OPERATORS WITH FINITE ASCENT AND DESCENT

S. R. CARADUS

Let X be a Banach space and T a closed linear operator with range and domain in X. Let $\alpha(T)$ and $\delta(T)$ denote, respectively, the lengths of the chains of null spaces $N(T^K)$ and ranges $R(T^K)$ of the iterates of T. The Riesz region \Re_T of an operator T is defined as the set of λ such that $\alpha(T-\lambda)$ and $\delta(T-\lambda)$ are finite. The Fredholm region \Re_T is defined as the set of λ such that $n(T-\lambda)$ and $d(T-\lambda)$ are finite, n(T) denoting the dimension of N(T) and d(T) the codimension of R(T). It is shown that $\Re_T \cap \Im_T$ is an open set on the components of which $\alpha(T-\lambda)$ and $\delta(T-\lambda)$ are equal, when T is densely defined, with common value constant except at isolated points. Moreover, under certain other conditions, \Re_T is shown to be open. Finally, some information about the nature of these conditions is obtained.

Let X denote an arbitrary Banach space and suppose that T is a linear operator with domain D(T) and range R(T) in X. We shall write N(T) for the nullspace, $N(T) = \{x \in D(T): Tx = 0\}$.

Let $D(T^n)=\{x\colon x,\ Tx,\ \cdots,\ T^{n-1}x\in D(T)\}$ and define T^n on this domain by the equation $T^nx=T(T^{n-1}x)$ where n is any positive integer and $T^\circ=I$. It is a simple matter to verify that $\{N(T^k)\}$ forms an ascending sequence of subspaces. Suppose that for some $k,\ N(T^k)=N(T^{k+1});$ we shall then write $\alpha(T)$ for the smallest value of k for which this is true, and call the integer $\alpha(T)$, the ascent of T. If no such integer exists, we shall say that T has infinite ascent. In a similar way, $\{R(T^k)\}$ forms a descending sequence; the smallest integer for which $R(T^k)=R(T^{k+1})$ is called the descent of T and is denoted by $\delta(T)$. If no such integer exists, we shall say that T has infinite descent.

The quantities $\alpha(T)$ and $\delta(T)$ were first discussed by F. Riesz [4] in his original investigation of compact linear operators. A comprehensive treatment of the properties of $\alpha(T)$ and $\delta(T)$ can be found in [6] pp. 271–284. The purpose of the present work is the consideration of the functions $\alpha(\lambda I - T)$ and $\delta(\lambda I - T)$ for complex λ . When no confusion can arise, we shall write these quantities as $\alpha(\lambda)$ and $\delta(\lambda)$ respectively.

DEFINITION. Let \Re_T denote the set $\{\lambda: \alpha(\lambda) \text{ and } \delta(\lambda) \text{ are finite}\}$. We shall refer to \Re_T as the *Riesz region* of T.

If we write $n(\lambda)$ for the dimension of $N(\lambda I - T)$, i.e., the nullity of $\lambda I - T$ and $d(\lambda)$ for the codimension of $R(\lambda I - T)$, i.e.,

the defect of $\lambda I - T$, then it is customary to refer to the set $\{\lambda: n(\lambda)\}$ and $d(\lambda)$ are finite as the Fredholm region of T. We shall denote this region by \mathfrak{F}_r . It should be observed that the above is a departure from traditional notation where α and β are used for nullity and defect, respectively.

- 2. Remarks. From this point onwards, we shall assume that all operators are closed, with range and domain in X unless otherwise stated.
- 1. It is well known that \mathfrak{F}_T is an open set and that $n(\lambda) d(\lambda)$ is constant on each component of \mathfrak{F}_T . These facts and a great many others are proven in papers by Gohberg and Krein [2] and by T. Kato [3]. We shall show below that $\mathfrak{F}_T \cap \mathfrak{R}_T$ is always open and that \mathfrak{R}_T is open when certain other conditions are fulfilled. However the quantity $\delta(\lambda) \alpha(\lambda)$ need not be constant on the components of \mathfrak{R}_T ; for consider operator T where $D(T) \neq X$; $D(T) \neq \{0\}$ and Tx = x for $x \in D(T)$. Then \mathfrak{R}_T is the entire complex plane C but $\delta(\lambda) = 1$, $\alpha(\lambda) = 0$, when $\lambda \neq 1$; $\delta(1) = \alpha(1) = 1$. However, if D(T) = X, then $\alpha(\lambda) = \delta(\lambda)$ on \mathfrak{R}_T even in the absence of any topology in X. Proof of this fact can be found in [6] Theorem 5.41-E. Another notable difference between \mathfrak{R}_T and \mathfrak{F}_T is seen from the theorem proven in [2]: if B(X) denotes the space of bounded linear operators defined on X and $\mathfrak{F}_T = C$, then X is finite dimensional. It is clear that no such restriction applies to \mathfrak{R}_T ; indeed $\mathfrak{R}_I = C$.
- 2. If we adopt the usual notation of $\rho(T)$, $P\sigma(T)$, $C\sigma(T)$ and $R\sigma(T)$ for the resolvent set, point spectrum, continuous spectrum and residual spectrum respectively as given in [6], then it is known that for $T \in B(X)$, $\delta(\lambda) = \infty$ if $\lambda \in C\sigma(T) \cup R\sigma(T)$. This is proven in [1]. Hence \Re_T consists of $\rho(T)$ and possibly some elements of the point spectrum.

3. Some preliminary lemmas.

LEMMA 1. For any non negative integer k

- (i) $n(T^k) \leq \alpha(T)n(T)$
- (ii) $d(T^k) \leq \delta(T)d(T)$.
- *Proof.* (i) We firstly observe that $\alpha(T)=0$ if and only if n(T)=0. Hence the product $\alpha(T)n(T)$ is well defined. We need only consider the case where both $\alpha(T)$ and n(T) are finite. Let $\alpha(T)=p$. Then $n(T^k) \leq n(T^p)$ for any k and if we show $n(T^k) \leq kn(T)$ for every nonnegative integer k, the result will follow. We proceed by induc-

tion; clearly for k = 1, $n(T^k) \le kn(T)$. Suppose we have shown its validity for $1 \le k \le s$. Then we can complete the proof by showing

$$n(T^{s+1}) - n(T^s) \le n(T).$$

Let $N(T^{s+1})=N(T^s) \oplus Y$. Choose x_1,x_2,\cdots,x_r linearly independent in Y. Then these elements lie in $N(T^{s+1})$ so that $T^sx_i(i=1,2,\cdots,r)$ lie in N(T). But $\sum_{i=1}^r c_i T^s x_i = 0$ implies $T^s \sum_{i=1}^r (c_i x_i) = 0$ which would mean that $\sum_{i=1}^r c_i x_i \in N(T^s) \cap Y$. Therefore all c_i must be zero. Hence the elements $\{T^s x_i : i=1,2,\cdots,r\}$ are linearly independent in N(T). This implies the validity of (1) and completes the proof.

(ii) Again, since $\delta(T)$ is zero if and only if d(T) is zero, the product $\delta(T)d(T)$ is well defined and we need only consider the case when $\delta(T)$ and d(T) are finite. Again it suffices to prove that for each positive integer k,

$$d(T^k) \le kd(T) .$$

Clearly (2) is valid for k=1; suppose we have shown its validity for $1 \le k \le s$. Let $R(T^{s+1}) \oplus Y = R(T^s)$ and take y_1, y_2, \dots, y_r linearly independent in Y. Then these element belong to $R(T^s)$ so that there exist x_1, x_2, \dots, x_r in $D(T^s)$ such that $y_i = T^s x_i$, $i = 1, 2, \dots, r$.

Suppose now we write $X=R(T) \oplus Z$ so that we can write $x_i=Tx_i'+z_i$ for some $x_i' \in D(T)$ and $z_i \in Z$, $i=1,2,\cdots,r$. Then $\{z_i\}$ is a linearly independent set; for if $\sum_{i=1}^r c_i z_i = 0$ then $\sum_{i=1}^r c_i T^s z_i = 0$ so that $\sum_{i=1}^r c_i T^s x_1 = \sum_{i=1}^r c_i T^{s+1} x_i'$ i.e.,

$$\sum_{i=1}^{r} c_i y_i = \sum_{i=1}^{r} c_i T^{s+1} x_i'$$
 .

But the left side of (3) lies in Y, the right side in $R(T^{s+1})$. Hence $\sum_{i=1}^{r} c_i y_i = 0$. Hence each c_i is zero. This means that dim $Y \leq \dim Z$ so that

$$d(T^{s+1})-d(T^s) \leqq d(T)$$

and hence (2) is valid for k = s + 1. This completes the proof of (ii).

LEMMA 2. If $\lambda \in \Re_{\tau} \cap \Im_{\tau}$ and T is densely defined, then $n(\lambda) = d(\lambda)$ and $\alpha(\lambda) = \delta(\lambda)$.

Proof. Without loss of generality, assume $\lambda = 0$. Then, writing $\kappa(A) = d(A) - n(A)$ for any operator A, we can use Theorem 2.1 of

[2] to write

$$\kappa(AB) = \kappa(A) + \kappa(B)$$

where A, B are operators in X with finite nullities and defects. As remarked at the end of the proof of the theorem cited, (4) is valid in all cases where A, B act from one Banach space to another, the product AB has a sense, and A is densely defined. Moreover AB has finite nullity and defect. In our case, we can write

(5)
$$\kappa(T^p) = p\kappa(T)$$

by induction from (4), for any positive integer p. Hence setting p = k, k + 1 and subtracting we get

$$[n(T^{k+1}) - n(T^k)] - [d(T^{k+1}) - d(T^k)] = n(T) - d(T).$$

On account of Lemma 1, all quantities involved are finite. Choose k greater than $\alpha(T)$ and $\delta(T)$; then left side of (6) reduces to zero and hence n(T) = d(T). Finally, we can write

(7)
$$n(T^{k+1}) - n(T^k) = d(T^{k+1}) - d(T^k)$$

which makes it clear that $\alpha(T) = \delta(T)$.

4. Definitions. Suppose that the norm in X is denoted by $||\cdot||$ and that we introduce a new norm into D(T) by setting |x| = ||x|| + ||Tx||. Then, as first shown in [5], D(T) is closed with respect to $|\cdot|$ and can therefore be regarded as a Banach space. T is then a closed operator defined on all of a Banach space so that, by the closed graph theorem, T is bounded i.e., there exists k such that $||Tx|| \le k |x|$ for each $x \in D(T)$. We shall write |T| to denote the infimum of such k. If S is another closed operator with $D(S) \supseteq D(T)$, then the restriction of S to D(T) can also be regarded as a bounded operator with bound denoted by |S|.

Following [3], we define a quantity $\gamma(T)$ as the supremum of all λ which satisfy $\lambda d(x, N(T)) \leq ||Tx||$ for all $x \in D(T)$.

5. Consideration of $\Re_T \cap \Im_T$. Let λ_0 be a point in $\Re_T \cap \Im_T$; without loss of generality, we may assume $\lambda_0 = 0$. We define the following positive number:

$$R_p = egin{cases} \gamma(T) & ext{if} \;\; p=1 \ 2 \left| \sin rac{\Pi}{p} \,
ight| \gamma(T) & ext{if} \;\; p>1 \;. \end{cases}$$

For each p, we know from [3], Lemma 341, that T^p is a closed

operator so that we can make $D(T^p)$ into a Banach space X_p by introducing the norm $|x|_{(p)} = ||x|| + ||T^px||$. Then for $i = 0, 1, \dots, p$, we can consider the restrictions of T^i to X_p . Such restrictions being obviously closed operators, it follows from the closed graph theorem that they are bounded as operators from X_p to X. Write $|T^i|_{(p)}$ to denote the respective bounds of these operators.

Define

$$r_p = \left[1 + rac{\gamma(T^p)}{\left[1 + \gamma(T^p)
ight] \max\limits_{0 \leq i \leq p-1} |T^i|_{(p)}}
ight]^{1/p} - 1$$
 .

Finally, if $\alpha_0=lpha(T)$, $n_0=n(T)$, $\delta_0=\delta(T)$ write

$$arGamma = \min_{1 \leq p \leq lpha_0 n_0 + \delta_0 + 1} \min \left(r_p, R_p
ight)$$
 .

THEOREM 1. $\Re_{\tau} \cap \Im_{\tau}$ is an open set; indeed, if we take $\lambda = 0$ as a point of $\Re_{\tau} \cap \Im_{\tau}$, then the interior of the circle $|\lambda| = \Gamma$ lies in $\Re_{\tau} \cap \Im_{\tau}$.

Proof. By [3] Theorem 1, inside the circle $|\lambda| = \gamma(T)$, $T - \lambda$ is a closed linear operator, $n(T - \lambda) \leq n(T)$ and $R(T - \lambda)$ is closed. Moreover, we claim that inside the circle $|\lambda| = R_p$, $(T - \lambda)^p - T^p$ is a closed operator.

(8) For
$$(T-\lambda)^p - T^p = \prod_{K=0}^{p-1} \left[T - \lambda - \left(\exp \frac{2\pi Ki}{p} \right) T \right]$$

if p>1, and if we write $T_{\kappa}=T\Big(1-\exp\frac{2\pi Ki}{p}\Big)$, the T_{κ} is a closed operator with finite nullity. Also

$$egin{aligned} \gamma(T_{\scriptscriptstyle K}) &= \inf_{x
otin N(T_{\scriptscriptstyle K})} rac{\mid\mid T_{\scriptscriptstyle K} x \mid\mid}{d(x,\,N(T_{\scriptscriptstyle K}))} = \left|
ight. 1 - \exp rac{2\pi K i}{p} \left| \inf_{x
otin N(T)} rac{\mid\mid T x \mid\mid}{d(x,\,N(T))}
ight. \ & \ge 2 \left| \sin rac{\pi}{p}
ight| \gamma(T) = R_p \; . \end{aligned}$$

Hence, if $|\lambda| < R_p$, then each factor in (8) is a closed linear operator with finite nullity so that by [3] Lemma 341, $(T-\lambda)^p - T^p$ is closed in this circle. Since the domain of this operator is $D(T^p)$, we can write

$$egin{aligned} \mid (T-\lambda)^p - T^p \mid_{(p)} & \leq \sum\limits_{i=0}^{p-1} \left(egin{aligned} p \ i \end{aligned}
ight) \mid T^i \mid_{(p)} \mid \lambda \mid^{p-i} \ & \leq \left[(1+\mid \lambda \mid)^p - 1
ight] \max_{0 \leq i \leq p-1} \mid T^i \mid_{(p)}. \end{aligned}$$

If $|\lambda| < r_p$, this shows that $|(T-\lambda)^p - T^p|_{(p)} \le \frac{\gamma(T^p)}{1+\gamma(T^p)}$.

By [3], Theorem 1a, if $|\lambda| < \min(r_p, R_p)$, then

(9)
$$n[(T-\lambda)^{p}] \leq n(T^{p})$$

$$d[(T-\lambda)^{p}] \leq d(T^{p})$$

$$\kappa[(T-\lambda)^{p}] = \kappa(T^{p})$$

for p > 1.

Observe that (9) also holds for p = 1; for we can apply [3] Theorem 1 directly to T and $-\lambda I$.

Now, if $|\lambda| < \Gamma$,

$$n[(T-\lambda)^p \leqq n(T^p) \qquad 1 \leqq p \leqq lpha_{\scriptscriptstyle 0} n_{\scriptscriptstyle 0} + 1 \ \leqq lpha_{\scriptscriptstyle 0} n_{\scriptscriptstyle 0} \qquad ext{ by Lemma 1 .}$$

Hence $n[(T-\lambda)^p]$ cannot be strictly increasing for $1 \le p \le \alpha_0 n_0 + 1$; thus $\alpha(\lambda) \le \alpha_0 n_0$.

Finally, from (9), we can write

$$\begin{split} n[(T-\lambda)^{\kappa}] - d[(T-\lambda)^{\kappa}] &= n(T^{\kappa}) - d(T)^{\kappa} \\ n[(T-\lambda)^{\kappa+1}] - d[(T-\lambda)^{\kappa+1}] &= n(T^{\kappa+1}) - d(T^{\kappa+1}) \end{split}$$

with $K = \alpha_0 n_0 + \delta_0$. Now $\alpha_0 n_0 + \delta_0$ exceeds both α_0 and δ_0 and since all quantities involved in the above equalities are finite by Lemma 1, we get

$$d[(T-\lambda)^{\mathbf{k}+\mathbf{1}}] = d[(T-\lambda)^{\mathbf{k}}]$$

i. e., $\delta(\lambda) \leq \alpha_0 n_0 + \delta_0$ in the circle $|\lambda| < \Gamma$.

LEMMA 3. (This is essentially [2], Lemma 3.1 in a slightly more general setting.)

Let T be an operator with $0 \in \mathfrak{F}_r$ and let S be an operator with $D(S) \supseteq D(T)$. Then if |S| is defined by the norm ||x|| + ||Tx|| on D(T), there exists $\varepsilon > 0$ such that n(T+S) is constant for $0 < |S| < \varepsilon$.

Proof. The original formulation of this Lemma considers A, B operators with domains in Banach space B_1 and ranges in Banach space B_2 ; $0 \in \mathfrak{F}_A$ and B is a bounded linear operator. The conclusion is that there exists $\varepsilon > 0$ such that $n(A - \lambda B)$ is constant for $0 < |\lambda| < \varepsilon$.

In our case, take B_1 to be D(T) with the norm |x| = ||x|| + ||Tx|| and $B_2 = X$, A = T. If S is the restriction of S to B_1 , so that S is a bounded operator, take B = -S/|S|. Then we can conclude that

there exists $\varepsilon > 0$ such that $n(T + \lambda S/|S|)$ is constant for $0 < |\lambda| < \varepsilon$. In particular, if $0 < |S| < \varepsilon$, then n(T + S) is constant.

THEOREM 2. Let Ω be a component of $\Re_{\tau} \cap \Im_{\tau}$ where T is densely defined. Then $\alpha(\lambda)$ and $\delta(\lambda)$ will be equal on Ω (by Lemma 2) and the common value is constant except at isolated points.

Proof. Let K be a positive integer. Then by Lemma 1, $n[(T-\lambda)^{\kappa}]$ is finite in Ω . Let $n_{\kappa}=\min_{\Omega}n[(T-\lambda)^{\kappa}]$ and suppose $n[(T-\lambda_0)^K]=n_K$ and $n[(T-\lambda_1)^K]>n_K$. Join λ_1 to λ_0 by a curve Γ_{κ} lying in Ω . We now apply Lemma 3 to the operators $A=(T-\lambda)^{\kappa}$ $B = (T - \mu - \lambda)^{\kappa} - (T - \lambda)^{\kappa}$ for any point λ on Γ_{κ} . Then $n[(T - \mu - \lambda)^{\kappa}]$ is constant for $0 < |B| < \varepsilon$ and since |B| is a continuous function of μ , we get a deleted neighbourhood of λ in which $n[(T-\mu)^{\kappa}]$ is con-The compactness of Γ_{κ} enables us to deduce in the usual way that there exists an open set U_{κ} containing Γ_{κ} such that $n[(T-\lambda)^{\kappa}]$ is constant for $\lambda \in U_K$ except at a finite number of points. In particular, relations (9) imply that in some neighbourhood of λ_0 , $n[(T-\lambda)^K]$ takes a constant value n_{K} . Hence in U_{K} , $n[(T-\lambda)^{K}] = n_{K}$ except at a finite number of points. In particular, in some deleted neighbourhood of λ_1 , $n[(T-\lambda)^K] = n_K$. Thus on Ω , $n[(T-\lambda)^K] = n_K$ except at isolated points. Let the set of exceptional points be denoted Ω_{κ} . Choose λ^* with the property that $\lambda^* \notin \Omega_K$ for all K. This can be done simply by taking any line segment l in Ω and choosing λ^* to be any points of $l-igcup_1^\infty arOmega_{\scriptscriptstyle K}$. Let $lpha(\lambda^*)=lpha^*$ and $\delta(\lambda^*)=\delta^*$. By Lemma 2, $lpha^*=\delta^*$. Consider $\lambda \in \Omega - \bigcup_{1}^{1+\alpha^*} \Omega_{\kappa}$. Then $n[(T-\lambda)^{\kappa}] = n[(T-\lambda^*)^{\kappa}]$ for each $k, 1 \leq k \leq 1 + \alpha^*$. Hence $\alpha(\lambda) = \alpha^*$ and by Lemma 2, $\delta(\lambda) = \delta^*$ for $\lambda \in \Omega - \bigcup_{1}^{1+\alpha} \Omega_{K}$.

COROLLARY. If $\Omega \cap \rho(T) \neq \emptyset$, then $\Omega \cap \sigma(T)$ consists of poles of the resolvent $R_{\lambda}(T)$.

Proof. Since $\rho(T)$ is an open set in which $\alpha(\lambda) = \delta(\lambda) = 0$, $\alpha(\lambda)$ and $\delta(\lambda)$ must be zero on Ω except at isolated points. It is known that such a point λ_0 is a pole of $R_{\lambda}(T)$ if $R[(T-\lambda_0)^{\alpha(\lambda_0)}]$ is closed. But $(T-\lambda_0)^{\alpha(\lambda_0)}$ has finite codimension by Lemma 1 and hence, by [3] Lemma 332, closed range.

6. Consideration of \Re_{r} .

Theorem 3. Let T be a closed linear operator such that $\alpha(T)=p<\infty$. Suppose that there exists $\varepsilon>0$ such that if $|\lambda|<\varepsilon$, then it is possible to write

(10)
$$X = N[(T - \lambda)^p] \oplus S(\lambda)$$

in such a manner that

(11)
$$S(\lambda) \cap D(T^{p+1}) = S(0) \cap D(T^{p+1})$$
.

Then if $R(T^{p+1})$ is closed, there exists $\rho > 0$ such that $\alpha(\lambda) \leq \alpha(T)$ for $|\lambda| < \rho$.

Proof. Write S(0) = S and define $D = S \cap D(T^{p+1})$. Let T_p be the restriction of T^{p+1} to D. We first show that

$$N(T^{p+1})=N(T^p) \oplus N(T_p)$$
 .

Suppose $x \in N(T^p) \cap N(T_p)$; then

$$x \in N(T^p) \cap D(T_p) = N(T^p) \cap S \cap D(T^{p+1}) = \{0\}$$

by (10). Hence $N(T^p) \oplus N(T_p)$ is well defined. Now let $x \in N(T^{p+1})$. By (10), we can write $x = x_1 + x_2$ with $x_1 \in N(T^p)$ and $x_2 \in S$. Now $x_2 = x - x_1 \in N(T^{p+1}) \cap S \subseteq D$, and $T_p x_2 = T^{p+1} x_2 = 0$. Hence $N(T^{p+1}) = N(T^p) \oplus N(T_p)$.

We next verify that $R(T_p)=R(T^{p+1})$. It is obvious that $R(T_p) \subseteq R(T^{p+1})$. Suppose then that $x \in R(T^{p+1})$; then $x=T^{p+1}y$ for some $y \in D(T^{p+1})$. Use (10) again to write $y=y_1+y_2$ with $y_1 \in N(T^p)$, $y_2 \in S$. Then $T^{p+1}y=T^{p+1}y_2$ and since $y_2 \in S \cap D(T^{p+1})$, we have $x=T^{p+1}y_2=T_py_2$. Hence $R(T_p)=R(T^{p+1})$.

If we now repeat the same arguments replacing T by $T-\lambda$ we obtain an operator $T_p(\lambda)$ with domain $S(\lambda) \cap D[(T-\lambda)]$, range equal to $R[(T-\lambda)^{p+1}]$ such that

$$N[(T-\lambda)^{p+1}] = N[(T-\lambda)^p] \bigoplus N[T_p(\lambda)].$$

Now by assumption, $N(T_p)=\{0\}$ and T_p has closed range. Hence T_p^{-1} can be considered as a bounded linear operator on $R(T_p)$; hence there exists m>0 such that $||T_px||\geq m|x|$ for all $x\in D(T_p)$ where |x| is defined, as in § 4, by $|x|=||x||+||T_px||$. For $|\lambda|<\varepsilon$, $D[T_p(\lambda)]=D(T_p)$ so that $T_p(\lambda)-T_p$ is defined on $D(T_p)$ and has bound $|T_p(\lambda)-T_p|$ where

Let λ be chosen such that $|\lambda| < \varepsilon$ and $(|T|_{(p+1)} + |\lambda|)^{p+1} - |T|_{(p+1)}^{p+1} < m/3$. Then

$$||T_p(\lambda)x|| = ||T_px + [T_p(\lambda) - T_p]x|| \ge ||T_px|| - ||[T_p(\lambda) - T_p]x||$$
 $\ge m |x| - \frac{m}{3} |x| = \frac{2m}{3} |x| \text{ for } x \in D[T_p(\lambda)].$

Hence $N[T_p(\lambda)] = \{0\}$ so that $\alpha(\lambda) \leq \alpha(T)$ if $|\lambda|$ is suitably chosen; in fact, if $|\lambda| < \varepsilon$ and $|\lambda| < [|T|_{(p+1)}^{p+1} + m/3]^{1/(p+1)} - |T|_{(p+1)}$. This concludes the proof.

6.1 We shall assume from now on that T and all its iterates are densely defined. Then T has an adjoint T^* defined in the space X^* of bounded linear functionals on X. We shall write $\langle x, x^* \rangle$ to denote the value of functional x^* at x.

DEFINITION. Operator A is said to be an *extension* of operator B if $D(A) \supseteq D(B)$ and Ax = Bx for $x \in D(B)$. If D(A) can be written as $D(A) = D(B) \oplus Y$ where Y is a subspace of dimension k, then we call A a k-dimensional extension of B and write [A:B] = k.

LEMMA 4. $(T^{\kappa})^*$ is an extension of $(T^*)^{\kappa}$ for any positive integer K.

Proof. The lemma is trivial for K=1; suppose it has been verified for $K \leq p$. Let $x^* \in D[(T^*)^{p+1}]$. Then $x^* \in D[(T^*)^p]$ and $(T^*)^p x^* \in D(T^*)$. Hence for any $x \in D(T^{p+1})$, we can write

$$egin{aligned} \left\langle T^{p+1}x,\,x^* \right
angle &= \left\langle Tx,\,(T^p)^*x^* \right
angle \\ &= \left\langle Tx,\,(T^*)^px^* \right
angle \end{aligned} ext{ by assumption} \\ &= \left\langle x,\,(T^*)^{p+1}x^* \right
angle.$$

Hence $x^* \in D[(T^{p+1})^*]$ and $(T^*)^{p+1}x^* = (T^{p+1})^*$. This completes the proof.

DEFINITION. We shall say that T is of *finite type* if, for each K, $(T^{\kappa})^*$ is a finite dimensional extension of $(T^*)^{\kappa}$. If, in addition, $[(T^{\kappa})^*:(T^*)^{\kappa}]$ is a bounded sequence, we shall say that T is of bounded type.

EXAMPLE. Every $T \in B(X)$ is of bounded type since $(T^{\kappa})^* = (T^*)^{\kappa}$ for all K.

LEMMA 5. Suppose that T is of finite type and that $R(T^{\kappa})$ is closed for each positive integer K. Then

- (a) $\alpha(T^*)$ is finite if $\delta(T)$ is finite
- (b) $\alpha(T)$ is finite if $\delta(T^*)$ is finite.

If, in addition, T is of bounded type, then we also have

- (c) $\delta(T)$ is finite if $\alpha(T^*)$ is finite
- (d) $\delta(T^*)$ is finite if $\alpha(T)$ is finite.

Proof. By [4], Lemma 335, since T is a closed operator with closed range

(12)
$$\begin{array}{c} N(T^*) = R(T)^{\perp} \\ R(T^*) = N(T)^{\perp} \end{array} \}$$

where for any $Y \subseteq X$, $Y^{\perp} = \{x^* \in X^* : \langle y, x^* \rangle = 0 \ \forall y \in Y\}$. For each positive integer K, we can write, by assumption

$$[R(T^{\kappa})]^{\perp} = N[(T^{\kappa})^*] = N[(T^*)^{\kappa}] \oplus Y_{\kappa}$$

where clearly Y_{κ} must be of finite dimension. Now for $K > \delta(T)$, it is clear from (13) that $N[(T^*)^{\kappa}] \oplus Y_{\kappa}$ must be independent of K. But if $\alpha(T^*)$ is infinite, $\{N[T^*)^{\kappa}]\}$ is a strictly increasing sequence of subspaces so that $\{Y_{\kappa}\}$ would need to be strictly decreasing. This is not possible for finite dimensional subspaces. Hence (a) is verified. Conversely, if $\alpha(T^*)$ is finite, then $\delta(T)$ must also be finite when T is of bounded type. For were $\delta(T)$ infinite, $\{[R(T^{\kappa})]^{\perp}\}$ would be strictly increasing and for $K > \alpha(T^*)$, $\{N[(T^*)^{\kappa}]\}$ is independent of K. By (13), this would imply that $\{Y_{\kappa}\}$ is strictly increasing. For T of bounded type, this is not possible. This proves (c).

Next, we write, for each nonnegative integer K,

$$(14) R[(T^{\kappa})^*] = R[(T^*)^{\kappa}] \oplus Z_{\kappa}$$

and again we can deduce from our assumptions that each Z_{κ} is finite dimensional. But, from (12),

(15)
$$R[(T^{\kappa})^*] = [N(T^{\kappa})]^{\perp} \\ \cong [X/N(T^{\kappa})]^* \text{ by [6] p. 227,}$$

where \cong indicates linear homeomorphism.

Now suppose $X = N(T^{\kappa}) \oplus W_{\kappa}$. Then W_{κ} is isomorphic to $X/N(T^{\kappa})$.

Using \equiv to denote isomorphism, we obtain

(16)
$$R[(T^{\kappa})^*] \equiv W_{\kappa}^* \\ \equiv X^*/W_{\kappa}^{\perp} \text{ by [2], p. 188.}$$

Let $\alpha(T)$ be infinite; then $\{W_{\kappa}\}$ is strictly descending; $\{W_{\kappa}^{\perp}\}$ strictly ascending. By (16), $\{R[(T^{\kappa})^*]\}$ is strictly descending. Now, if $\delta(T^*)$

is finite, then by (14), $\{Z_{\kappa}\}$ must be strictly descending. But this is not possible. Hence (b) is proved.

Finally, suppose $\delta(T^*)$ infinite and $\alpha(T)$ is finite. Then $\{W_{\kappa}\}$ is independent of K for $K > \alpha(T)$. From (16) and (14), we deduce that $\{Z_{\kappa}\}$ must be strictly increasing, contrary to assumption. This verifies (d) and completes the proof.

Theorem 4. Suppose T is a closed linear operator such that $\delta(T)=q<\infty$. Let T be of bounded type. Then $\alpha(T^*)<\infty$. Suppose that T^* satisfies the assumptions of Theorem 3 and that there exists $\eta>0$ such that $(T-\lambda)^*$ is of bounded type for $|\lambda|<\eta$. Then there exists $\sigma>0$ such that $\delta(\lambda)$ is finite in the circle $|\lambda|<\sigma$.

Proof. The assertion that $\alpha(T^*)$ is finite follows directly from Lemma 5. Moreover since $R(T^\kappa)$ is closed for $K=1+\alpha(T^*)$, then by [4] Lemma 324, $R[(T^\kappa)^*]$ is closed for $K=1+\alpha(T^*)$. By assumption $(T^\kappa)^*$ is a finite dimensional extension of $(T^*)^\kappa$ so that by [3] Lemma 333, $(T^*)^\kappa$ has closed range. We now apply Theorem 3 to T^* and deduce that $T^*-\lambda$ has finite ascent for $|\lambda|<\rho^*$ for some $\rho^*>0$. Now $(T-\lambda)^*=T^*-\lambda$ so that by Lemma 5, we can conclude that if $\sigma=\min(\rho^*,\eta)$, then $\delta(\lambda)$ is finite in the circle $|\lambda|<\sigma$. This concludes the proof.

In view of the additional hypothesis regarding the nature of $(T-\lambda)^*$, it is of some interest to examine the relationship between extensions and their adjoints. The following lemmas shed some light on the situation.

LEMMA 6. Suppose A_1 is an extension of A_2 and $[A_1:A_2]=k$. Then A_2^* is an extension of A_1^* and if $\overline{D(A_1)}=\overline{D(A_2)}$, then $[A_2^*:A_1^*]=k$.

Proof. It is well known that A_2^* is an extension of A_1^* and this fact is trivial to verify. Let $\overline{D(A_1)} = \overline{D(A_2)} = X_0$ and define a mapping E

$$E: X^* \times X_0^* \longrightarrow (X_0 \times X)^*$$

by means of

$$E(f, g) - (x, y) \rightarrow f(y) g(x)$$
.

If the usual norm topology is introduced into the Cartesian products, then we can show that E established a linear homeomorphism between $X^* \times X_0^*$ and $(X_0 \times X)^*$. It is easy to see that E is a linear map; moreover E is surjective, for if $F \in (X_0 \times X)^*$, we have $g \in X_0^*$ defined by $x \to F(x, 0)$ and $f \in X^*$ defined by $y \to F(0, y)$ so that

$$E(f, g): (x, y) \to f(y) + g(x) = F(x, y)$$
.

E is also injective, for if E(f,g)=0, then f(y)+g(x)=0 for all $x \in X$, $y \in X_0$. This is possible if and only if f=g=0. Finally, we can see that E is continuous; for

$$|E(f,g)(x,y)| \le ||f|| ||y|| + ||g|| ||x|| \le (||f|| + ||g||)(||x|| + ||y||).$$

By the closed graph theorem, E^{-1} is also continuous. Hence we have shown that E is a linear homeomorphism.

We next observe that if we write G(T) to denote the graph of T, then

(17)
$$E\{G(A_i^*)\} = \{G(-A_i)\}^{\perp} \qquad i = 1, 2$$

where $\{G(-A_i)\}^{\perp}$ denotes the elements F in $(X_0 \times X)^*$ such that F(x, y) = 0 for all $(x, y) \in G(-A_i)$.

For, if $x \in D(A_i)$ and $f \in D(A_i^*)$, then

$$E(f, A_i^*f)(x, -A_ix) = A_i^*f(x) - f(A_ix) = 0$$

so that $E\{G(A_i^*)\}\subseteq \{G(-A_i)\}^{\perp}$.

On the other hand, if $E(f,g) \in \{G(-A_i)\}^{\perp}$, then $E(f,g)(x,-A_ix)=0$ for all $x \in D(A_i)$. Then $f(A_ix)=g(x)$ for all $x \in D(A_i)$ so that $f \in D(A_i^*)$ and $g=T^*f$. Hence any E(f,g) in $\{G(-A_i)\}^{\perp}$ is of the form $E(f,T^*f)$. This proves the validity of (17).

Now

(18)
$$E\{G(A_i^*)\} = \{G(-A_i)\}^{\perp} = \{X_0 \times X/G(-A_i)\}^* \text{ by [6] p. 227}$$

$$\equiv \{(X_0 \times X) \ominus G(-A_i)\}^* .$$

Now suppose $(X_0 \times X) \ominus G(-A_i) = X_i$. Then by [6] p. 188,

(19)
$$X_i^* = (X_0 \times X)^* / X_i^{\perp}$$

where $X_i^{\perp} = \{F : F \in (X_0 \times X)^*; \ F(x, y) = 0 \ \text{for all} \ (x, y) \in X_i \}.$

It is easy to verify that $D(A_i)$ is isomorphic to $G(-A_i)$ by means of the natural mapping $x \to (x, -A_i x)$. Hence, $X_2 \ominus X_1$ is a k dimensional subspace and from (19), $X_1^* \ominus X_2^*$ is also k dimensional. Finally from (18), we see that $E(G(A_2^*) \ominus G(A_1^*))$ is k-dimensional from which we easily deduce that

$$[A_2^*:A_1^*]=k$$
.

LEMMA 7. Suppose T is of finite, resp. bounded type and $\overline{D[(T^K)^*]} = \overline{D[(T^*)^K]}$ for each positive integer K. Moreover, let either of the following conditions hold:

- (i) $[(T^K)^{**}:T^K]$ is a sequence of finite terms, resp. bounded sequence
 - (ii) X is reflexive.

Then T^* is of finite, resp. bounded, type.

Proof. To begin with, it is well known that if X is reflexive, then $T^{**} = T$ for any closed linear operator T. Hence condition (ii) implies condition (i). Suppose condition (i) holds. Then we have

$$[(T^{\kappa})^*: (T^*)^{\kappa}] = m_{\kappa} < \infty$$

and

$$[(T^{K})^{**}:T^{K}]=n_{K}<\infty.$$

By Lemma 6, (20) yields

$$[((T^*)^K)^*:(T^K)^{**}]=m_K$$

and this together with (21) gives

$$[((T^*)^K)^*: T^K] = m_K + n_{K\bullet}$$

But applying Lemma 4 to T^* we get

$$((T^*)^{\kappa})^* \supseteq (T^{**})^{\kappa} \supseteq T^{\kappa}$$

and from (22) and (23) we deduce

$$[((T^*)^K)^*:(T^{**})^K] \leq m_K + n_K$$

But this gives exactly the required conclusion.

BIBLIOGRAPHY

- 1. S. R. Caradus, Operators of Riesz type (to be published).
- 2. I. C. Gohberg and M. G. Krein, The basic propositions on defect numbers, root numbers and indices of linear operators, Uspehi Mat. Nauk. (N. S.) 12 (1957) No. 2 (74), 43-118; A. M. S. Trans. Series 2, v. 13.
- 3. T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, Journ. d'Anal. Math. 6 (1958), 261-322.
- 4. F. Riesz, Uber lineare Funktionalgleichungen, Acta Math. 41 (1918), 71-98.
- B. Sz.-Nagy, Perturbations des transformations lineaires fermees, Acta Sci. Math. Szeged 14 (1951), 125-137.
- 6. A. E. Taylor, Introduction to Functional Analysis, John Wiley and Sons, 1958.

Received August 5, 1965.

QUEEN'S UNIVERSITY KINGSTON, ONTARIO, CANADA