
PACIFIC JOURNAL OF MATHEMATICS
Vol. 18, No. 3, 1966

ON SETS REPRESENTED BY THE SAME FORMULA
IN DISTINCT CONSISTENT AXIOMATIZABLE

ROSSER THEORIES

ROBERT A. DIPAOLA

In this note a theorem is proved which includes the fol-
lowing: if T is a consistent, axiomatizable Rosser theory in
which all recursive functions of one argument are definable
and S is any sentence undecidable in T, then given any pair
(cίi, d2) of re (recursively enumerable) degrees, there is a formula
F which represents a set of degree dι in T and of degree d2

in Tf = T(S), the theory obtained from T by adjoining S
as a new axiom.

For the theory of recursive functions, we follow [1], If T is
a theory and S a sentence undecidable in T, we write T(S) for the
theory obtained by adding S to T as a new axiom.

THEOREM. If T is a consistent, axiomatizable theory in which
all recursive functions of one argument are definable, and in which
some El (effectively inseparable) pair of re sets is separable, and S
is any sentence undecidable in T, then if (A, B) is any pair of re
sets with Aa Rd B, where R is recursive, there is a formula which
represents A in T and B in T(S).

Proof. The quite simple proof proceeds by way of two lemmas.

LEMMA 1. If T and S are as in the theorem, A is an re set
and R is a recursive subset of A, there is a formula which repre-
sents R in T and A in T(S).

Proof. We take formulas F(x) and G(x) such that F(x) repre-
sents A in T(S) and G defines R in T and hence in T(S). The
formula H{x) = (F(x) A S) V G(x) represents R in T and A in T(S).

LEMMA 2. If T and S are as above and A is any re set, there
is a formula which represents A in T and the set I of nonnegative
integers in T(S).

Proof. Consider an re El pair (Uu U2) and a formula F(x) which
separates (Uu U2) in T. The formula F(x) V S represents I in T(S);
it represents in T a superset of U1 disjoint from Uz, and consequently
represents a creative set C in T. Using a well-known theorem of Myhill,
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we take a recursive function / such that A — f"\G). Using an argument
similar to that of Lemma 1 of [2], we can find a formula G(X) which
represents A = f~\C) in T and I = f~\I) in T(S). The lemma is proved.

To complete the proof of the theorem, we take F(x) representing
A in T and the set I in T(S), by Lemma 2, and G(x) representing R in
T and B in T(S). The formula fl"(a?) = F(x) A G(x) represents A in T
and 5 in T(S).

If (di, c£2) is any pair of re degrees, we can find re sets A and J3,
with Aa RaB, where R is recursive, such that A is of degree dλ

and J3 of degree d2. We consequently have:

COROLLARY. // T and S are as in the theorem and (du d2) is
any pair of re degrees, there is a formula F which represents a
set of degree dx in T and of degree d2 in T(S).

Thus, with regard to the consequences of adding sentences S un-
decidable in a theory T as new axioms, we see that one undecidable
sentence is as good as another insofar as representation of sets of dis-
tinct degree of unsolvability by the same formula is concerned.
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