruple formulation by an application of [2, p. 548,
Equation 1.2]. A still more convenient formulation is S ~ U x C with
a suitable multiplication.2

Next, it is shown that for a class of bisimple semigroups S such
that Es is lexicographically ordered, S = GX(CoC), where G is a
certain group, under a suitable multiplication. The above techniques
of [8] are again utilized here. The greater generality achieved in the
integrally ordered case appears to arise from the fact that in this
case P is a splitting extension of U by P (i.e., in notation of [8, p.
1117], ab = β, the identity of U for all a, beP).3

These structure theorems resemble the Rees theorem for completely
simple semigroups [3] in that they completely describe the structure
or certain classes of bisimple semigroups mod groups.

^ , Sf, <§ίf, and ^ will denote Green's relations [3, p. 47]. Ra

denotes the equivalence class containing the element α. Unless other-
wise stated, the definitions and terminology of [3] will be used.

1* Preliminary discussion* We first summarize the construction
of Clifford referred to in the introduction.

Let S be a bisimple inverse semigroup with identity. Such semi-
groups are characterized by the following conditions [8, p. 1111; 3, 4, 2
are used],

Al: S is bisimple.
A2: S has an identity element.
A3: Any two idempotents of S commute.
It is shown by Clifford [2] that the structure of S is determined

by that of its right unit semigroup P and that P has the following
properties:

Bl: The right cancellation law holds in P.
B2: P has an identity element

2 See p . 576, (2).
3 See p . 576, (3), (5).
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B3: The intersection of two principal left ideals of P is a principal
left ideal of P.

Let P be any semigroup satisfying Bl, B2 and B3. From each
class of ^-equivalent elements of P, let us pick a fixed representative.
B3 states that if a and b are elements of P, there exists c in P such
that Paf]Pb = Pc. c is determined by a and b to within ^^-equivalence.
We define avb to be the representative of the class to which c belongs.
We observe also that

(1.1) a V 6 = b V a .

We define a binary operation * by

(1.2) (α*&)& = avb

for each pair of elements α, b of P.
Now let P~*oP denote the set of ordered pairs (α, 6) of elements

of P with quality defined by

(α, 6) = (a', 6') if a' = wα and 6' = 166 where w is a

(1.3) unit in P (u has a two sided inverse with respect

to 1, the identity of P) .

We define product in P^oP by

(1.4) (α, 6)(c, d) = ((c>&)α, (6*c)d) .

Clifford's main theorem states: Starting with a semigroup P satisfying
Bl, 2, 3, Equations (1.2), (1.3), and (1.4) define a semigroup P~ιoP
satisfying Al, 2, 3. P is isomorphic with the right unit subsemigroup
of P^oP (the right unit subsemigroup of P~ιoP is the set of elements
of P^oP having a right inverse with respect to 1; this set is easily
shown to be a semigroup). Conversely, if S is a semigroup satisfying
Al, 2, 3, its right unit subsemigroup P satisfies Bl, 2, 3 and S is
isomorphic to P~λoP.

The following results are also obtained:

LEMMA 1.1 [2], For α, 6 in P and u, v in U, the group of units
of P, we have (ua*vb)v — a*b. The unit group of P is equal to the
unit group of S. aSίfb (in S) if and only if a^fb (in P). a^fb (in P)
if and only if a — ub for some u in U.

THEOREM 1.1 [2]. Let S be a semigroup satisfying Al, 2, 3,
and let P be its right unit subsemigroup. Then P satisfies B3 (as
well as Bl and B2), and the semi-lattice of principal left ideals of
P under intersection is isomorphic with the semi-lattice of idempotent
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elements of S.

We now briefly review the work of Redei [5] on the Schreier
extension theory for semigroups (we actually give the right-left dual
of his construction) and we also present some pertinent material from
[8]. Let G be a semigroup with identity e. We consider a congruence
relation p on G and call the corresponding division of G into congruence
classes a compatible class division of G. The class H containing the
identity is said to be the main class of the division. H is easily
shown to be a subsemigroup of G. The division is called right normal
if and only if the classes are of the form,

(1.5) Hau Ha2, {ax = e)

and hfoi — h2a{ with hu h2 in H implies hλ = h2. The system (1.5) is
shown to be uniquely determined by H. H is then called a right
normal divisor of G and G/p is denoted by G/H.

Let G, H, and S be semigroups with identity. Then, if there
exists a right normal divisor Hr of G such that H ~ Hf and S ~
GjHf, G is said to be a Schreier extension of H by S.

Now, let H and S be semigroups with identities E and e re-
spectively. Consider HXS under the following multiplication:

(1.6) (A, a)(B, b) = (ABaa\ ab)(A, B in H; a, b in S)

a\ Ba(in H)

designate functions of the arguments α, b and B, a respectively, and
are subject to the conditions

(1.7) αe = E, ea = E, Be = B, Ea = E .

We call H x S under this multiplication a Schreier product of H and
S and denote it by HoS.

Redei's main theorem states:

THEOREM 1.2 (Redei). A Schreier product G = HoS is a semigroup
if and only if

(1.8) (AB)C = ACB\A, B in H: c in S)

(1.9) (Ba)cca = caBca(B in H; a, c in S)

(1.10) (ab)ccab = ca{ca)h{a, 6, c m S)

are valid. These semigroups (up to an isomorphism) are all the
Schreier extensions of H by S and indeed the elements (A, e) form
a right normal divisor H' of G for which
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(1.11) G/H' ~ S(H'(E, a) -> α)

H' = H((A, e) -> A)

are valid.

THEOREM 1.3 [8]. Let U be a group with identity E and let S
be a semigroup satisfying Bl and B2 (denote its identity by e) and
suppose S has a trivial group of units. Then every Sehreier ex-
tension P = UoS of U by S satisfied Bl and B2 (the identity is
(E, e)) and the group of units of P is Uf ^ {(A, e) : A in U} ^U
Furthermore Jίf is a congruence relation on P and P\S^ ~ S. P
satisfies B3 if and only if S satisfies B3.

Conversely, let P be a semigroup satisfying Bl and B2 on which
Sf is a congruence relation. Let U be the group of units of P.
Then U is a right normal divisor of P and P/U ~ P/Jίf. Thus, P
is a Schreier extension of U by P/J5f. P/^f satisfies Bl and B2 and
has a trivial group of units.

The following statements are valid for any semigroup obeying
the conditions of Theorem 1.3 (i.e. semigroups satisfying Bl, B2 on
which JZf is a congruence).

(1.12) P(A, a) == {(C, δα): C in U, b in S} .

(1.13) (A, a)L(B, b) if and only if a = 6 .

As remarked in [8], the semigroups considered by Rees (Theorem 1.5
below) fall into this category.

Now, Rees defines a right normal divisor in a different manner
than Redei. He says that V is a right normal divisor of a semigroup
P satisfying Bl and B2 if V is a subgroup of the unit group U of
P and aUSUa for all a in P. However, let us show that the Rees
definition is just a specialization of the Redei definition to the case
where the main class is a group and the semigroup we are dealing
with satisfies Bl and B2. In this case, suppose that V is a right
normal divisor in the sense of Redei, Then, clearly, V is a subgroup
of U. The congruence class containing a is just Va. Let u in V.
Then, upl. Thus, aupa, i.e., au in Va. Conversely, suppose V is a
right normal divisor in the sense of Rees. Let us define apb if and
only if Va = Vb. It is easily seen that p is a congruence on P with
main class V, i.e., V is a right normal divisor in the sense of Redei.

Let us now briefly review the theory of Rees [6], Let P be a
semigroup satisfying Bl and B2. The partially ordered system of
principal left ideals of P, ordered by inclusion, will be denoted by
O(P) and termed the ideal structure of P. If (O, έ ) is a partially
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ordered set, we denote the set of all elements x of 0 satisfying x ̂  a
by Oa and term such a set a section of 0. Then we take as P(0)
the set of all order isomorphic mappings 7 of O(P) onto sections of
O(P). If U is the group of units of S, M = (g in U/xg in Ux for
all x in P) is the greatest right normal divisor of P.

The following theorems are established.

THEOREM 1.4 [6]. If P has an ideal structure O(P) and M is
the right normal divisor just described, then there is a subsemigroup
Pr of P(O) isomorphic to P/M. Further, every principal left ideal
of P(O) has a generator in P'.

THEOREM 1.5 [6]. A semigroup P satisfying Bl and B2 whose
ideal structure is isomorphic with # (the ideal structure of (1°, +))
and whose group of units is isomorphic with a given group G is
isomorphic with a semigroup T — G x 1° under the following multi-
plication (1.14) (g, m)(h, n) = (g(ham), m + n), g, h in G, m, n in 7°, a
being an endomorphism of G, a° being interpreted as the identity
transformation of G and conversely T has the above properties.

LEMMA 1.2. Let S be a bisimple inverse semigroup with identity
with right unit subsemigroup P. U, the group of units of P, is a
right normal divisor of P if and only if 3$f is a congruence on S.

Proof. Let U be a right normal divisor of P. Let (α, δ), (c, d)
be in S and suppose that (α, b)£ίf{c, d). Now (α, b)&(c, d) if and
only if a — uc where u in U and (α, b)Jίf(c, d) if and only if b — vd
where v in U. I will prove the first. Suppose that (α, 6)^(c, d).
Then there exists (a?, y), (w, z) in S such that (α, b) = (c, d)(x, y) and
(c, d) = (α, b){w, z). Thus, by 1.3 and 1.4 a = p(x*d)c and c = q(w*b)a
where p, q in U. Thus, by Bl and B2 a = uc for some % in U by
Bl and B2. Now suppose that a = u'c for some w' in U. We note
first that (b*b)b = b V b = ub for some u in U by 1.2, the definition
of V, and Lemma 1.1. Thus, δ*δ = u by Bl.

Now (α, &)(&, %'d) = (ua, uufd) — (u'^a, d) = (c, d) by (1.3). Simi-
larly (c, d)(d, u'-ty = (α, 6), i.e., (α, b)&(cd).

Let (p, g) be in S. Then by (1.4),

(a, b)(p, q) = ((2>*δ)α,
(c,

Since (α, 6)^g^(c, d) there exists tt, v in 17 such that a — ucfb — vd.
Thus, by Lemma 1.1 and the fact that U is a right normal divisor

(p*b)a = (p*vd)uc — (lp*vd)vv~ιuc =
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where t is in U.
Thus, (α, b){p, q)&(c, d)(p, q) and & is a right congruence. Since

& is always a left congruence, it is a congruence. One shows
similarly that Sf is a congruence. Thus, §ίf is a congruence relation
on S.

Suppose g(? is a congruence on S. Let α, b in P and suppose
a^Sfb (in P). By Lemma 1.1 a£t?b (in S). Thus c in P implies
ca^fcb (in S) and cαjδ^cδ (in P) by Lemma 1.1. Hence ^f is a
congruence on P and ί7 is a right normal divisor of P by Theorem 1.3.

2* The Bruck product* Let S be an arbitrary semigroup and
C be the bicyclic semigroup ([3], p. 43), i.e., C is the set of all pairs
of nonnegative integers with multiplication given by (m, n)(m\ nf) =
(m + m' — min (w, m'), w + %' — min(%, m')). Consider W — C x S with
multiplication given by ((m, w), s)((m', V), s') = ((m, n)(m', n'), f(n, m'))
where /(%, m') = s, ss', or s' according to whether n > m', n = m', or
n < m'. We call TF the Bruck product of C and S and write W =
CoS. I used a special case of this product in [10]. CoC is easily
shown to be a bisimple inverse semigroup with identity for which Es

is lexicographically ordered. If S is an arbitrary semigroup, let S1

be S with an appended identity [3, p. 4]. One can show that CoS1

is a simple semigroup with identity containing S as a subsemigroup.
Since this is equivalent to the construction of R. H. Bruck [1] for
embedding an arbitrary semigroup in a simple semigroup with identity,
we call o a Bruck product.

THEOREM 2.1 [8]. Let S and S* be bisimple inverse semigroups
with identity with right unit subsemigroups P and P* respectively.
S ~ £* if and only if P ^ P*.

THEOREM 2.2. Let S be a bisimple (inverse) semigroup. Es is
lexicographically ordered if and only if Sίf is a congruence on S
and S\£ίf s CoC where CoC denotes the Bruck product of C by C.

Proof. First we suppose that Es is lexicographically ordered.
Clearly S has an identity. For let e be the largest element of the
lexicographic chain. If a in S, a is in Rf for some / in E8 since S
is regular. Then, ea = efa — fa — a. Similarly, ae — a. Let P be
the right unit subsemigroup of S. Then by Theorem 1.1, we may
write the ideal structure of P, 0(P) as follows:

(0, 0) > (0, 1) > (0, 2) > (0, 3) >

(1, 0) > (1, 1) > (1, 2) > (1, 3) >

(2, 0) > (2, 1) > (2, 2) > (2, 3) >
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(3, 0) > (3, 1) > (3, 2) > (3, 3) >

(4, 0) > (4, 1) > (4, 2) > (4, 3) >

If we define for (m, ft) in O(P)

(n, s)timtk) = (n + m, s) if n > 0

(m, s + k) if n — 0

we easily see that ί(WfJfe) is an order isomorphism of O(P) onto the
section of O(P) determined by (m, ft). In fact all order isomorphisms
of O(P) onto sections of O(P) are of this form.

Clearly P(O) sz ΓXΓ under the multiplication

(n, s)(m, k) = (n + m, s) if n > 0

(m, s + ft) if w = 0 .

Thus, the only subsemigroup of P(O) containing a generator of every
principal left ideal of P(O) is P(O) itself. This follows since
P{0){n, k) = {{u + w, v): u, v in 1°, u > Q)U((n, v + ft): t; in J°). The
unit group of P(O) is trivial (note the identity of P(O) is (0, 0)).

By Theorem 1.4, P/M = P(O). Since the unit group of P(O) is
trivial, M = U. Thus, again by Theorem 1.4, U is a right normal
divisor of P. Thus, < ^ is a congruence on S by Lemma 1.2. Since
([8], p. 1111) any homomorphic image of a bisimple inverse semigroup
with identity is a bisimple inverse semigroup with identity, S\Sίf is
such a semigroup.

Let a—+a denote the natural homomorphism of S onto S\^f. If
a is a right unit of S\Sίf there exists x in Sj^f such that αx = Γ,
where 1 is the identity of S. Thus, ax^ίfl and there exists y in S
such that α#τ/ = 1, i.e., a in P. Now, if a in P, ax = 1 for some #
in S. Thus, αx = 1 and a is in the right unit subsemigroup of $>\<§ίf.
Hence the right unit subsemigroup of SjSίf is P/^T = P\Sf = P(O)
by Lemma 1.1. Now, as noted above CoC is a bisimple inverse semi-
group with identity. It is easily seen that the right unit subsemigroup
of CoC is isomorphic to P(O). Thus, by Theorem 2.1 SjSίf ^ CoC.
The converse is clear.

COROLLARY 2.1. S is a bisimple (inverse) semigroup with trivial
unit group and E8 is lexicographically ordered if and only if S is
isomorphic to CoC.

Proof. This follows from Theorem 2,3 of [3].
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LEMMA 2.1. Let S be a bίsίmple (inverse) semigroup. Es is
integrally ordered if and only if έ%f is a congruence on S and

= C.

Proof. §ίf is a congruence on S by ([8], p. 1118) and Lemma
1.2. By Theorem 1.1, Theorem 1.5, 1.14, and 1.13, P/jSf ~ Γ, where
Γ is the nonnegative integers under addition. But, as above, Pj^f
is the right unit subsemigroup of Sj^f. Hence Sj^f ~ C by Theorem
2.1. The converse is clear.

LEMMA 2.2. S is a bisimple (inverse) semigroup with trivial
unit group and Es integrally ordered if and only if S = C.

Let S be a semigroup. We say Es is ^-lexicographically ordered
if and only if Es is order isomorphic to 1° x 1° x xl° under the order

n times

(ku k2, , kn) < (slf s2, , sn)

if kt > st or kx — su k2 > s2 or ki = st (i = 1, 2, j — 1), k3- > s3- or k{ =
Si(i = 1, 2, n — 1), fcw > sn. £7̂  is 2-lexicographically ordered if and
only if Es is lexicographically ordered. E8 is 1-lexicographically ordered
if and only if Es is integrally ordered.

We will define the ^-dimensional bicyclic semigroup Cn as follows:
d = C and Cn = (Co o(Co(Co(CoC))) ) for ^ > 1 where o is the
Bruck product (there are n — 1 o's).

Cn is a bisimple inverse semigroup with EOn ^-lexicographically
ordered. The 1-dimensional bicyclic semigroup is the bicyclic semigroup.
The 2-dimensional bicyclic semigroup is the Bruck product CoC of C
and C.

The following theorem and corollary are obtained by employing
the techniques used in the proofs of Theorem 2.1 and Corollary 2.1
respectively.

THEOREM 2.3. S is a bisimple (inverse) semigroup with Es

n-lexicographically ordered if and only if 3ίf is a congruence on S
and S/βέ?7 = Cn.

COROLLARY 2.2. S is a bisimple (inverse) semigroup with Es

n-lexicographically ordered and trivial unit group if and only if

3* Multiplications on two classes of bisimple inverse semi-
groups*
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THEOREM 3.1. S is a bisimple (inverse) semigroup such that Es

is integrally ordered if and only ifS~GxC where G is a group
and C is the bicyclic semigroup under the multiplication:

(3.1) (z, n, m)(z', nly m,) = {za^~rzfam~% (n, m)(nu m,))

where r — min (m, Uj), a an endomorphism of (?, a° is the identity
transformation of G and juxtaposition is multiplication in G and C.

Proof. As in the proof of Theorem 1.7, S is a bisimple inverse
semigroup with identity. By Theorem 1.1, Cliffords's main theorem,
and Theorem 1.5, P = U x 1° where U is the group of units of S
under the multiplication 1.14 if and only if E8 is integrally ordered.
The ^-classes of P are Lo, Lu L2 Ln where Ln = ((g, n): g in U)
by 1.13. Let (β, n) where β is the identity of U be a representative
element of Ln. Thus, (e, n) V (e, m) — (e, max (n, m)) by 1.12 and the
definition of V. Using (1.2) by a routine calculation, we have

(e, n) * (e, m) = (e, n — m) if n ^ m

= (e, o) ifm^n

Using Lemma 1.1, (1.14), and Theorem 1.3, we obtain

(g, n ) * ( h , m ) = ( / z r 1 ^ " ™ , n — m ) i f n^m
(3.3)

(/i , o) it m Ξ> ^

Now using (1.14) (1.4), and (3.3), we obtain

(3 4) ^9' n^ ^h'

— ((h~ίg)ani~r, nx + n — r, (gTιh1)am-\ m + mx — r) .

Now, by (1.3) and (3.4), we have

(e, w, flf-1A, m)(β, ̂ , flrf1^, m,)

= (e, n± + n - r, (g~'h)an^r (gr1h1)am~r, m + m, - r)

Let j? = βf"1^ and zr = ^Γ1^!. Then

*(%, 2, m)(^, / , mx) = (n + ^ — r zani~r, z'am~% m + mx — r)

or

(̂ , w, m)(»', nu mt) =
The converse follows by Cliffords theorem.

To actually determine the multiplication on S, one determines P
(we are actually given P here) and then places P in the Clifford
construction. However, after one ascertains the multiplication, a very
short proof of the fact can be given by the use of Theorem 1.6.
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Alternative proof of Theorem 2.1. Let S* = G x C be a groupoid
with multiplication (3.1). We can show that S* is a bisimple inverse
semigroup with identity by routine calculation (we must go through
this to prove the converse anyway). It is easily seen that the right
unit subsemigroup P* of S* is isomorphic to P. Thus, S = £* by
Theorem 2.1.

A semigroup with zero, 0, is said to be 0-right cancellative if
a, b, c in S, c Φ 0, ac — be implies that a = b. If G is a group, let
e(G) denote the semigroup of endomorphisms of G.

A nontrivial group G is said to be a * -group if
(1) Every nontrivial endomorphism of G maps G onto G.
(2) ε(Cr) is 0-right cancellative. ((1) —> (2) if G is an abelian group).4

The *-groups include all cyclic groups of prime order, all groups of
type p°°, and the additive group of rational numbers/

If S is a semigroup with identity 1 and a, x in S with ax = 1,
we write x — a"1.

THEOREM 3.2. S is a bisimple (inverse) semigroup such that (1)
Es is lexicographically ordered, (2) U is a *-group, (3) aa"1 — 1
implies that Ua £Ξ all, if and only if S = GX(CoC) where G is a
*-group, C is the bicyclic semigroup, o is the Bruck product, with
the multiplication,

(9, (n, k)9 (m, l))(h, (nu k,), (mί91,))

hak-% ((n, k), (m, l))((nu h), (mu I,))

where r — min (nly k) and a is a nontrivial endomorphism of G α°
denotes the identity transformation, and juxtaposition denotes mul-
tiplication in G and CoC.

Proof. Let P be the right unit subsemigroup of S. If U is a
right normal divisor of P, then clearly Jzf is a congruence on P.
Thus by Theorem 2.2 Lemma 1.2, and Theorem 1.3, P is a Schreier
extension of U by P/U(=P/j£f). Now, the semigroup of right units
P* of CoC is easily seen to be isomorphic to 1° x 1° under the multi-
plication

(n, m)(p, q) = (n + p, m) if n > 0

(n + p, m + q) if n — 0

Now a — (1, o) and b — (o, 1) are generators of P* and ab = a. Now,
as remarked in the proof of Theorem 2.2 the right unit subsemigroup

4 (1) -> (2) also if G is simple or finite.
5 The *-groups also include all nontrivial finite simple groups.
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of Sl&f ~ CoC (Theorem 2.2) is P/^f. Thus, we may label the
classes of P as {L{ntk) : n, k in I0}. Now let α' in La>0) and 6* in L(o>1).
Thus, α'δ* = %α' for some u in Z7. Thus by (3) uaf = α'v for some
v in £7. Hence, α'δ* — α't;, a'^v"1 = α'. Let ί)*^"1 = δ\ Now, since
£7 is a right normal divisor of P, δ * ^ 1 = wδ* for some w in U and
6' in L(o,i). Thus, {δ'V% &, s in 7°} form a complete system of repre-
sentative elements (5) which is also a semigroup. Thus the factors
cd of (1.6) are all equal to E, the identity of U. Thus, (1.6) becomes

(3.5) (A, n, k)(B, m, I) = (AB^k\ (n, k)(m, I))

where A, B in Uy (n, k), (m, 1) in P/Sf and juxtaposition is multipli-
cation in U and P/^f. Now let a = (1, 0) and b = (0, 1), and let
e = (0, 0), the identity of P / ^ 7 . Then (E, a)(g, e) = (#tf, e)(#, α) (α,
fixed), a a transformation of U, since ί7 is a right normal divisor of
P and {(̂ r, e): g in J7} is isomorphic to U (Theorem 1.3). Now
(E, a)(g, e) = {ga, a) by 1.6. Hence ga = ga. Similarly, gb = r̂/3. By
(1.8) α: and β are endomorphisms of U. By (1.9), (#6)α = gab = gα(^ in ί7).
Thus #<x = ^/5α, ^ in U, i.e., # = βa. Let us first suppose that aφ 0
in e(ϊ7). Then since e(Z7) is 0-right cancellative β is the identity
automorphism of U. Now, by 1.9, g{n>k) - 0<M>*<M> = (gwy^)k

 =

grαTO/3fc — ^α π and (3.5) becomes

(A, tt, k)(B, m, ί) - (A(Sa%), (n, fc)(m, i))

By routine calculation, we can show that S* = Ux(CoC) under the
multiplication

(g, (n, k), (m, l))(h, (nu kj, (mu h))

= (flrα i-'Λα*-', (((^, fc), (m, ϊ))((^, fcO, K , i,)))),

where r — min (^, fc) and a is an endomorphism of U, is a bisimple
inverse semigroup with identity. To show associativity is straight
forward, but tedious. Now,

(g, (n, k), (m, l))&(h, (nl9 fcx), (ml9 k)) if and only if n — ny and m — m1

and

(#, (n, k), (m, l))£f(h, (nl9 h), (mu lx)) if and only if k = &x and ί = ix

Thus, if

for, (w, Λ), (m, i)), (Λ, (u, t;), (r, β)) in S*,

(flr, (n, k), (m, ί))^(flf, (w, v)9 (m, s ) ) ^ 7 ^ , (w, v), (r, s))

and S* is bisimple. (E9 (0, 0), (0, 0)) where E is the identity of U is
the identity of S*.
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The idempotents of S* are {(E, (n, n), (k, k)), n, k in 7°}. It is
easily seen that these commute.

Thus, S* is a bisimple inverse semigroup with identity, [8, p. 1111],
The right unit subsemigroup P * of S* is {(g, 0, n, 0, k):n,k in

P,geG}. It is seen immediately that P * is isomorphic to P and
hence S = S* by Theorem 2.1. Let us give the converse of this case.
Now it is quite easily seen that the unit group of S is {g, (0, 0), (0, 0)} =
G. (the unit group is H{{0,0)>0,0))). Thus, U is a *-group.

The right unit subsemigroup P of S is {(g, n, k): n, k in I0} under
the multiplication

(g, n, k)(h, m, s) = (g(han), n + m, k) if n > 0

(flf, 0, &)(/&, m, s) = (flrfe, m,k + s)

Let (fir, 0, 0)εC7 and (fc, m, s), m > 0 be in P. Since G is a *-group,
there exists gf in G such that h~ιgh = ^ 'α m (since α is nontrivial, α m

is nontrivial) as ε(G) is 0-right cancellative). Thus

(g, 0, 0)(Λ, m, s) = (flrΛ, m, s) = (λίflr'α*), m, s) - (h, m, s)(g', 0, 0).

Next, we consider (h, 0, m). Now, let gr' — h~xgh. Then,

(fir, 0, 0)(Λ, 0, m) = (flrfe, 0, m) = (%', 0, m) = (h, 0, w)(flr', 0, 0)

Hence, U satisfies (3).

Es - {E, (n, n), (h, k): n, k in Γ}

and multiplication in Es is given by

(n, k){m, I) = (w, A) if n > m

= (w, k) Ίί n ~ m and k > I .

Thus (1) is satisfied.
Next, suppose α is the zero of ε(Z7), i.e., ga — E, g in Z7. This

means ga = E, g in C7. Now g{n>k) - #<°>1>*<1>°)* = (̂ (i.o^yo,!)* = (Eyo,D* = E

iί nΦO. Ifn = 0, g{n>k) = ^(0'fc) = ^/Sfc. Thus, our multiplication (3.5)
becomes (A, n, k){B, m, s) = (A, n + m, &) if n Φ 0,

(A, 0, fc)(B, m, s) = (A(5/Sfc), m, fc + s)) .

Now, by (3), if (g, 0, 0) in U, there exists (g', 0, 0) in U such that if
m Φ 0

(flr, 0, 0)(.B, m, s) - (flrB, m, s) - (5, m, s)(g', 0, 0) - (5, m, s) .

Hence, gB ~ B and g ~ Έ. Since # was arbitrary, Z7 is a trivial
group and we have a contradiction. Thus a cannot be a trivial
endomorphism.
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EXAMPLE. Let G be a * -group, C be the bicyclic semigroup, and
o be the Bruck product. If we let a be the trivial endomorphism of
G in the 1-dimensional (2-dimensional) case, S is a bisimple inverse
semigroup with Es integrally (lexicographically) ordered and with group
of units a *-group. However (3) of Theorem (3.2) is not satisfied.
S = CoG is the 1-dimensional case.

Added in proof. (1) A nontrivial group is called an β-group if
every nontrivial endomorphism of G is an epimorphism. The following
theorem has a proof similar to that of Theorem 3.2.

THEOREM. In Theorem 3.2, replace *-group by e-group and the
multiplication given there by

(g, (n, k), (m, l))(h, (r, s), (u, v))

*βί~™r'k), ((n, k), (m, l))((r, s), (u, v)))

where if r>k9 7i(r, k) = 0, y2(r, k) = 1; if k>r, 7i(r, k) = u, 72(r, k) = 0;
if k — r, 7i(r, k) = τ2(^, fc) = min (w, 1), δ = min (&, r) and a, β are
nontrivial endomorphisms of G such that βa — a.

(2) N. R. Reilly [11] has determined a structure theorem equiv-
alent to Theorem 3.1 by different methods. According to his
terminology, a bisimple semigroup S is called a bisimple ω-semigroup
if Es is integrally ordered. If Es is lexicographically ordered we will
call S an L-bisimple semigroup.

(3) A bisimple semigroup S is Z^-bisimple (J-bisimple, I-ω-bisimple)
if Es is ^-lexicographically ordered (is order isomorphic to Z under
the reverse of the usual order, is order isomorphic to ZXΓ under the
usual lexicographic order [Van der Waerden, Vol. 1, p. 81]). We
describe the structure of these classes of semigroups completely mod
groups in [12], [13], and [16]. The structure theorem for L-bisimple
semigroups generalizes Theorem 3.2. We investigate several of the
properties of L-bisimple, J-bisimple and J-ω-bisimple semigroups, such
as homomorphisms, congruences, and (ideal) extensions in [12], [13],
[14], [17], and [18]. The method of attack- initiated here- which
readily allows applications of results of [7]-[9] is used throughout.

(4) We will also call the ^-dimensional bicyclic semigroup the
2w-cyclic semigroup in future papers.

(5) We have also studied some of the properties of the semigroups
whose structure has been given here in [13] and [15].
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