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CHARACTERIZATIONS OF DIRECT SUMS AND
COMMUTING SETS OF VOLTERRA

OPERATORS

G. K. KALISCH

Theorem 1 contains an abstract characterization and unitary
invariants of operators T which are finite direct sums of n

f(y)dy with real nonzero
0

a3 defined on a Hubert space 3^ which is a direct sum of n
JS^(Ii) spaces on the unit interval Iu This is done by de-
manding that the dimension of (T + T7*) <§ίf be n; that the
subspaces 3ίf$ of <§£* generated by T and the eigenvectors e3

of T + Γ* be orthogonal to all ek for k Φ j ; and that the
spectrum of T be 0. Theorem 2 contains an abstract charac-
terization and unitary invariants of finite commuting sets
{Wj}ΐ of Volterra operators which are real nonzero multiples
of integration in the various coordinate axis directions on a
Hubert space 3ίf which is the J2^ space on the unit cube in
n real dimensions. The characterization is given by demand-
ing that the W3 commute with all Wk and W* for k Φ j ; that
Π (Wi + W*)3(? = g7 have dimension 1; that <%f be spanned
by the W/s and gf and that the W3'a have spectrum 0,

The simplest bounded Hermitian operators are the simple or cyclic
operators which are defined as "multiplication by the independent
variable on a suitable Jϊf2(μ) space" where μ is a Borel measure with
compact support on the real line. The simplest bounded Volterra operators
are of the form aV for real nonzero a defined on J5f?(li). In general, we
mean by Volterra operator a linear transformation TF defined on a

space of functions so that (TFf)(x) = \ F(x, y)f(y)dy. It is a remarka-
Jo

ble fact that the simple Hermitian operators depend unitarily on the
measure μ, that is, two such operators are unitarily equivalent if and
only if the corresponding measures μ are equivalent, while two Volterra
operators V defined on different £ft{μ) spaces are unitarily equivalent
so long as both measures μ are nonatomic and have the same total
mass. Thus there is no loss of generality in our paper if we confine
ourselves to the Lebesgue spaces J*f2(I^, etc. The presence of atoms
brings our different phenomena which we hope to develop in the future.

The most general Hermitian operators are direct sums of the simple
ones. This motivates our aim to characterize direct sums of real
multiples of the simplest Volterra operators. This work follows the
spirit of [3] in that we seek to establish concrete analytic represen-
tations. Our Theorem 1 is a first steps in this direction. While these
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operators fall into the class of operators considered in Livsic's theory
[1, 4], the conclusions of our theorem have to be deduced from that
theory in approximately the same way we proceed, namely by basing
it upon the characterization of V itself [3],

Another representation theorem for Hermitian operators says that
commuting families can be simultaneously represented as families of
multiplication operators by functions on some suitable Sf%(μ) space with
Borel measure μ of finite mass in Iλ; see for example [3], This
motivates our interest in the corresponding situation for Volterra oper-
ators which is explored in our Theorem 2. The proof is again based
on the characterization of V itself [3]; in addition it uses a lemma due
to Livsic in the form stated on p. 354 of [3] and referred to here as
"Livsic's Lemma". The proof then proceeds by establishing explicit
formulas for two analytic functions in n and 2n variables respectively
determined by products of the resolvents of the W's; one of these
functions is the joint characteristic function of the set {W3} [3].

We write In for the unit cube in the space Rn of n real dimen-

sions and jZz(In) for the Lebesgue Sf% space on In. We define the

0

We say that the Hubert space 3$f is generated by the set {T3} of
operators and the subset 6^ a S^f if 3ίf is the least closed subspace of

containing Sf and invariant under each T3. We say that the set
of operators on the Hubert space 3ίf is isomorphic (more precisely

isometrically isomorphic) with the set {T3} of operators on the Hubert
space 3Γ if there is an isometry U of £%f onto 3ίΓ such that US3 =
T3U for all j .

The following two theorems state easily verified necessary conditions;
it is their sufficiency we are concerned with here.

THEOREM 1. Let the operator T be defined on the Hilbert space
£ίf such that

( i) dim (Γ + Γ*)^T = n and (T + T*)ed = aάe3 for j = 1, . . . , n
where {e3} is orthonormal and the a3- are nonzero real numbers;

(ii) if Sίf3 is the subspace of ^f generated by T and e3 then
Sίή JL &k for all distinct j and k;

(iii) 3ίf is generated by T and the set {e3};
(iv) the spectrum of T = 0.

Then T on 3ίf is isomorphic with the direct sum Σj=ι Θ aj V defined
on the direct sum of n copies of Jz^(ii). Two operators T as above
are unitarily equivalent if and only if they have the same a's as
defined in (i) above.

REMARKS. (1) Our demanding that the α7s in (i) be real reflects
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the crucial role that the hypothesis that d im(F+ F*)βS
!?(71) = 1 plays

in the proof of the representation theorem for V [3]; it is in fact an
obvious necessary condition. A trivial extension of our theorem is of
course possible if there exists a complex number β such that βT
satisfies condition (i). The case for general complex aό does not fall
within the scope of our technique.

(2) Turning now to hypothesis (ii), the example S = iV2 shows
that dim (S + $>*)έ%f — dim g7 = 2 while any single nonzero vector e e g7

has the property that the subspace (S; e) of ^f generated by S and e
is all of έ%? (see for example [2], Lemma 7). Thus S is certainly not
isomorphic with any operator of the form a V 0 β V.

Proof of Theorem 1. We base the proof on the case n — 1, the
characterization of aV, found in [3]. We show below that for distinct
j and k, we have ^ _L Sίfh\ then (iii) implies that ^ T = X 0 £(*.
The definition of Sίή implies that TSίf0 c 3ίfj and the mutual orthogonality
of the ^ implies that Γ ^ c ^ . Therefore the restriction Tό of
T to ^ has the property (Tj)* = (T*),- so that Tά satisfies the
hypotheses of our theorem for n — 1 and Tό on ^fj is isomorphic with
<XjV on jZKIί) by [3]; thus the proof is complete. It remains to show
that ^fά J_ Sίfί for distinct j and k. Note first that (i) implies that
for all xe £4f we have (T + T*)x = J , ^-(x, e^)eά and hence (ii) implies
that ( Γ + T*)Tneό= Tn+1e5 + Γ*Γ βy = ^ ( T X , β ^ so that, still by
(ii), we have Γ * T n e / 6 ^ for all nonnegative integers %, whence
T*^gf c ^ and T * % ^ c ^ for all nonnegative integers n. But then
(ii) implies that ek _L T*%Jgf, i.e., Γ̂ ê  J_ ̂ , which implies that ^fκ X_^ά

as desired. The fact that the set {a3} determines T unitarily is then
an immediate consequence of our representation.

THEOREM 2. Let a finite set of n operators {W3) be defined on
the Hilbert space ^f such that

( i ) (H%i (Wj + Wf))^f has dimension one and is spanned by
the element e of norm one;

(ii) all Wj commute with all Wk and W* for all k Φ j ;
(iii) Sίf is generated by the set {Wj} and e;
(iv) the spectrum of every Wj is zero.

Then the set {Wj} on Sίf is isomorphic with the set {(XjVj} on Jέf2(In)
where the nonzero real numbers 0LJ are related to {Wj} by

(1) (W,'+ W?)e = a, e.

Two sets of operators {Wj} as above are unitarily equivalent if and
only if they have the same a's as defined above in (1).

Proof. The proof is based on the following formulas:
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where the ^'s are arbitrary nonzero complex numbers and we write
W — z instead of W — zl with the identity operator I; where Z3 is
either Wj or Wf; and where the left side of (2) is the joint charac-
teristic function of the sets {Wj} (see [3]). These formulas and the
isomorphism of the sets {Wj} and {oίjVj} will be proved by induction
on n. The case n — 1 is again, as in Theorem 1, the characterization
of aV and may be found in [3].

We begin by justifying (1). Define the commuting set of nonzero
Hermitian operators {E3} by Ed = W3- + Wf and set E = Π?=i Ej9

Assumption (i) implies that for all x e ^f we have

( 4) Ex — a(x, e)e

for some real nonzero a. This implies that Eάe — {Eάe, e) = a3-e and so

( 5 ) Eh . Ejse = ah a3e

so that a — Πj=i OLJ and the a3 are not zero.
In order to simplify the exposition, we replace the W/s by aj1Wj

and then establish the theorem and the relevant formulas (l)-(3) for
the special case where all the α's are 1. The results for the original
W/s are then obtained by replacing the z's by the corresponding a~Vs.

The induction hypothesis uses the conclusions of the theorem and
the formulas (l)-(3) for all j < n. We first establish (2), then (3), then
the isomorphism of the sets {W3} and {V3), and then (2').

We apply the identity

(6) = -(W-zJ-1 - (W* -z2y
ι

+ (TF* - z2y\W+ W

to the left side L of (3) and obtain
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where A3 = (W3 — z^)"1 and B3 — (Wf — zj2)~\ In the expansion of R
r we separate out the last factor so that

(-Ay - By + Byί?yAy)](-An - B n + B nEnAn)e, eR =

and we write R — 2, X + Y where the terms designated by X are of
the form

X = ( - 1 ) — ( ( Π C^jAJF, •••FtD1 Dte, e)

+ (-1)"-«((Π C^jBJF, Fβ, - - • Dte, β

+ ( - l ) - ' ^ Π CήBΛ • F.EJD, - DtA.e, e

where: C3 is either A3 or B3; Fk — Ej{k) and Dk = C3{k) for j(/c) a
suitable permutation of a subset T of {1, , n — 1} containing t g n — 2
elements (or the .F's and JD'S are absent and we set t — 0); and where

Y - ( [ Π (BySyAy)](-AΛ - B n + BnEnAn)e, e

Now (4) and (5) imply that

( 7 ) 2^ FtD, ..-Dte^ED,--. Dte = (A A*, Φ

and similarly

{ 8 ) Fx F , ^ A AA»β = (A DtAne, e)e .

We now wish to use our induction hypothesis in order to calculate the
right sides of (7) and (8). Relabel the indices so that T = {1, , t] with
t 5£ n — 1 for our present purpose and set 3(?t — En - - - Et+1έ%f. As-
sumption (ii) implies that Sίft is invariant under W3 and W* for all
j e T and clearly e e Sίft. In Jgf we consider the closed linear subspace
JίΓ generated by {W3}jeτ and e. Clearly 3%~ is invariant under {Wy}yer.
We wish to show that this set of operators restricted to J%Γ satisfies
the hypotheses of our theorem; it clearly suffices to establish (ii): to
that end we show that 3ίΓ is invariant with respect to all Wf, je T.
We observe that JΓ"', the orthogonal complement of 3Γ in ££fu is
invariant under all E3: take x' e 3T', then (x\ Wp Wt

p*e) = 0 for
all nonnegative integral exponents p and (Eάx

r, Wΐ1 W?*e) —
(x\ Wr1 W! W?*EdW?*e) = (x\ W?i TΓ? • W?ή(Wpe, e) = 0
since E3Wpe — EWpe — {Wpe, e)e by (4) and (5); we have used the
convention W° = /, the identity operator. Thus 3F' and hence J%Γ is
invariant under E3 and hence 3ίΓ is invariant under Wf: take xe
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then Wfx = (E, — W3)x e ST. Thus all our formulas are applicable and
we have in particular for the right side of (7)

t

(A Dte, e) = Π (1 - exp (wj1)) = P
3=1

where w3- is zJ1 or zj2 depending on whether the corresponding D3 is an
Aj or a 5 3 ; note that we have made use of (2'). In order to calculate
the right side of (8) note that since t ^ n ~ 2, our induction hypothesis
is applicable and we obtain

(A . . . DtAne, e) = (1 - exp

Hence (7) and (8) imply that

If in (6) we set — z2 = zx = z31 and W = W3 , we obtain (W3 — s^)"1 =
(W; + zj^-1Eά{Wά - Zj,)-1 ~ (Wf + ZjJ-1 so that after a little calcula-
tion and using EjAj-e — (A3-e, e)e — (1 — exp (zjι))e we have

(A A - A A - H Dnef e)
- -exp (z tm .. D^ί TF; + z ^ A + i Dne9 e) .

In a similar way, if we set in (6) — z2 = z1 — zj2 and TF = Wf, we ob-
tain

(D1D,_1BjDd+1Bne,e) _

= -exp fe2-
χ)(A A-i( ^ + ^ A +i Dne9 e)

so that if we set — zn2 = «wl, then X is seen to be identically 0. We
now turn to Y. A little calculation shows that

Γ = - ( Λ Λ - A β)[(A . Bn^Anef β) + (A B.β, β)] + ab

where a — (Aλ AΛβ, e) and b — (B1 U%e, β). We now use (9), set
—zn2 — znl, and use our induction hypothesis to conclude that

Y = t>[a - Π (1 - exp (zjl))a - exp (si1))] .

Since now L = i2 = 2 X + y , the substitution — z%2 = znl implies that
L and R are identically zero; X is also identically zero and therefore
Y must be identically zero and therefore Y must be identically zero.
Since, however, b is not identically zero, we can conclude that
a — Π*=i (1 — exp (zjl)) must be identically zero. Thus (2) is established.

To prove (3), we turn once again to L — R — J^X + Y; (9') shows
that in the expansion of R we can successively replace B's by A's
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(and exponentials), so that finally L can be expressed entirely in terms
of exponentials and terms like the right side Rr of (2). Now the
set {Vj} on J^(In) satisfies the hypotheses of our theorem (all the a's
still being 1); therefore (2) is true if we replace {W3} by {Vj}. The
left side of (3) equals J^X + Y; these terms can be expressed entirely
in terms of A's and other exponentials. The way these A's and other
exponentials occur is based only on the hypotheses (i)-(iii) of the theorem
which are satisfied by {W3} as well as {V3}. Hence, since the A's are
the same for these two sets, i.e., since (2) with all the a's equal to 1
is true for both sets, the left side of (3) (with the a's equal to 1) is
also the same for both sets. Thus if we calculate L for {Vj}, we
must get same thing as if we do it for {W3}; the former calculation
is elementary and yields the desired right side of (3) which is thus
established for {W3}.

In order to prove the isomorphism of the sets {W3} and {Vj} we
observe that (3) is valid and equal for both sets. Thus the infinite
power series expansion deduced from (3) implies that for all nonnegative
exponents, we have

e, Wl™ W^e) = (Vff11

Since e and {W3} generate έ%f and the function identically equal to 1
and the set {Vj} generate JZl(In), we can apply Livsic's Lemma and
conclude the desired isomorphism.

The last step is to check (2'). In view of the isomorphism of {W3)
and {Vj}, it suffices to verify it for this latter set. If u is the function
identically equal to 1, it is easy to verify by induction that

k k

Π (V — 9 \~hi — ( — Λ\k TT 9-1 fyΎ-n (9~W ^\ V j "j) WJ — ^ S.) _LX άj c A p \6j <hj)

We now rewrite the left side of (2') and obtain after eventual relabelling
of indices and still keeping the a's equal to 1 the expression
(Πi=i (Vj — Zj)"1™, ΐ["=k+i(Vj — Zj)-^). A simple calculation then shows
that this equals the right side of (2'); in view of the preceding para-
graph u and e are identified.

Just as was the case in Theorem 1, the fact that the set {a3}
determines {W3) unitarily is an immediate consequence of our represen-
tation. This completes the proof of the theorem.
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