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SECOND ORDER DISSIPATIVE OPERATORS

J. D. BROOKS

A theory of dissipative operators has been developed and
successfully applied by R. S. Phillips to the Cauchy problem
for hyperbolic and parabolic systems of linear partial differ-
ential equations with time invariant coefficients. Our purpose
is to show that the Cauchy problem for another system of
equations can be brought within the scope of this theory.
For this system of equations, we shall parallel the early work
of Phillips on dissipative hyperbolic systems. This system of
equations is general enough to include, as special cases, such
equations as the one dimensional Schrδdinger equation and
the fourth order equation describing the damped vibrations
of a rod.

Several of the results necessary to accomplish this task
provide generalizations of the work of A. R. Sims on secondary
conditions for nonself adjoint second order ordinary differential
operators.

The system of linear partial differential equations which we con-
sider is of the following form

(1.1) yt = (Ayx)x + (By). + Cy

where t ^ 0 and x e J = (α, &), an open subinterval (possibly improper)
of the real line. The coefficients are assumed to be time invariant,
that is to say, they depend only on the variable x. Several other
conditions are imposed on the coefficients. Specifically, for each xe J,
A(x) is nonsingular and skew-hermitian, B(x) is hermitian and

(1.2) D(x) ^[Bx + C+ C*](x)

is nonpositive under the inner product (y, z) — Σ yΦ in Em (complex
Euclidean m-space). This last condition is referred to as a dissipative
condition and in associated physical models reflects a supposition of
no energy sources in the interior of the system.

Besides these conditions the elements of A and B are required to
be absolutely continuous on compact subintervals of J, and their
derivatives and the elements of C are required to be square integrable
on such subintervals. Attention is called to the fact that no conditions
are imposed on the coefficients at the ends of the interval J.

Before proceeding it will be convenient to announce some con-
ventions with regard to notation. Let F(x) = I — D(x). The symbol
H1 will be used to denote the Hubert Space L\a} b, F) with weight F.
Since F(x) ^ I we may introduce the Hubert space H2 = L\a, b, F"1).
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Finally, HQ = L\a, δ, / ) . Since F~\x) g I S F(x), it follows that
H.dHodH, and if yeH, and zeH2 then |<>, z}0 | g || y ||x || z ||2.
Frequently it will be necessary to form a vector in E2m from two
vectors in Em. For instance, if y1 and τ/2 are vectors in Em, then
the vector η ~[yXi y2], whose first m components are those of y1 and
whose second m components are those of yz, is a vector in E2m.

Suppose now that y is a sufficiently smooth solution of equation
(1.1) and let L° denote the ordinary differential operator on the right
hand side of equation (1.1). A purely formal integration by parts
leads to the equations

-%r<v, V>o = <L°y, y>0 + <y, L°y>0

(1.3) d t

, η)h + <Dy, y>0

where

lA*(x) θ \

and η = [y, yx]. It will be shown by example later that it is re-
asonable to require that djdtζy, yyo ^ 0 for all t ^ 0. Keeping in
mind the dissipative condition (1.2), the right hand side of the second
equation in (1.3) will be nonpositive provided the solution satisfies
conditions at the boundary of the form

(1.4) - ( % Ύ]Y + ( % Ύ])b g 0 , t ^ 0 .

The principal result of this paper is that corresponding to each member
of a class of boundary conditions which possess property (1.4), an
operator L may be defined which is of the form L° and which is the
infinitesimal generator of a strongly continuous semi-group [S(t); t^O]
of contraction operators; that is, a one parameter family of linear
bounded operators on HQ to itself such that Sfa + t2) = S(ίx)S(ί2),
II S(t) Ho ̂  1 and lim S(t)f = / as £ -> 0 for each / 6 Ho. In addition,
d/dtS(t)f=LS(t)f,feD(L). The initial values are assumed in the
mean of order two and the derivative is taken in the strong sense.
This is the sense in which equation (1.1) is to be satisfied.

Notice that under these circumstances the operator L will satisfy
the condition

(Ly, yy + <!/, Lyy ^ 0

for each yeD(L). Operators satisfying a one-sided condition of this
type are called dissipative and have been treated from an operator-
theoretic point of view by R. S. Phillips [4, 5],
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In the present development, the principal tool employed is the
Hille-Yosida theorem [2, Theorem 12.3.1 and corollary]. Thus, in
Section 2, a fixed λ > 0 is chosen and a number of linear bounded
operators jβ(λ) are constructed. These operators are defined on HQ and
take values in Hu In addition, for each / e HQ, (XI - L°)R(X)f = f.
Selecting a particular i?(λ), the operator L is introduced whose domain
D(L) is the range of R(λ) and whose values are those of L° restricted
to D(L). It is then shown that D(L) is dense in ϋ 0 , the resolvent
i?(λ, L) of L exists at λ, and Jf2(λ, L) = R{X). Moreover, X \\R(x, L) ||0 ̂  1.

The operators R(X) are constructed from solutions of

(1.5) Uy = (Ayx)x + (By). + Cy = Xy

and the formal dual equation

(1.6) M°z = -(AzX - (Bz)β + (Bx + C*)z = λ* .

These solutions depend on λ so that, ostensibly, the D(L) depends on
λ. In Section 3, D(L) is shown to be independent of X and at the
same time its members are characterized entirely by their behavior
at the ends of the interval J. In addition, L is found to satisfy
the requirements of the Hille-Yosida theorem and is therefore an
infinitesimal generator. It is also found that these operators con-
stitute all infinitesimal generators within a certain class.

As previously mentioned, this paper parallels the theory presented
by R. S. Phillips [3] for the hyperbolic case A = θ. By an appro-
priate interpretation, most of the theorems and their proofs in that
case apply directly to the present case. The exceptions are those
results which we have called Theorem 2.1 and Lemma 2.3 [3, Theorem
3.3 and Lemma 4.2]. The proof of Lemma 2.3 requires that the ex-
plicit form of the resolvents be known, and hence, their construction
is given in some, but not complete, detail in Section 2. The principal
content of Section 3 is a statement of the main results of the theory.
The statement of the main results without proofs is possible because
of the aforementioned circumstance.

Two equations occurring in mathematical physics may be con-
sidered as examples. The first example is the one dimensional
Schrδdinger equation

Vt = —V..-ih-1V(x)y
m

which is directly of the form (1.1). The second example, the fourth
order equation describing the motion of a damped rod,

Vu + ym* + kyt = 0 , k ̂  0
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is not directly of the form (1.1). However, setting u1 = yt and
'2 — Vxx, the vector μ = [v,1, u2] satisfies the system

μt = Aμxx + Cμ

were

Ό - 1 1 _ Γ-fc 0

.1 oj ~ [ o o.

For this system we have

<β, μ>o =\(yl + vlx)dχ.
Ja

Notice that this is essentially the total energy of the system. Thus
the dissipative requirement is that the total energy of the system
should be nonincreasing in time.

Finally, it should be noted that, from the point of view of
ordinary differential operators, Theorem 2.1, and to some extent
Theorem 2.2, provide generalizations of the results of A. R. Sims
[6, Theorem 1 and Theorem 6] to systems of equations.

II* Construction of the resolvents* Before constructing the
operators i?(λ) it is necessary to be assured of sufficiently smooth
solutions to equations (1.5) and (1.6). It is necessary to discuss only
equation (1.5) since both equations are of the same form and corre-
sponding coefficients possess the same degree of smoothness.

LEMMA 2.1. Let ceJ and let rf and rf be two vectors in Em.
There exists a unique vector-valued function y satisfying equation
(1.5) almost everywhere on J with y(c) — rf and yx(c) = η2. In addi-
tion, on compact subintervals of J, y and Ayx are absolutely con-
tinuous with square integrable derivatives. If ηk = [η\, η\], k =
1, « ,2m, are linearly independent vectors in E2m, then the solu-
tions yk with yk(c) — η\ and yk

x{c) — η\ span the solution space of
equation (1.5).

The proof of this need not be given in detail. Suffice it to say
that equation (1.5) can be reduced to an equivalent first order system
for the function u = [u\ u2], where u1 = y and u2 = Ayx + By. An
appeal to standard existence theorems [1, p. 97, problem 1], guarantees
the existence and uniqueness of a solution to the reduced system with
the required smoothness. The remaining statements follow from
uniqueness and linearity.
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The following lemma, whose proof may be obtained as a simple
application of Rouche's theorem, will be needed later.

LEMMA 2.2. Let M be a matrix-valued function whose elements
are continuous on J. If M is hermitian and nonsingular at each
point, then the number of positive and negative eigenvalues of M
is the same at each point of the interval.

COROLLARY. If P and Q are matrices of order m such that P
is nonsingular and Q hermitian, then the matrix

Q

* Θ.

has m positive and m negative eigenvalues.

Proof. Consider the one parameter family of matrices obtained
from G by replacing Q by xQ in the definition of G. This matrix-
valued function satisfies the hypothesis of Lemma 2.2. G(O) has m
positive and m negative eigenvalues these being the square roots,
both positive and negative, of the m positive eigenvalues of the
matrix PP*. Thus G(l) ~ G has the same number of positive and
negative eigenvalues as G(0).

Turning now to the construction of the iί(λ), the basic theorem
from which the construction follows is reminiscent, for the system
(1.5) or (1.6), of the familiar Weyl limit point-limit circle classification
for singular self-ad joint second order equations [1, pp. 225-231]. More
closely related is the presentation by A. R. Sims [6, pp. 254-257],
The presentation followed here is to be found in [3, Theorem 3.3].

Let y and z be solutions, in the sense of Lemma 2.1, of equations
(1.5) and (1.6) respectively, for some fixed λ > 0. The identities

(2.1) d/dxφη, η) = 2\(y, y) - (Dy, y)

(2.2) d/dxφζ, ζ) = -2λ(z, z) + (Dz, z)

(2.3) d/dx(Wη, ζ) = 0

where η — [y, yx] and ζ = [z, zx], hold for almost all xeJ.
It follows from these identities that (Sty, η) is an increasing func-

tion, (Slζ, ζ) is a decreasing function and (Sty, ζ) is a constant function
on J. Moreover, if c e J then y e L2(c, 6, F) [z e L\c, δ, F)] if, and
only if, (Sty, η)h < + oo [(Sίζ, ζ)δ > — oo], (REMARK. An expression
such as (Sty, rjY denotes the limit of (Sty, rj) as x tend to u.) The
proof of the last statement follows from the simple inequality
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min (1, 2X)(Fy, y) ^ 2X(y, y) - (Dy, y)

^ max (1, 2k)(Fy, y) .

The dual statement is proved in the same way and a similar pair of
statements hold at x — a.

The following theorem is basic.

THEOREM 2.1. If Fb[Fa] denotes the collection of all solutions of
equation (1.5) such that (Sty, η)h < + co [(Sty, rj)a > — oo] then Fb[Fa]
is a linear subspace of the solution space of equation (1.5) of dimen-
sion lb[la] ^ m. If Cl[Cl] denotes the subset of Fb[Fa] such that
(Sty, η)h 5£ 0 [(Sty, rjγ ^ 0] then Cl[Cι

a~\ contains at least one m-dimen-
sional subspace. The same statements apply to the solution space
of equation (1.6) where Gb[Ga] denotes the set of solutions such that

)»> -oo [(3ίζ,ζ)«< +co]

Proof. By the remarks preceding the statement of the theorem
Fb c L2(c, 6, F). In fact, it is a linear subspace since equation (1.5)
is linear. To complete the proof we need only show that C\ contains
at least one m-dimensional subspace. Let y\i = l, « ,2m, form a
basis for the solution space of equation (1.5) and let rf = [y\ yϊ\. If
y is an arbitrary solution of equation (1.5) and η = [y, yx], then
(§1)7, η)x •=• (Y*SIYα, a)x where Y is the matrix whose ith column is rf
and a e E2m. For some c e J we can suppose that Y(c) = /. Now
Y*%Y is hermitian nonsingular and continuous on J, and by the
corollary to Lemma 2.2 has m positive and m negative eigenvalues at
c, so that by Lemma 2.2 it has m positive and m negative eigenvalues
for each xeJ. Thus, the set

C. - [y; (Sty, rjY g 0]

contains at least one m-dimensional subspace of the solution space.
Since (Sty, rjf is increasing, CsZ)Ct if s ^ t. It follows that C\ is
the intersection of all Cx for x < b and must therefore contain at
least one m-dimensional subspace. The same proof is valid at the
left end of the interval J.

The proof of this theorem for the dual equation is the same.
The dimension of Gb[Ga] will be denoted by mb[ma] and the subset of
solutions of equation (1.6) such that (Slζ, ζ)6 ̂  0 [(Sίζ, ζ)a ^ 0] by
Cl[Cl].

Let S^λ) and £2(λ) denote, respectively, the Cartesian products
of the solution spaces of equation (1.5) and (1.6) with themselves.
Clearly, dim S^(λ) = 4m. Suppose Nab c S^λ) such that dim Nab — 2m
and for each {ya, yb} e Nab
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(2.4)

where, for instance, ηa = [ya, yax]. Theorem 2.1 guarantees the ex-
istence of such subsets. Let Pab c S2(λ) such that whenever {za, zb) e Pab

(2.5) - ( % > , ζβ) + (Sty,, Q δ = 0

for all {ya, yb) e Nab. Pab is called the §ίαδ-orthogonal complement of Nab.
It follows by an argument similar to one employed in [3, Theorem 3.4]
and an appeal to Lemma 2 and its corollary that Pab c G f l x Gb,
dim Pab = 2m and

for all {za,zb}ePab. Moreover, Nab is Stα&-orthogonal to Pab. Dually,
of course, we can start with Pab and obtain an Nab with the appro-
priate properties.

The procedure now is to construct solutions to the equation
(λl — L°)y = / where / e HQ and vanishes outside some compact sub-
interval of J and L° has for its domain those functions which possess
the basic smoothness of the solutions to equation (1.5) guaranteed by
Lemma 2.1. Choose arbitrary bases {yi, y\} and {zi, z\) for Nab and
Pab, respectively, and define the 4m x 4m matrices

(2.7) nχ) = \v\'*'''vljv]'

~n ... r\m — n
(2.8) Z(x) = ' b' 'ς& ' '

α
Reasoning similar to that used in establishing the duality of Nab and
Pab shows that Y(x) and Z(x) are nonsingular for each xeJ. Defining
Q = Z*(x)%(x, x)Y{x) with

-A(x) θ

then Q may be partitioned into four 2m x 2m submatrices Qijf i, j =
1, 2, such that Q<5 = θ i Φ j and Qw, i = 1, 2, are independent of a?.
Letting V(x) = Z(x)[Q*]~\ it is clear that V(x) is nonsingular and of
the same form as Z(x). Now call the solution pairs from which V(x)
is constituted {zi, z\) and use these as a basis for Pab. For this choice
of basis

(2.9) / = V*(x)%,(x, x) Y(x) = 8ί(a?, a?) Γ(a?) Vr*(α?) .

Let
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y1(x) = ieA)/= -Yt(x)\'[Z:(s) + Zb*(s)]f(s)ds
Ja

- Ya(x)\\zΐ(8) + Zb*(s))f(s)ds
(2.10) ^

= ~[Ya(x) + Yb(x)][z:(s)f(s)ds

- [Ya(x) + Yb(x)][ Zb*(s)f(s)ds .

Here, for instance, Ya(x) is the m x 2m matrix whose columns are
the 2m solutions y\ chosen in the basis for Nah. Provided the relation
(2.9) is kept in mind, it is easily verified that Ri(X)f solves
(XI - U)y = /.

The previous construction was carried out without any reference
to special properties possessed by Nab. If Nab = Na x Nb where Na

and Nb are m-dimensional subspaces of C\ and Cl, respectively, then
it is possible to form m-dimensional subspaces Pa c Cl and Pb c Cl
such that Pab = Pa x Pb is the 2Iα6-orthogonal complement of Nab in
S2(λ). In this case it is possible to choose bases for Na, Pa, Nby and
Ph9 and then adjust the bases for Nb and Pb so that (2.9) is satisfied.
In this case R^X) and R2(X) are both of the same form:

y(χ) = R(X)f= -Yt(<

- Ya(x)\ Zf(s)f(s)ds ,
Jx

where, for example, Ya(x) is the m x m matrix whose columns are
the solutions to equation (1.5) chosen as a basis for Na. Again, it is
easily verified that y — R(X)f satisfies (λl — L°)y — / for almost all
x e J. It should be observed that the same construction can be per-
formed for the dual equation (Xl — M°)z = /.

From this point on the development may proceed exactly as the
theory presented in [3] with the exception of one lemma [3, Lemma
4.2] which requires an extended argument. Let L^ and M^ be
formally given by L° and M°. Choose DiLJ) and D(MOO) such that
y and Ayx are absolutely continuous on compact subintervals of J.

LEMMA 2.3. Let {ί/Jcfl(LM) and suppose there is a
such that {yn, Ljy^ —> {y0, L^y^} in Ho x Ho [or H1 x H2]. Let β e C2(a, b)
with 0 ^ β(x) 5g 1 such that β(x) = 0 for a <x^a' and β(x) = 1 for
V ^ x <b. Setting un = βyn, then {un, Lju,^ —> {u0} L^u,} in Ho x Ho

[or H, x HA.

Proof. Since Aunx = βAynx + βxAyn, it is clear that
f o r a l l n . N o w || un — u0 ||Ofl g || y n — y 0 \\Otl.
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REMARK. The subscripts 0,1, 2 refer to the norms in Ho, H1 or
H2 for which an inequality holds with the proviso that only one
distinct subscript may be used in any inequality unless it occurs as
a single subscript.

The last inequality means that un—>u0 in HQ [or iJJ . It is easily
verified that

L^un = βLooyn + (βxxA + βxAx + βxB)yn + 2βxAynx

so that

| | Lju,* — L^UQ ||O,2 ^ | | Looyn — Ljy^ ||o,2

+ 2\\βxA(ynx - i/oJHo.2

+ \\(βxxA + βxAx + βxB)yn\\0>2 .

By hypothesis, the first term on the right of this inequality tends to
zero as n tends to infinity. It remains to show that this is true for
the second and third terms. To this end, suppose fn = Xyn — Ljy%.
Now fneHQ [or H2], since yn and Lcoyn belong to Ho [or LooyneH2

and yne Hι(Z. H2], and fn~+fQ in HQ [or H2], It is possible to represent
yn as follows:

(2.12) yn = B(x)fn + g ^{yn)y\x) .

The first expression on the right represents a particular solution of
the equation Xyn — Ljyn — fn of type (2.11). The integrals appearing
in the definition of R(X) are well defined in either of the two cases
under consideration since, by construction, the columns of Za belong
to L2(α, c, F) c U(a, c, I); and the columns of Zb belong to L2(c, 6, F) c
L2(c, b, I). The last sum merely represents the most general solution
of (XI - L°)y = 0 which lies in Ho [or iJJ . Now

\\V(vn-yo)\\O9%£\\V(yn-yQ)\\'o

where V = βxxA + βxAx + βxB and the prime indicates that the in-
terval of integration implied by the norm sign may be taken as
[α', V] due to the nature of β. Since the elements of F = [viό\ are
square integrable on compact subintervals of J, we obtain the
inequality

\\V(yn - y0) ||; g k Max j^Sup | y{(%) - ^'(x) |

where k is some positive constant depending on H^HJ. The repre-
sentation (2.12) chosen for yn shows that yn~^y0 uniformly in each
component on compact subintervals of / . Thus, the right side of
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the above inequality may be made arbitrarily small for sufficiently
large n. Turning to the second term, we may differentiate (2.12)
with respect to x and obtain the inequality

11 βxA(ynx - yQx) \ |0,2 ^ k0 \ \ fn - f0 | |0,2

+ k, Max I r{yn) - j%y0) \
i

where kt depends only on the numbers \\Ayi ||5 and

h = M a x [|| zi \\'oa || Ayί. | | ί, \\zί \\[Λ \\ Ay{x | | ί ] .

Both terms on the right of the above inequality tend to zero as
n —+ oo 9 completing the proof.

Ill* Statement of results. We introduce the operators L± and
Mx which are restrictions of L^ and M^ with domains

J (oτDiMJ) - [y; y e Hu L^y (or Mjy) e HQ] .

It is then possible to prove [3, Theorem 4.1]:

THEOREM 2.2. For fixed λ > 0, let Pah c S2(λ) with dim Pah = 2m
and

- ( S I C , LY + (2ίζδ, ζb)
b ^ 0

for all {za,zb}ePab. Let L be a restriction of L± whose domain is
the %ah-orthogonal complement of Pab in D(L^). Then L has a dense
domain and for each yeD(L),

-(Sty, η)a + (%, η)b ^ 0 .

The resolvent of L at λ exists and is given by either of the expres-
sions i?i(λ) or jR2(λ). The solution pairs {zi, zi} and {yi, y\) are bases
chosen for Pab and Nab, adjusted in such a way that (2.9) is satisfied,
and Nab is the %ab-orthogonal complement of Pab in S^λ). Moreover,
if R(X, L) represents this resolvent, then λ ||i2(λ, L) \\ S 1.

The principle result of the theory may now be stated. Introduce
the sets

D(La) = [y;ye D(L,\ (Sty, ζ)« - 0 for all z e

and

D(Ma) = [z;ze DiM,), (SIC, ηY = 0 for all y e

with similar definitions for the D(Lb) and D(Mb).
It can be shown that the quotient spaces
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2a = D{LX)ID(LΛ) , 2b =

90ϊα = D(M1)/D(M.) , mb =

are finite dimensional and

dim Sα = dim Wla = dα = Zα + mα — 2m ,

dim Sδ = dim 3Jlb == d6 = lb + m6 — 2m .

Introducing the da + db = d dimensional product spaces

S = «α x Sδ

and

2Ji = 9Jία x 3Ji6

it is possible to construct a hermitian nonsingular operator Φ on S
with la + lb — 2m positive and ma + mb — 2m negative eigenvalues.
In addition, there is a connective inner product {Y, Z}, YeS> and
Z 6 9Ji, between these two spaces. The main result is as follows:
Let 31 be a mα + mb — 2m dimensional subspace of S such that
(ΦY, Y)S0 for all ΓeSft. Let

$P = [Z: ^ e 2JΪ, {Γ, ^} = 0 for all Ye 91]

then Sβ is iα + lb — 2m dimensional and if L is the restriction of Lλ

with

and M the restriction of MΊ with

then L and M generate contraction semi-groups and L* = M and
Λί* = L. Moreover, these constitute all of the dissipative restrictions
of the operators Lx and Mι which generate contraction semi-groups
and are at the same time extensions of the restrictions Lo and Mo

with domins D(LQ) - D(La) Π D(L6) and D(M0) = Z>(Λfβ) Π X>(ΛΓ6). A
word of explanation is due here. The symbol {yfy}—>3l means that
y behaves like a function in one of the cosets of 2a near x = a and
like a function in one of the cosets of 2b near x = 6; this pair of
cosets belonging, of course, to 31. For λ > 0 fixed, the set Pab of
solution pairs {zai zb} in S2(λ) such that {za, zb} —> 5β is 2m-dimensional
and is §Iα6-orthogonal to the set Nab of solution pairs {ya, yb} in S^X)
such that {ya, yb) —> 91. JVαδ is also 2m-dimensional and is a negative
subspace of 3tα6. Thus, Pα 6 and iVαδ define a restriction of L1 by the
process described in Theorem 2.2. The content of the principle result
is that this restriction is an infinitesimal generator.
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We include here another result of some interest. Let Loo c Lx

with D(LQ0) taken as all functions in DiL^ which vanish near the
ends of the interval J. Now Lx is closed [3, Lemma 5.2] so that
the closure of Lm which we denote by L'o, is again a restriction of
Lu Clearly, D(LJ) aD(La) Π D(Lb) = D(L0). It follows as a corollary
to Lemma 2.3 that D(LΌ)c:D(LQ). Under certain conditions L'Q — Lo.

LEMMA 3.1. Suppose the largest subspace of the solution space
of equation (1.6) which lies in U(c, b; I) coincides with Gb. Then,
for each yeD(Lb), there exists a sequence of d / J c f l f L J such that
{Vny LiMn} —>{y, Lxy) in Ho x Ho and each yn vanishes near x — b. A
similar statement holds at the a end with Ga replacing Gb.

Proof. We may assume without loss of generality that y vanishes
near x •= a. To see this, observe that u = βy and w — (1 — β)y, where
β is defined as in Lemma 2.3, vanish near a and &, respectively. If
u can be approximated by a sequence of the required variety, then
the sequence {yn = un + w) will be a sequence of the required kind
for y.

Let L be a restriction of Lx whose resolvent is given by an ex-
pression of the form (2.11). Recall that in this case Nab = Na x Nb

and Pab = Pa x Pb and that the bases for Pb and Nb are adjusted
according to what bases are chosen for Na and Pa in such a way
that (2.9) is satisfied. Since Pa and Pb together span the solution
space of equation (1.6), whatever basis is chosen for Pα, mb — m mem-
bers of this basis together with the basis for Pb span Gb. Since y
vanishes near x = a and belongs to D(Lb) it is contained in the
domain of every restriction of L1 of the kind described in Theorem
2.2. In particular then, setting / = Xy — Ly we have y — 22(λ, L)f.
In general, if y.eDiL,) and zaePa

\\\y0 - LlVo, za)ds = -

When yo = y this reduces to

In particular, when za is one of the mb — m columns of Za (the columns
of Za constitute the basis chosen for Pa) described above, zae D(M1) and

/, za)ds - 0

since yeD(Lb). The hypothesis imposed on Gb implies that the largest
subspace of Pa which lies in HQ is the subspace spanned by the mb — m
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columns of Za which together with the basis for Pb span Gb. By a
theorem due essentially to Rellich [3, Lemma 5.1] the set S of all
bounded, measurable, vector-valued functions which vanish near a and
b and belong to the orthogonal complement J of Pa in Ho is contained
in and dense in the orthogonal complement of the mh — m dimen-
sional subspace of Pa which lies in Ho. Thus, since feJ, there is
a sequence {fn}czHQ such that /*—»/ in Ho and each fn vanishes
near a and b. Let yn = R(X, L)fn, then yn—>yt= jβ(λ, L)f in Ho and
since for x sufficiently near b

yn(x) = -Yb(x)\bZa*(s)f(s)ds
Ja

each y% vanishes near 6.
Finally, Lyn - LR(X, L)fn = λj/. - fn-+Xy - f - Lj/ in fl"0. This

completes the proof.

THEOREM 3.1. // the largest subspaces of the solution space of
equation (1.6) which lie in L2(a, c; I) and L2(c, b; I) coincide with
Ga and Gb, respectively, then L[ — LQm

Proof. Let y£D(LQ). According to Lemma 3.1, there exist se-
quences {y2} and {yt\ in D(L^) which vanish near a and b, respectively,
and {y2, LίVl} -> {y, Lxy} and {yΐ, L&Ϊ} -> {y, L,y} in Ho x Ho. Let

Vn = ay: + βyl ,

where β is as before and a — 1 — β. By Lemma 2.3 the sequence
{yn} has the same convergence properties as the original sequences and
vanishes near a and 6. This proves the theorem.

COROLLARY. If H1 = Ho, then L'o = Lo.

The content of the above theorem is not empty. Examples con-
structed by Sims [6, pp. 256-257] provide cases in point for which
Gb (or Ga) does not contain all solutions of equations of type (1.6)
which lie in L\c, b; I) or L2(α, c; I).
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