SECOND ORDER DISSIPATIVE OPERATORS

J. D. Brooks

A theory of dissipative operators has been developed and successfully applied by R. S. Phillips to the Cauchy problem for hyperbolic and parabolic systems of linear partial differential equations with time invariant coefficients. Our purpose is to show that the Cauchy problem for another system of equations can be brought within the scope of this theory. For this system of equations, we shall parallel the early work of Phillips on dissipative hyperbolic systems. This system of equations is general enough to include, as special cases, such equations as the one dimensional Schrödinger equation and the fourth order equation describing the damped vibrations of a rod.

Several of the results necessary to accomplish this task provide generalizations of the work of A. R. Sims on secondary conditions for nonselfadjoint second order ordinary differential operators.

The system of linear partial differential equations which we consider is of the following form

$$
\begin{equation*}
y_{t}=\left(A y_{x}\right)_{x}+(B y)_{x}+C y \tag{1.1}
\end{equation*}
$$

where $t \geqq 0$ and $x \in J=(a, b)$, an open subinterval (possibly improper) of the real line. The coefficients are assumed to be time invariant, that is to say, they depend only on the variable x. Several other conditions are imposed on the coefficients. Specifically, for each $x \in J$, $A(x)$ is nonsingular and skew-hermitian, $B(x)$ is hermitian and

$$
\begin{equation*}
D(x) \equiv\left[B_{x}+C+C^{*}\right](x) \tag{1.2}
\end{equation*}
$$

is nonpositive under the inner product $(y, z)=\sum y^{i} \bar{z}^{i}$ in E^{m} (complex Euclidean m-space). This last condition is referred to as a dissipative condition and in associated physical models reflects a supposition of no energy sources in the interior of the system.

Besides these conditions the elements of A and B are required to be absolutely continuous on compact subintervals of J, and their derivatives and the elements of C are required to be square integrable on such subintervals. Attention is called to the fact that no conditions are imposed on the coefficients at the ends of the interval J.

Before proceeding it will be convenient to announce some conventions with regard to notation. Let $F(x)=I-D(x)$. The symbol H_{1} will be used to denote the Hilbert Space $L^{2}(a, b, F)$ with weight F. Since $F(x) \geqq I$ we may introduce the Hilbert space $H_{2}=L^{2}\left(a, b, F^{-1}\right)$.

Finally, $H_{0}=L^{2}(a, b, I)$. Since $F^{-1}(x) \leqq I \leqq F(x)$, it follows that $H_{1} \subset H_{0} \subset H_{2}$ and if $y \in H_{1}$ and $z \in H_{2}$ then $\left|\langle y, z\rangle_{0}\right| \leqq\|y\|_{1}\|z\|_{2}$. Frequently it will be necessary to form a vector in $E^{2 m}$ from two vectors in E^{m}. For instance, if y_{1} and y_{2} are vectors in E^{m}, then the vector $\eta=\left[y_{1}, y_{2}\right]$, whose first m components are those of y_{1} and whose second m components are those of y_{2}, is a vector in $E^{2 m}$.

Suppose now that y is a sufficiently smooth solution of equation (1.1) and let L^{0} denote the ordinary differential operator on the right hand side of equation (1.1). A purely formal integration by parts leads to the equations

$$
\begin{align*}
\frac{d}{d t}\langle y, y\rangle_{0} & =\left\langle L^{0} y, y\right\rangle_{0}+\left\langle y, L^{0} y\right\rangle_{0} \tag{1.3}\\
& =-(\mathfrak{P} \eta, \eta)^{a}+(\mathfrak{P} \eta, \eta)^{b}+\langle D y, y\rangle_{0}
\end{align*}
$$

where

$$
\mathfrak{A}(x)=\left[\begin{array}{lc}
B(x) & A(x) \\
A^{*}(x) & \theta
\end{array}\right]
$$

and $\eta=\left[y, y_{x}\right]$. It will be shown by example later that it is reasonable to require that $d / d t\langle y, y\rangle_{0} \leqq 0$ for all $t \geqq 0$. Keeping in mind the dissipative condition (1.2), the right hand side of the second equation in (1.3) will be nonpositive provided the solution satisfies conditions at the boundary of the form

$$
\begin{equation*}
-(\mathfrak{A} \eta, \eta)^{a}+(\mathfrak{A} \eta, \eta)^{b} \leqq 0, \quad t \geqq 0 \tag{1.4}
\end{equation*}
$$

The principal result of this paper is that corresponding to each member of a class of boundary conditions which possess property (1.4), an operator L may be defined which is of the form L^{0} and which is the infinitesimal generator of a strongly continuous semi-group [$S(t) ; t \geqq 0]$ of contraction operators; that is, a one parameter family of linear bounded operators on H_{0} to itself such that $S\left(t_{1}+t_{2}\right)=S\left(t_{1}\right) S\left(t_{2}\right)$, $\|S(t)\|_{0} \leqq 1$ and $\lim S(t) f=f$ as $t \rightarrow 0$ for each $f \in H_{0}$. In addition, $d / d t S(t) f=L S(t) f, f \in D(L)$. The initial values are assumed in the mean of order two and the derivative is taken in the strong sense. This is the sense in which equation (1.1) is to be satisfied.

Notice that under these circumstances the operator L will satisfy the condition

$$
\langle L y, y\rangle+\langle y, L y\rangle \leqq 0
$$

for each $y \in D(L)$. Operators satisfying a one-sided condition of this type are called dissipative and have been treated from an operatortheoretic point of view by R. S. Phillips [4, 5].

In the present development, the principal tool employed is the Hille-Yosida theorem [2, Theorem 12.3.1 and corollary]. Thus, in Section 2, a fixed $\lambda>0$ is chosen and a number of linear bounded operators $R(\lambda)$ are constructed. These operators are defined on H_{0} and take values in H_{1}. In addition, for each $f \in H_{0},\left(\lambda I-L^{0}\right) R(\lambda) f=f$. Selecting a particular $R(\lambda)$, the operator L is introduced whose domain $D(L)$ is the range of $R(\lambda)$ and whose values are those of L^{0} restricted to $D(L)$. It is then shown that $D(L)$ is dense in H_{0}, the resolvent $R(\lambda, L)$ of L exists at λ, and $R(\lambda, L)=R(\lambda)$. Moreover, $\lambda\|R(\lambda, L)\|_{0} \leqq 1$.

The operators $R(\lambda)$ are constructed from solutions of

$$
\begin{equation*}
L^{0} y=\left(A y_{x}\right)_{x}+(B y)_{x}+C y=\lambda y \tag{1.5}
\end{equation*}
$$

and the formal dual equation

$$
\begin{equation*}
M^{0} z=-\left(A z_{x}\right)_{x}-(B z)_{x}+\left(B_{x}+C^{*}\right) z=\lambda z \tag{1.6}
\end{equation*}
$$

These solutions depend on λ so that, ostensibly, the $D(L)$ depends on λ. In Section 3, $D(L)$ is shown to be independent of λ and at the same time its members are characterized entirely by their behavior at the ends of the interval J. In addition, L is found to satisfy the requirements of the Hille-Yosida theorem and is therefore an infinitesimal generator. It is also found that these operators constitute all infinitesimal generators within a certain class.

As previously mentioned, this paper parallels the theory presented by R. S. Phillips [3] for the hyperbolic case $A \equiv \theta$. By an appropriate interpretation, most of the theorems and their proofs in that case apply directly to the present case. The exceptions are those results which we have called Theorem 2.1 and Lemma 2.3 [3, Theorem 3.3 and Lemma 4.2]. The proof of Lemma 2.3 requires that the explicit form of the resolvents be known, and hence, their construction is given in some, but not complete, detail in Section 2. The principal content of Section 3 is a statement of the main results of the theory. The statement of the main results without proofs is possible because of the aforementioned circumstance.

Two equations occurring in mathematical physics may be considered as examples. The first example is the one dimensional Schrödinger equation

$$
y_{t}=\frac{i h}{m} y_{x x}-i h^{-1} V(x) y
$$

which is directly of the form (1.1). The second example, the fourth order equation describing the motion of a damped rod,

$$
y_{t t}+y_{x x x x}+k y_{t}=0, \quad k \geqq 0
$$

is not directly of the form (1.1). However, setting $u^{1}=y_{t}$ and $u^{2}=y_{x x}$, the vector $\mu=\left[u^{1}, u^{2}\right]$ satisfies the system

$$
\mu_{t}=A \mu_{x x}+C \mu
$$

were

$$
A=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right] \quad C=\left[\begin{array}{rr}
-k & 0 \\
0 & 0
\end{array}\right]
$$

For this system we have

$$
\langle\mu, \mu\rangle_{0}=\int_{a}^{b}\left(y_{t}^{2}+y_{x x}^{2}\right) d x
$$

Notice that this is essentially the total energy of the system. Thus the dissipative requirement is that the total energy of the system should be nonincreasing in time.

Finally, it should be noted that, from the point of view of ordinary differential operators, Theorem 2.1, and to some extent Theorem 2.2, provide generalizations of the results of A. R. Sims [6, Theorem 1 and Theorem 6] to systems of equations.
II. Construction of the resolvents. Before constructing the operators $R(\lambda)$ it is necessary to be assured of sufficiently smooth solutions to equations (1.5) and (1.6). It is necessary to discuss only equation (1.5) since both equations are of the same form and corresponding coefficients possess the same degree of smoothness.

Lemma 2.1. Let $c \in J$ and let η^{1} and η^{2} be two vectors in E^{m}. There exists a unique vector-valued function y satisfying equation (1.5) almost everywhere on J with $y(c)=\eta^{1}$ and $y_{x}(c)=\eta^{2}$. In addition, on compact subintervals of J, y and $A y_{x}$ are absolutely continuous with square integrable derivatives. If $\eta_{k}=\left[\eta_{k}^{1}, \eta_{k}^{2}\right], k=$ $1, \cdots, 2 m$, are linearly independent vectors in $E^{2 m}$, then the solutions y^{k} with $y^{k}(c)=\eta_{k}^{1}$ and $y_{x}^{k}(c)=\eta_{k}^{2}$ span the solution space of equation (1.5).

The proof of this need not be given in detail. Suffice it to say that equation (1.5) can be reduced to an equivalent first order system for the function $u=\left[u^{1}, u^{2}\right]$, where $u^{1}=y$ and $u^{2}=A y_{x}+B y$. An appeal to standard existence theorems [1, p. 97, problem 1], guarantees the existence and uniqueness of a solution to the reduced system with the required smoothness. The remaining statements follow from uniqueness and linearity.

The following lemma, whose proof may be obtained as a simple application of Rouche's theorem, will be needed later.

Lemma 2.2. Let M be a matrix-valued function whose elements are continuous on J. If M is hermitian and nonsingular at each point, then the number of positive and negative eigenvalues of M is the same at each point of the interval.

Corollary. If P and Q are matrices of order m such that P is nonsingular and Q hermitian, then the matrix

$$
G=\left[\begin{array}{ll}
Q & P \\
P^{*} & \theta
\end{array}\right]
$$

has m positive and m negative eigenvalues.
Proof. Consider the one parameter family of matrices obtained from G by replacing Q by $x Q$ in the definition of G. This matrixvalued function satisfies the hypothesis of Lemma 2.2. $G(0)$ has m positive and m negative eigenvalues these being the square roots, both positive and negative, of the m positive eigenvalues of the matrix $P P^{*}$. Thus $G(1)=G$ has the same number of positive and negative eigenvalues as $G(0)$.

Turning now to the construction of the $R(\lambda)$, the basic theorem from which the construction follows is reminiscent, for the system (1.5) or (1.6), of the familiar Weyl limit point-limit circle classification for singular self-adjoint second order equations [1, pp. 225-231]. More closely related is the presentation by A. R. Sims [6, pp. 254-257]. The presentation followed here is to be found in [3, Theorem 3.3].

Let y and z be solutions, in the sense of Lemma 2.1, of equations (1.5) and (1.6) respectively, for some fixed $\lambda>0$. The identities

$$
\begin{equation*}
d / d x(\mathfrak{N} \eta, \eta)=2 \lambda(y, y)-(D y, y) \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
d / d x(\mathfrak{A} \zeta, \zeta)=-2 \lambda(z, z)+(D z, z) \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
d / d x(\mathfrak{U} \eta, \zeta)=0 \tag{2.3}
\end{equation*}
$$

where $\eta=\left[y, y_{x}\right]$ and $\zeta=\left[z, z_{x}\right]$, hold for almost all $x \in J$.
It follows from these identities that ($\mathfrak{H} \eta, \eta$) is an increasing function, ($\mathfrak{A} \zeta, \zeta$) is a decreasing function and ($\mathfrak{A} \eta, \zeta$) is a constant function on J. Moreover, if $c \in J$ then $y \in L^{2}(c, b, F)\left[z \in L^{2}(c, b, F)\right]$ if, and only if, $(\mathfrak{N} \eta, \eta)^{b}<+\infty\left[(\mathfrak{H} \zeta, \zeta)^{b}>-\infty\right]$. (REMARK. An expression such as $(\mathfrak{A} \eta, \eta)^{u}$ denotes the limit of ($\mathfrak{2} \eta, \eta$) as x tend to u.) The proof of the last statement follows from the simple inequality

$$
\begin{aligned}
\min (1,2 \lambda)(F y, y) & \leqq 2 \lambda(y, y)-(D y, y) \\
& \leqq \max (1,2 \lambda)(F y, y)
\end{aligned}
$$

The dual statement is proved in the same way and a similar pair of statements hold at $x=a$.

The following theorem is basic.

ThEOREM 2.1. If $F_{b}\left[F_{a}\right]$ denotes the collection of all solutions of equation (1.5) such that $(\mathfrak{N} \eta, \eta)^{b}<+\infty\left[(\mathfrak{U} \eta, \eta)^{a}>-\infty\right]$ then $F_{b}\left[F_{a}\right]$ is a linear subspace of the solution space of equation (1.5) of dimension $l_{b}\left[l_{a}\right] \geqq m$. If $C_{b}^{1}\left[C_{a}^{1}\right]$ denotes the subset of $F_{b}\left[F_{a}\right]$ such that $(\mathfrak{H} \eta, \eta)^{b} \leqq 0\left[(\mathfrak{Y} \eta, \eta)^{a} \geqq 0\right]$ then $C_{b}^{1}\left[C_{a}^{1}\right]$ contains at least one m-dimensional subspace. The same statements apply to the solution space of equation (1.6) where $G_{b}\left[G_{a}\right]$ denotes the set of solutions such that $(\mathfrak{H} \zeta, \zeta)^{b}>-\infty\left[(\mathfrak{Y} \zeta, \zeta)^{a}<+\infty\right]$.

Proof. By the remarks preceding the statement of the theorem $F_{b} \subset L^{2}(c, b, F)$. In fact, it is a linear subspace since equation (1.5) is linear. To complete the proof we need only show that C_{b}^{1} contains at least one m-dimensional subspace. Let $y^{i}, i=1, \cdots, 2 m$, form a basis for the solution space of equation (1.5) and let $\eta^{i}=\left[y^{i}, y_{x}^{i}\right]$. If y is an arbitrary solution of equation (1.5) and $\eta=\left[y, y_{x}\right]$, then $(\mathfrak{2} \eta, \eta)^{x}=\left(Y^{*} \mathfrak{Z} Y \alpha, \alpha\right)^{x}$ where Y is the matrix whose $i^{\text {th }}$ column is η^{i} and $\alpha \in E^{2 m}$. For some $c \in J$ we can suppose that $Y(c)=I$. Now $Y^{*} \mathfrak{A} Y$ is hermitian nonsingular and continuous on J, and by the corollary to Lemma 2.2 has m positive and m negative eigenvalues at c, so that by Lemma 2.2 it has m positive and m negative eigenvalues for each $x \in J$. Thus, the set

$$
C_{x}=\left[y ;(\mathfrak{A} \eta, \eta)^{x} \leqq 0\right]
$$

contains at least one m-dimensional subspace of the solution space. Since $(\mathfrak{H} \eta, \eta)^{x}$ is increasing, $C_{s} \supset C_{t}$ if $s \leqq t$. It follows that C_{b}^{1} is the intersection of all C_{x} for $x<b$ and must therefore contain at least one m-dimensional subspace. The same proof is valid at the left end of the interval J.

The proof of this theorem for the dual equation is the same. The dimension of $G_{b}\left[G_{a}\right]$ will be denoted by $m_{b}\left[m_{a}\right]$ and the subset of solutions of equation (1.6) such that $(\mathfrak{H} \zeta, \zeta)^{b} \geqq 0 \quad\left[(\mathfrak{H} \zeta, \zeta)^{a} \leqq 0\right]$ by $C_{b}^{2}\left[C_{a}^{2}\right]$.

Let $S_{1}(\lambda)$ and $S_{2}(\lambda)$ denote, respectively, the Cartesian products of the solution spaces of equation (1.5) and (1.6) with themselves. Clearly, $\operatorname{dim} S_{i}(\lambda)=4 m$. Suppose $N_{a b} \subset S_{1}(\lambda)$ such that $\operatorname{dim} N_{a b}=2 m$ and for each $\left\{y_{a}, y_{b}\right\} \in N_{a b}$

$$
\begin{equation*}
-\left(\mathfrak{A} \eta_{a}, \eta_{a}\right)^{a}+\left(\mathfrak{H} \eta_{b}, \eta_{b}\right)^{b} \leqq 0 \tag{2.4}
\end{equation*}
$$

where, for instance, $\eta_{a}=\left[y_{a}, y_{a x}\right]$. Theorem 2.1 guarantees the existence of such subsets. Let $P_{a b} \subset S_{2}(\lambda)$ such that whenever $\left\{z_{a}, z_{b}\right\} \in P_{a b}$

$$
\begin{equation*}
-\left(\mathfrak{A} \eta_{a}, \zeta_{a}\right)^{a}+\left(\mathfrak{A} \eta_{b}, \zeta_{b}\right)^{b}=0 \tag{2.5}
\end{equation*}
$$

for all $\left\{y_{a}, y_{b}\right\} \in N_{a b} . \quad P_{a b}$ is called the $\mathfrak{U}_{a b}$-orthogonal complement of $N_{a b}$. It follows by an argument similar to one employed in [3, Theorem 3.4] and an appeal to Lemma 2 and its corollary that $P_{a b} \subset G_{a} \times G_{b}$, $\operatorname{dim} P_{a b}=2 m$ and

$$
\begin{equation*}
-\left(\mathfrak{H} \zeta_{a}, \zeta_{a}\right)^{a}+\left(\mathfrak{A} \zeta_{b}, \zeta_{b}\right)^{b} \geqq 0 \tag{2.6}
\end{equation*}
$$

for all $\left\{z_{a}, z_{b}\right\} \in P_{a b}$. Moreover, $N_{a b}$ is $\mathfrak{N}_{a b}$-orthogonal to $P_{a b}$. Dually, of course, we can start with $P_{a b}$ and obtain an $N_{a b}$ with the appropriate properties.

The procedure now is to construct solutions to the equation $\left(\lambda I-L^{0}\right) y=f$ where $f \in H_{0}$ and vanishes outside some compact subinterval of J and L^{0} has for its domain those functions which possess the basic smoothness of the solutions to equation (1.5) guaranteed by Lemma 2.1. Choose arbitrary bases $\left\{y_{a}^{i}, y_{b}^{i}\right\}$ and $\left\{z_{a}^{i}, z_{b}^{i}\right\}$ for $N_{a b}$ and $P_{a b}$, respectively, and define the $4 m \times 4 m$ matrices

$$
\begin{align*}
Y(x) & =\left[\begin{array}{l}
\eta_{a}^{1}, \cdots, \eta_{a}^{2 m}, \eta_{b}^{1}, \cdots, \eta_{b}^{2 m} \\
\eta_{b}^{1}, \cdots, \eta_{b}^{2 m}, \eta_{b}^{1}, \cdots, \eta_{a}^{2 m}
\end{array}\right] \tag{2.7}\\
Z(x) & =\left[\begin{array}{l}
\zeta_{b}^{1}, \cdots, \zeta_{b}^{2 m},-\zeta_{a}^{1}, \cdots,-\zeta_{a}^{2 m} \\
\zeta_{a}^{1}, \cdots, \zeta_{a}^{2 m},-\zeta_{b}^{1}, \cdots,-\zeta_{b}^{2 m}
\end{array}\right] . \tag{2.8}
\end{align*}
$$

Reasoning similar to that used in establishing the duality of $N_{a b}$ and $P_{a b}$ shows that $Y(x)$ and $Z(x)$ are nonsingular for each $x \in J$. Defining $Q=Z^{*}(x) \mathfrak{Z}(x, x) Y(x)$ with

$$
\mathfrak{A}(x, x)=\left[\begin{array}{cc}
-A(x) & \theta \\
\theta & A(x)
\end{array}\right],
$$

then Q may be partitioned into four $2 m \times 2 m$ submatrices $Q_{i j}, i, j=$ 1,2 , such that $Q_{i j}=\theta ; i \neq j$ and $Q_{i i}, i=1,2$, are independent of x. Letting $V(x)=Z(x)\left[Q^{*}\right]^{-1}$, it is clear that $V(x)$ is nonsingular and of the same form as $Z(x)$. Now call the solution pairs from which $V(x)$ is constituted $\left\{z_{a}^{i}, z_{b}^{i}\right\}$ and use these as a basis for $P_{a b}$. For this choice of basis

$$
\begin{equation*}
I=V^{*}(x) \mathfrak{A}(x, x) Y(x)=\mathfrak{A}(x, x) Y(x) V^{*}(x) \tag{2.9}
\end{equation*}
$$

Let

$$
\begin{align*}
y_{1}(x)=R_{1}(\lambda) f= & -Y_{b}(x) \int_{a}^{x}\left[Z_{a}^{*}(s)+Z_{b}^{*}(s)\right] f(s) d s \\
& -Y_{a}(x) \int_{x}^{b}\left[Z_{a}^{*}(s)+Z_{b}^{*}(s)\right] f(s) d s \tag{2.10}\\
y_{2}(x)=R_{2}(\lambda) f= & \left.-\left[Y_{a}(x)+Y_{b}(x)\right]\right]_{a}^{x} Z_{a}^{*}(s) f(s) d s \\
& -\left[Y_{a}(x)+Y_{b}(x)\right] \int_{x}^{b} Z_{b}^{*}(s) f(s) d s .
\end{align*}
$$

Here, for instance, $Y_{a}(x)$ is the $m \times 2 m$ matrix whose columns are the $2 m$ solutions y_{a}^{i} chosen in the basis for $N_{a b}$. Provided the relation (2.9) is kept in mind, it is easily verified that $R_{i}(\lambda) f$ solves $\left(\lambda I-L^{0}\right) y=f$.

The previous construction was carried out without any reference to special properties possessed by $N_{a b}$. If $N_{a b}=N_{a} \times N_{b}$ where N_{a} and N_{b} are m-dimensional subspaces of C_{a}^{1} and C_{b}^{1}, respectively, then it is possible to form m-dimensional subspaces $P_{a} \subset C_{a}^{2}$ and $P_{b} \subset C_{b}^{2}$ such that $P_{a b}=P_{a} \times P_{b}$ is the $\hat{N}_{a b}$-orthogonal complement of $N_{a b}$ in $S_{2}(\lambda)$. In this case it is possible to choose bases for N_{a}, P_{a}, N_{b}, and P_{b}, and then adjust the bases for N_{b} and P_{b} so that (2.9) is satisfied. In this case $R_{1}(\lambda)$ and $R_{2}(\lambda)$ are both of the same form:

$$
\begin{align*}
y(x)=R(\lambda) f= & -Y_{b}(x) \int_{a}^{x} Z_{a}^{*}(s) f(s) d s \\
& -Y_{a}(x) \int_{x}^{b} Z_{b}^{*}(s) f(s) d s, \tag{2.11}
\end{align*}
$$

where, for example, $Y_{a}(x)$ is the $m \times m$ matrix whose columns are the solutions to equation (1.5) chosen as a basis for N_{a}. Again, it is easily verified that $y=R(\lambda) f$ satisfies $\left(\lambda I-L^{0}\right) y=f$ for almost all $x \in J$. It should be observed that the same construction can be performed for the dual equation $\left(\lambda I-M^{0}\right) z=f$.

From this point on the development may proceed exactly as the theory presented in [3] with the exception of one lemma [3, Lemma 4.2] which requires an extended argument. Let L_{∞} and M_{∞} be formally given by L^{0} and M^{0}. Choose $D\left(L_{\infty}\right)$ and $D\left(M_{\infty}\right)$ such that y and $A y_{x}$ are absolutely continuous on compact subintervals of J.

Lemma 2.3. Let $\left\{y_{n}\right\} \subset D\left(L_{\infty}\right)$ and suppose there is a $y_{0} \in D\left(L_{\infty}\right)$ such that $\left\{y_{n}, L_{\infty} y_{n}\right\} \rightarrow\left\{y_{0}, L_{\infty} y_{0}\right\}$ in $H_{0} \times H_{0}\left[\right.$ or $\left.H_{1} \times H_{2}\right]$. Let $\beta \in C^{2}(a, b)$ with $0 \leqq \beta(x) \leqq 1$ such that $\beta(x) \equiv 0$ for $a<x \leqq a^{\prime}$ and $\beta(x) \equiv 1$ for $b^{\prime} \leqq x<b$. Setting $u_{n}=\beta y_{n}$, then $\left\{u_{n}, L_{\infty} u_{n}\right\} \rightarrow\left\{u_{0}, L_{\infty} u_{0}\right\}$ in $H_{0} \times H_{0}$ [or $H_{1} \times H_{2}$].

Proof. Since $A u_{n x}=\beta A y_{n x}+\beta_{x} A y_{n}$, it is clear that $u_{n} \in D\left(L_{\infty}\right)$ for all n. Now $\left\|u_{n}-u_{0}\right\|_{0,1} \leqq\left\|y_{n}-y_{0}\right\|_{0,1}$.

Remark. The subscripts $0,1,2$ refer to the norms in H_{0}, H_{1} or H_{2} for which an inequality holds with the proviso that only one distinct subscript may be used in any inequality unless it occurs as a single subscript.

The last inequality means that $u_{n} \rightarrow u_{0}$ in H_{0} [or $\left.H_{1}\right]$. It is easily verified that

$$
L_{\infty} u_{n}=\beta L_{\infty} y_{n}+\left(\beta_{x x} A+\beta_{x} A_{x}+\beta_{x} B\right) y_{n}+2 \beta_{x} A y_{n x}
$$

so that

$$
\begin{aligned}
\left\|L_{\infty} u_{n}-L_{\infty} u_{0}\right\|_{0,2} \leqq & \left\|L_{\infty} y_{n}-L_{\infty} y_{0}\right\|_{0,2} \\
& +2\left\|\beta_{x} A\left(y_{n x}-y_{0 x}\right)\right\|_{0,2} \\
& +\left\|\left(\beta_{x x} A+\beta_{x} A_{x}+\beta_{x} B\right) y_{n}\right\|_{0,2}
\end{aligned}
$$

By hypothesis, the first term on the right of this inequality tends to zero as n tends to infinity. It remains to show that this is true for the second and third terms. To this end, suppose $f_{n}=\lambda y_{n}-L_{\infty} y_{n}$. Now $f_{n} \in H_{0}$ [or H_{2}], since y_{n} and $L_{\infty} y_{n}$ belong to H_{0} [or $L_{\infty} y_{n} \in H_{2}$ and $y_{n} \in H_{1} \subset H_{2}$], and $f_{n} \rightarrow f_{0}$ in H_{0} [or H_{2}]. It is possible to represent y_{n} as follows:

$$
\begin{equation*}
y_{n}=R(\lambda) f_{n}+\sum_{i=1}^{r} \gamma^{i}\left(y_{n}\right) y^{i}(x) \tag{2.12}
\end{equation*}
$$

The first expression on the right represents a particular solution of the equation $\lambda y_{n}-L_{\infty} y_{n}=f_{n}$ of type (2.11). The integrals appearing in the definition of $R(\lambda)$ are well defined in either of the two cases under consideration since, by construction, the columns of Z_{a} belong to $L^{2}(a, c, F) \subset L^{2}(a, c, I)$; and the columns of Z_{b} belong to $L^{2}(c, b, F) \subset$ $L^{2}(c, b, I)$. The last sum merely represents the most general solution of $\left(\lambda I-L^{0}\right) y=0$ which lies in H_{0} [or $\left.H_{1}\right]$. Now

$$
\left\|V\left(y_{n}-y_{0}\right)\right\|_{0,2} \leqq\left\|V\left(y_{n}-y_{0}\right)\right\|_{0}^{\prime}
$$

where $V \equiv \beta_{x x} A+\beta_{x} A_{x}+\beta_{x} B$ and the prime indicates that the interval of integration implied by the norm sign may be taken as [$\left.a^{\prime}, b^{\prime}\right]$ due to the nature of β. Since the elements of $V=\left[v_{i j}\right]$ are square integrable on compact subintervals of J, we obtain the inequality

$$
\left\|V\left(y_{n}-y_{0}\right)\right\|_{0}^{\prime} \leqq \mathrm{k} \operatorname{Max}_{j}\left[\operatorname{Sup}_{x}\left|y_{n}^{j}(x)-y_{0}^{j}(x)\right|\right]
$$

where k is some positive constant depending on $\left\|v_{i j}\right\|_{0}^{\prime}$. The representation (2.12) chosen for y_{n} shows that $y_{n} \rightarrow y_{0}$ uniformly in each component on compact subintervals of J. Thus, the right side of
the above inequality may be made arbitrarily small for sufficiently large n. Turning to the second term, we may differentiate (2.12) with respect to x and obtain the inequality

$$
\begin{aligned}
\left\|\beta_{x} A\left(y_{n x}-y_{0 x}\right)\right\|_{0,2} \leqq & k_{0}\left\|f_{n}-f_{0}\right\|_{0,2} \\
& +k_{1} \operatorname{Max}_{i}\left|\gamma^{i}\left(y_{n}\right)-\gamma^{i}\left(y_{0}\right)\right|
\end{aligned}
$$

where k_{1} depends only on the numbers $\left\|A y_{x}^{i}\right\|_{0}^{\prime}$ and

$$
k_{0}=\operatorname{Max}_{j}\left[\left\|z_{b}^{j}\right\|_{0,1}^{\prime}\left\|A y_{a x}^{j}\right\|_{0}^{\prime},\left\|z_{a}^{j}\right\|_{0,1}^{\prime}\left\|A y_{b x}^{j}\right\|_{0}^{\prime}\right]
$$

Both terms on the right of the above inequality tend to zero as $n \rightarrow \infty$, completing the proof.
III. Statement of results. We introduce the operators L_{1} and M_{1} which are restrictions of L_{∞} and M_{∞} with domains

$$
D\left(L_{1}\right)\left(\operatorname{or} D\left(M_{1}\right)\right)=\left[y ; y \in H_{1}, L_{\infty} y\left(\text { or } M_{\infty} y\right) \in H_{0}\right]
$$

It is then possible to prove [3, Theorem 4.1]:
THEOREM 2.2. For fixed $\lambda>0$, let $P_{a b} \subset S_{2}(\lambda)$ with $\operatorname{dim} P_{a b}=2 m$ and

$$
-\left(\mathfrak{H} \zeta_{a}, \zeta_{a}\right)^{a}+\left(\mathfrak{H} \zeta_{b}, \zeta_{b}\right)^{b} \geqq 0
$$

for all $\left\{z_{a}, z_{b}\right\} \in P_{a b}$. Let L be a restriction of L_{1} whose domain is the $\mathfrak{A}_{a b}$-orthogonal complement of $P_{a b}$ in $D\left(L_{1}\right)$. Then L has a dense domain and for each $y \in D(L)$,

$$
-(\mathfrak{A} \eta, \eta)^{a}+(\sqrt{2} \eta, \eta)^{b} \leqq 0 .
$$

The resolvent of L at λ exists and is given by either of the expressions $R_{1}(\lambda)$ or $R_{2}(\lambda)$. The solution pairs $\left\{z_{a}^{i}, z_{b}^{i}\right\}$ and $\left\{y_{a}^{i}, y_{b}^{i}\right\}$ are bases chosen for $P_{a b}$ and $N_{a b}$, adjusted in such a way that (2.9) is satisfied, and $N_{a b}$ is the $\mathfrak{2}_{a b}$-orthogonal complement of $P_{a b}$ in $S_{1}(\lambda)$. Moreover, if $R(\lambda, L)$ represents this resolvent, then $\lambda\|R(\lambda, L)\| \leqq 1$.

The principle result of the theory may now be stated. Introduce the sets

$$
D\left(L_{a}\right)=\left[y ; y \in D\left(L_{1}\right),(\mathfrak{P} \eta, \zeta)^{a}=0 \text { for all } z \in D\left(M_{1}\right)\right]
$$

and

$$
D\left(M_{a}\right)=\left[z ; z \in D\left(M_{1}\right),(\mathfrak{A} \zeta, \eta)^{a}=0 \text { for all } y \in D\left(L_{1}\right)\right]
$$

with similar definitions for the $D\left(L_{b}\right)$ and $D\left(M_{b}\right)$.
It can be shown that the quotient spaces

$$
\begin{aligned}
\mathfrak{R}_{a} & =D\left(L_{1}\right) / D\left(L_{a}\right), & \mathfrak{L}_{b} & =D\left(L_{1}\right) / D\left(L_{b}\right) \\
\mathfrak{M}_{a} & =D\left(M_{1}\right) / D\left(M_{a}\right), & \mathfrak{M}_{b} & =D\left(M_{1}\right) / D\left(M_{b}\right)
\end{aligned}
$$

are finite dimensional and

$$
\begin{aligned}
\operatorname{dim} \mathfrak{R}_{a} & =\operatorname{dim} \mathfrak{M}_{a}=d_{a}=l_{a}+m_{a}-2 m, \\
\operatorname{dim} \mathfrak{R}_{b} & =\operatorname{dim} \mathfrak{M}_{b}=d_{b}=l_{b}+m_{b}-2 m .
\end{aligned}
$$

Introducing the $d_{a}+d_{b}=d$ dimensional product spaces

$$
\mathfrak{R}=\mathfrak{R}_{a} \times \mathfrak{R}_{b}
$$

and

$$
\mathfrak{M}=\mathfrak{M}_{a} \times \mathfrak{M}_{b}
$$

it is possible to construct a hermitian nonsingular operator Φ on \mathbb{Z} with $l_{a}+l_{b}-2 m$ positive and $m_{a}+m_{b}-2 m$ negative eigenvalues. In addition, there is a connective inner product $\{Y, Z\}, Y \in \mathcal{Z}$ and $Z \in \mathfrak{M l}$, between these two spaces. The main result is as follows: Let \mathfrak{N} be a $m_{a}+m_{b}-2 m$ dimensional subspace of \mathbb{Z} such that $(\Phi Y, Y) \leqq 0$ for all $Y \in \mathfrak{R}$. Let

$$
\mathfrak{P}=[Z: Z \in \mathfrak{M},\{Y, Z\}=0 \text { for all } Y \in \mathfrak{R}] ;
$$

then \mathfrak{P} is $l_{a}+l_{b}-2 m$ dimensional and if L is the restriction of L_{1} with

$$
D(L)=\left[y ; y \in D\left(L_{1}\right),\{y, y\} \rightarrow \mathfrak{R}\right],
$$

and M the restriction of M_{1} with

$$
D(M)=\left[z ; z \in D\left(M_{1}\right) ;\{z, z\} \rightarrow \mathfrak{P}\right]
$$

then L and M generate contraction semi-groups and $L^{*}=M$ and $M^{*}=L$. Moreover, these constitute all of the dissipative restrictions of the operators L_{1} and M_{1} which generate contraction semi-groups and are at the same time extensions of the restrictions L_{0} and M_{0} with domins $D\left(L_{0}\right)=D\left(L_{a}\right) \cap D\left(L_{b}\right)$ and $D\left(M_{0}\right)=D\left(M_{a}\right) \cap D\left(M_{b}\right)$. A word of explanation is due here. The symbol $\{y, y\} \rightarrow \mathfrak{R}$ means that y behaves like a function in one of the cosets of \mathfrak{R}_{a} near $x=a$ and like a function in one of the cosets of \mathcal{R}_{b} near $x=b$; this pair of cosets belonging, of course, to \mathfrak{R}. For $\lambda>0$ fixed, the set $P_{a b}$ of solution pairs $\left\{z_{a}, z_{b}\right\}$ in $S_{2}(\lambda)$ such that $\left\{z_{a}, z_{b}\right\} \rightarrow \mathfrak{P}$ is $2 m$-dimensional and is $\mathfrak{A}_{a b}$-orthogonal to the set $N_{a b}$ of solution pairs $\left\{y_{a}, y_{b}\right\}$ in $S_{1}(\lambda)$ such that $\left\{y_{a}, y_{b}\right\} \rightarrow \mathfrak{R} . \quad N_{a b}$ is also $2 m$-dimensional and is a negative subspace of $\mathfrak{N}_{a b}$. Thus, $P_{a b}$ and $N_{a b}$ define a restriction of L_{1} by the process described in Theorem 2.2. The content of the principle result is that this restriction is an infinitesimal generator.

We include here another result of some interest. Let $L_{00} \subset L_{1}$ with $D\left(L_{00}\right)$ taken as all functions in $D\left(L_{1}\right)$ which vanish near the ends of the interval J. Now L_{1} is closed [3, Lemma 5.2] so that the closure of L_{00}, which we denote by L_{0}^{\prime}, is again a restriction of L_{1}. Clearly, $D\left(L_{00}\right) \subset D\left(L_{a}\right) \cap D\left(L_{b}\right)=D\left(L_{0}\right)$. It follows as a corollary to Lemma 2.3 that $D\left(L_{0}^{\prime}\right) \subset D\left(L_{0}\right)$. Under certain conditions $L_{0}^{\prime}=L_{0}$.

Lemma 3.1. Suppose the largest subspace of the solution space of equation (1.6) which lies in $L^{2}(c, b ; I)$ coincides with G_{b}. Then, for each $y \in D\left(L_{b}\right)$, there exists a sequence of $\left\{y_{n}\right\} \subset D\left(L_{1}\right)$ such that $\left\{y_{n}, L_{1} y_{n}\right\} \rightarrow\left\{y, L_{1} y\right\}$ in $H_{0} \times H_{0}$ and each y_{n} vanishes near $x=b$. A similar statement holds at the a end with G_{a} replacing G_{b}.

Proof. We may assume without loss of generality that y vanishes near $x=a$. To see this, observe that $u=\beta y$ and $w=(1-\beta) y$, where β is defined as in Lemma 2.3, vanish near a and b, respectively. If u can be approximated by a sequence of the required variety, then the sequence $\left\{y_{n}=u_{n}+w\right\}$ will be a sequence of the required kind for y.

Let L be a restriction of L_{1} whose resolvent is given by an expression of the form (2.11). Recall that in this case $N_{a b}=N_{a} \times N_{b}$ and $P_{a b}=P_{a} \times P_{b}$ and that the bases for P_{b} and N_{b} are adjusted according to what bases are chosen for N_{a} and P_{a} in such a way that (2.9) is satisfied. Since P_{a} and P_{b} together span the solution space of equation (1.6), whatever basis is chosen for $P_{a}, m_{b}-m$ members of this basis together with the basis for P_{b} span G_{b}. Since y vanishes near $x=a$ and belongs to $D\left(L_{b}\right)$ it is contained in the domain of every restriction of L_{1} of the kind described in Theorem 2.2. In particular then, setting $f=\lambda y-L y$ we have $y=R(\lambda, L) f$. In general, if $y_{0} \in D\left(L_{1}\right)$ and $z_{a} \in P_{a}$

$$
\int_{a}^{x}\left(\lambda y_{0}-L_{1} y_{0}, z_{a}\right) d s=-\left(\mathfrak{2} \eta_{0}, \zeta_{a}\right)^{x}+\left(\mathfrak{N}\left(\eta_{0}, \zeta_{a}\right)^{a}\right.
$$

When $y_{0}=y$ this reduces to

$$
\int_{a}^{x}\left(f, z_{a}\right) d s=-\left(\mathfrak{A} \eta, \zeta_{a}\right)^{x} .
$$

In particular, when z_{a} is one of the $m_{b}-m$ columns of Z_{a} (the columns of Z_{a} constitute the basis chosen for P_{a}) described above, $z_{a} \in D\left(M_{1}\right)$ and

$$
\int_{a}^{b}\left(f, z_{a}\right) d s=0
$$

since $y \in D\left(L_{b}\right)$. The hypothesis imposed on G_{b} implies that the largest subspace of P_{a} which lies in H_{0} is the subspace spanned by the $m_{b}-m$
columns of Z_{a} which together with the basis for P_{b} span G_{b}. By a theorem due essentially to Rellich [3, Lemma 5.1] the set S of all bounded, measurable, vector-valued functions which vanish near a and b and belong to the orthogonal complement J of P_{a} in H_{0} is contained in and dense in the orthogonal complement of the $m_{b}-m$ dimensional subspace of P_{a} which lies in H_{0}. Thus, since $f \in J$, there is a sequence $\left\{f_{n}\right\} \subset H_{0}$ such that $f_{n} \rightarrow f$ in H_{0} and each f_{n} vanishes near a and b. Let $y_{n}=R(\lambda, L) f_{n}$, then $y_{n} \rightarrow y=R(\lambda, L) f$ in H_{0} and since for x sufficiently near b

$$
y_{n}(x)=-Y_{b}(x) \int_{a}^{b} Z_{a}^{*}(s) f(s) d s
$$

each y_{n} vanishes near b.
Finally, $L y_{n}=L R(\lambda, L) f_{n}=\lambda y_{n}-f_{n} \rightarrow \lambda y-f=L y$ in H_{0}. This completes the proof.

Theorem 3.1. If the largest subspaces of the solution space of equation (1.6) which lie in $L^{2}(a, c ; I)$ and $L^{2}(c, b ; I)$ coincide with G_{a} and G_{b}, respectively, then $L_{0}^{\prime}=L_{0}$.

Proof. Let $y \in D\left(L_{0}\right)$. According to Lemma 3.1, there exist sequences $\left\{y_{a}^{n}\right\}$ and $\left\{y_{b}^{n}\right\}$ in $D\left(L_{1}\right)$ which vanish near a and b, respectively, and $\left\{y_{a}^{n}, L_{1} y_{a}^{n}\right\} \rightarrow\left\{y, L_{1} y\right\}$ and $\left\{y_{b}^{n}, L_{1} y_{b}^{n}\right\} \rightarrow\left\{y, L_{1} y\right\}$ in $H_{0} \times H_{0}$. Let

$$
y^{n}=\alpha y_{a}^{n}+\beta y_{b}^{n},
$$

where β is as before and $\alpha=1-\beta$. By Lemma 2.3 the sequence $\left\{y^{n}\right\}$ has the same convergence properties as the original sequences and vanishes near a and b. This proves the theorem.

Corollary. If $H_{1}=H_{0}$, then $L_{0}^{\prime}=L_{0}$.

The content of the above theorem is not empty. Examples constructed by Sims [6, pp. 256-257] provide cases in point for which G_{b} (or G_{a}) does not contain all solutions of equations of type (1.6) which lie in $L^{2}(c, b ; I)$ or $L^{2}(a, c ; I)$.

References

1. E. A. Coddington and N. Levinson, Theory of ordinary differential equations, McGraw-Hill, 1955.
2. E. Hille and R. S. Phillips, Functional analysis and semi-groups, Vol. XXXI, American Math. Soc. Colloqium Pub., 1957.
3. R. S. Phillips, Dissipative hyperbolic systems, Trans. Amer. Math. Soc. 86 (1957), 109-173.
4. ——, Dissipative operators and hyperbolic systems of partial differential equations, Trans. Amer. Math. Soc. 90 (1959), 193-254.
5. ——, Dissipative operators and parabolic systems of partial differential equations, Comm. Pure Appl. Math. 12 (1959), 249-276.
6. A. R. Sims, Secondary conditions for linear differential operators of the second order, Journal Math. and Mech. 6 (1957), 247-286.

Received April 27, 1965.
TRW Systems, Redondo Beach, California

