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ON THE Γ-RINGS OF NOBUSAWA

WILFRED E. BARNES

N. Nobusawa recently introduced the notion of a Turing,
more general than a ring, and obtained analogues of the
Wedderburn theorems for Γ-rings with minimum condition
on left ideals. In this paper the notions of Γ-homomorphism,
prime and (right) primary ideals, m-systems, and the radical
of an ideal are extended to Tarings, where the defining con-
ditions for a Γ-ring have been slightly weakened to permit
defining residue class Γ-rings. The radical R of a Γ-ring M
is shown to be an ideal of M, and the radical of M/R to be
zero, by methods similar to those of McCoy. If M satisfies
the maximum condition for ideals, the radical of a primary
ideal is shown to be prime, and the ideal QφM is P-primary
if and only if Pn g Q for some n, and AB g Q, A g P implies
B Q Q. Finally, in Γ-rings with maximum condition, if an
ideal has a primary representation, then the usual uniqueness
theorems are shown to hold by methods similar to those of
Murdoch.

2* Preliminary definitions* If M = {a, b, c, •} and Γ =
{a, β, 7, •} are additive abelian groups, and for all α, 6, c in M and
all a, β in Γ, the following conditions are satisfied

(0 ) aab is an element of M,
(1) (a + b)ac = aac + bac, a(a + β)b = aab + aβb, aa(b + c) =

aab + aac,

( 2 ) (aab)βc = aaφβc),

then M is called a Turing. If these conditions are strengthened to

(0') aab is an element of M, aaβ is an element of Γ,
(1') same as (1),
(2') (aab)βc = a(abβ)c = aa{bβc),
(3') aab = 0 for all α, b in M implies a = 0,

we then have a Γ-rmg in the sense of Nobusawa [3], As indicated
in [3], an example of a Turing is obtained by letting X and Y be
abelian groups, M = Horn (X, F), Γ = Horn (Γ, X), and αα& the usual
composite map. (While Nobusawa does not explicitly require that M
and Γ be abelian groups, it appears clear that this is intended.) We
may note that it follows from (0)-(2) that Oab = aOb = aaO = 0 for
all a and b in M and all a in Γ.

A subset A of the Γ-ring M is a right (left) ideal of M if A is
an additive subgroup of M and AΓM — {aac:ae A,ae Γ,ce M}(MΓA)

is contained in A. If A is both a left and a right ideal, then A is a
two-sided ideal, or simply an ideal of M.
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If ae M, then the principal ideal generated by α, denoted by
(α), is the intersection of all ideals containing α, and is the set of all
finite sums of elements of the form na + xaa + aβy + ujadv, where
n is an integer, x, y, n and v are elements of M, and α, β, 7, <5 are
elements of Γ.

If A and B are both right (resp. left, two-sided) ideals of M,
then A + B = {a + b \ a e A, b e B) is clearly also a right (resp. left,
two-sided) ideal, called the sum of A and B.

It is also clear that the intersection of any number of right (resp.
left, two-sided) ideals of M is again a right (resp. left, two-sided)
ideal of M.

If A is a right ideal of M, B a left ideal of M, and *S is any nonempty
subset of M, then the set SA — {Σ?=i siaίai si e S, a% e Γ, a^ A, n any
positive integer} is a right ideal of ikf, BS is a left ideal of ikf, and £>A is
a two-sided ideal of ikf.

When A is a (two-sided) ideal of ikf, then MIA = {x + A:xeM},
the set of cosets of A, is again a .Γ-ring with respect to the operations
(x + A) + (2/ + A) = (x + #) + A and (a? + A)α(τ/ + A) = tτα:7/ + A, as
may be verified by a straightforward computation. (We note that if
Nobusawa's conditions (0;)-(3') are imposed on a jΓ-ring, then this
residue class Γ-ring could not be defined, as one would have no way
of unambiguously defining a(x + A)β, and moreover (x + A)a(y + A) =
0 + A for all x and y need not imply a = 0, as may be seen by taking
A to be M2 = MM.)

Let ikf and N both be Γ-rings, and θ a map of M into iV. Then
0 is a F-homomorphism if and only if (x + ^)# = xO + 2/0 and (xay)θ ~
(xθ)a(yθ) for all x, y and α. If θ is also one-to-one and onto then 0
is a Γ-isomorphism.

If 0 is a Γ-homomorphism of M into N, then the kernel of 0,
O0"1 = {x G ikf: CU0 = 0}, is immediately seen to be an ideal of M.
More generally, if B is a right (resp. left, two-sided) ideal of JV then
Bθ~x — {x e M: xθ e B] is also a right (resp. left, two-sided) ideal of
M. Similarly, if 0 is a .Γ-homomorphism of M onto N and A is any
right (resp. left, two-sided) ideal of ikf, then Aθ — {aθ:aeA} is a
right (resp. left, two-sided) ideal of N.

The proofs of the following three theorems are minor modifications
of the proofs of the corresponding theorems in ordinary ring theory,
and will be omitted.

THEOREM 1. Let A be an ideal of the Γ-ring M and 0 the natural
mapping x—>x + A of M onto MIA. Then 0 is a Γ-homomorphism of
M onto MjA with kernel A. Conversely, if 0 is a Γ-homomorphism
of M onto a Γ-ring N and A is the kernel of 0, then M/A is Γ-
isomorphic to N.
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THEOREM 2. Let θ be a Γ-homomorphism of a Γ-ring M onto a
Γ-ring N with kernel A. Then Bf is an ideal of N if and only
if B'θ'1 — B is an ideal of M containing A. In this case we have
M/B, N/B' and (M/A)/(B/A) are all Γ-isomorphic.

THEOREM 3. Let A and B be ideals of the Γ-ring M and
θ : M-+ M/B the canonical Γ-homomorphism. Then A + B — (Aθ)θ~1

and (A + B)/B is Γ-isomorphic to A/(A (Ί B).

3* Prime ideals and the radical* An ideal P of the /"-ring M
is said to be prime if for any ideals A and B of M, AB £ P implies

THEOREM 4. An ideal P of M is prime if and only if (a)(b) £
P implies ae P or be P.

Proof. P a prime ideal clearly implies that if (α)(δ) £ P then
ae P or be P. Conversely, suppose (α)(δ) £ P implies ae P or be P,
and that A and B are ideals such that AB £ P but 4 g P . Then
there exists ae A such that a£ P, and for any be B we have (α)(δ) £
AB £ P, whence 6 G P . Thus 5 £ P and P is prime.

THEOREM 5. Let M be a Γ-ring satisfying Nobusawa7s conditions
(O')-(3'), and P an ideal of M. Then P is prime if and only if
aΓb £ P implies ae P or be P, i.e. if and only if aί P and b£ P
implies there exists ae Γ such that aab $ P.

Proof. Suppose P is prime, and aΓb £ P with aί P. Then if
x is any element of (α)(6), a; is a finite sum of elements of the form
(na + caa + aβd + e7adf)p(mb + gμb + bvh + jζbηk), where m and n
are integers, c, d, e, /, g, h, j and k are in M, and α, /9, 7, #, p, μ, v, ζ, η
are in Γ. But every element in such a product is in P by conditions
(O')-(3') and the assumption that aΓb £ P. For example, (caa)p(gμb) =
ca(ap(gμb)) = ca(a(pgμ)b) — ca(aσb), some σeΓ, hence is in caP^P.
Thus (α)(&) £ P and α g P then implies be P by Theorem 4.

Conversely, suppose aΓb Q P implies aeP or beP and that A
and B are ideals with AB £ P but A g P. Then for some α e i ,
a£P, hence for any 6e B, aΓb Q AB Q P implies be P. Thus B £ P
and P is prime.

THEOREM 6. // A and P are ideals of M, A £ P and P prime,
then P/A is prime in M/A. Conversely, if P' is a prime ideal of



414 WILFRED E. BARNES

M/A, θ the canonical homomorphίsm of M onto M/A} then P'θ*1 — P
is a prime ideal of M.

Proof. Assume A g P, P prime, and (B/A)(C/A) Q P/A. Then
BC S P, hence B^P or C s P, i.e. B/A g P/A or C/A S P/A, and
P/A is prime. Conversely, suppose P' is a prime ideal of M/A, and
BCQP= P'θ-1. Then (BΘ)(CΘ) Q Pθ = P r, and J30 g P' or Cθ g P'.
But then B S C W " 1 S P'θ"1 = P o r C g (Cί?)^-1 g P'tf-1 = P, so that
P is prime.

In order to define the radical of an ideal A in a .Γ-ring M, we
proceed in a manner analogous to that of McCoy [1], first defining the
notion of an m-system, corresponding to McCoy's m-system in that an
ideal P will be prime if and only if its complement P c is an m-system,
and essentially the same as the m-system of van der Walt [4]. If S
is any subset of the /"-ring M, we call S an m-system if S = 0 or
if a and 6 in S implies that (α)(δ) (Ί S Φ 0 . We note that the ideal
P is a prime divisor of the ideal A if and only if P° is an m-system
disjoint from A.

For any ideal A of M, we then define the radical of A, r(A), to
be the set of all elements x of M such that every m-system containing
x contains an element of A. It is immediate that i g r(A), and that if
P is a prime ideal divisor of A then r(A) £Ξ P since PG is an m-system
disjoint from A. The radical of the ring M is defined to be r(0). In
order to establish that r(A) is the intersection of all prime ideal
divisors of A and hence is an ideal, we proceed by means of lemmas
analogous to those of McCoy [1] or Murdoch [2],

LEMMA 1. Let A be an ideal disjoint from the m-system S.
Then there exists an m-system T 2 S which is maximal in the class
of m-systems disjoint from A.

Proof. Zorn's lemma applied to the class of m-systems disjoint
from A.

LEMMA 2. Let A and S be as in Lemma 1. Then there exists
[an ideal P 3 i which is maximal in the class of ideals containing

A and disjoint from S. Moreover, P is necessarily prime.

Proof. The ideal P exists by Zorn's lemma applied to the class
of ideals containing A and disjoint from S. Now suppose that both 6
and c are elements of M not in P. Then P+(b)φ P and P + (c) Φ P,
hence by the maximality of P there exist elements p1 and p2 in P,
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&! in (b) and cx in (c) such that s1 — p1 + bt and s2 = p2 + cx are both
in S. Since S is an m-system, we then have that (Λ)(S2) Π S =£ 0 .
But (sOW S (P + (W)(P + (d)) S (P + (δ))(P + (c)) g P + (δ)(c). Thus
(δ)(c) g P, so that 6 and c not in P implies (δ)(c) §= P, and P is prime.

LEMMA 3. A nonempty subset P of the Γ-ring M is a minimal
prime ideal containing an ideal A (i.e. P is a minimal prime of A)
if and only if Pc is a maximal m-system disjoint from A.

Proof. Suppose Pc is a maximal m-system disjoint from A, and
let P1 be the prime ideal of Lemma 2, maximal in the class of ideals
containing A and disjoint from P c, so that Pi 3 P°. Now Pΐ is an
m-system disjoint from A, hence the maximality of PG implies Pΐ = Pc,
or Px — P, so that P is a prime ideal. Clearly, the maximality of PG

then implies that P is a minimal prime of A.

Conversely, suppose that P is a minimal prime of A. Then P c in
an m-system disjoint from A, and by Lemma 1 there exists a maximal
m-system S containing PG and disjoint from A. By that part of this
lemma just proved, Sc is a minimal prime of A. But Sc § P and the
minimality of P implies that S° — P, or S — PG as required.

COROLLARY. If P is a prime ideal divisor of A, then P contains
a minimal prime of A.

Proof. PG is an m-system disjoint from A, hence P° S S for S
a maximal m-system disjoint from A, by Lemma 1. But then SG £ P
and SG is a minimal prime of A.

THEOREM 7. If A is any ideal of the Γ-rίng M, then r(A) is
the intersection of the minimal primes of A.

Proof. Clearly r(A) is contained in this intersection. So suppose
that x is an element not in r(A). Then, by definition of r(A), there
exists an m-system S containing x but disjoint from A. Then by
Lemma 1 there exists S i i S such that S± is a maximal m-system
disjoint from A. By Lemma 3, Si = P is a minimal prime of A, and
x e S S Si implies x £ P. Thus an element not in r(A) is not in the
intersection of the minimal primes of A.

COROLLARY 1. The radical of an ideal is an ideal.

COROLLARY 2. r(r(A)) = r(A).
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COROLLARY 3. If R = r(0), then r(M/R) = 0.

Proof. Suppose & + i? ̂  0 + R. Then $ $ R and there exists some
prime ideal PΏ, R such that x&P. Then P/iϋ is a prime ideal of
Λf/iί and x + RgP/R, hence a; + R<£r(M/R).

COROLLARY 4. .For cm# ΐdeαZs A αwd B, r(Af)B) = r(A)f]r(B).

Proof. Since every prime divisor of A or of B is also a prime
divisor of AΓ\ B, we have r(A ί l 5 ) S r(A) Π r(J3). Conversely, if a
prime P 2 A Π 5, then P 2 AB and P contains either A or I?, hence
r(A) Π r(B) g r(A Π B).

We may note that this last corollary evidently extends to arbitrary
finite intersections of ideals.

4* Primary ideals* We define an ideal Q in the Turing M to be
right primary if for any ideals A and B, AB g Q implies A g r(Q)
or ΰ g C, A similar definition holds for left primary ideals. Since
throughout this paper we shall deal only with right primary ideals,
we shall refer to a right primary ideal as simply a primary ideal.
Similar results would of course hold for left primary ideals.

THEOREM 8. An ideal Q of the Γ-ring M is primary if and
only if (α)(6) £ Q implies ae r(Q) or beQ.

Proof. The only if part follows trivially from the definition of
a primary ideal. So suppose that (α)(6) £ Q implies a e r(Q) or b e Q,
and let AB ^ Q for B g Q. Then there exists 6eJ5nQ c , and for
any ae A we have (α)(δ) £ AB £ Q, hence α e r(Q), A £ r(Q) and Q
is primary.

THEOREM 9. An ideal Q of a Γ-ring M satisfying Nobusawa's
conditions (O')-(3') is primary if and only if aΓb £ Q implies a e r(Q)
or beQ (i.e. if and only if aί r(Q) and bίQ implies aΓb Π Qc Φ 0 ) .

Proof. Suppose Q is primary, aΓb £ Q and aίr(Q). Then any
element of (α)(6) is a finite sum of elements of the form

(na + caa + aβd + ejaδf)p(mb + pμ& + 6vA + jζbηk) ,

each of which is in Q, hence (α)(δ) £ Q and beQ by Theorem 8.

Conversely, suppose aΓb £ Q implies a e r(Q) or k Q , and AB £
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with Bξ£Q. Then there exists beBf]Qc, and for any aeA we have

aΓb £ AB s Q, hence α e r(Q), A £ r(Q), and Q is primary.

THEOREM 10. Let Q1 and Q2 be primary and r{Q^) = r(Q2) — C.
Then Qx Π Q2 is primary with radical C.

Proof. r(Qί Π Q2) = C by Theorem 7, Corollary 4. Hence if
AB s Qi n Q2 but B ^Q1Γ\Q2 we may assume that B <£QU and
AB £ Qx then implies A £ r(Qi) = C. Hence Qx Π Q2 is primary.

COROLLARY. Lei Qt be primary with radical C, i = 1,2, , n.
Then Qi Π Q2 Π ΓΊ Qn is primary with radical C.

5. brings with ascending chain condition* Throughout the
rest of this paper it will be assumed that M is a Turing satisfying
the ascending chain condition on ideals.

THEOREM 11. Any ideal of M contains a finite product of its
minimal primes.

Proof. If not, let A be an ideal maximal in the set of ideals not
meeting the stated condition. Then A is not itself prime, and there
exist ideals B and C properly containing A such that BC £ A. Then
B and C must each meet the stated condition, hence A contains some
finite product PtP2 Pn of prime ideal divisors. Since any prime
ideal divisor of A contains a minimal prime of A, any P% which is not
a minimal prime of A may clearly be replaced by a minimal prime of
A. Hence A does meet the condition, contrary to assumption, and the
theorem is proved.

COROLLARY 1. Any ideal A of M has only a finite number of
minimal primes.

Proof. Let PXP2 PnQ A and P be a minimal prime of A.
Then AQ P implies some Pt £ P and hence Pi — P by the mini-
mality of P.

COROLLARY 2. (r(A))n £ A for some positive integer n.

Proof. P,P2 . . . P . g i a n d r(A) £ P< for all i together imply
{r{A))n Q A.

THEOREM 12. If Q is a primary ideal, then r(Q) = P is prime.
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Proof. Suppose Q is primary and BC £ r(Q) with B g r(Q).
Then for some n, (BC)n £ Q and we may assume w to be the least
positive integer with this property. If n — 1, then BC £ Q implies
C £ r(Q). If n > 1, then B^BC)"-1) S Q implies CiBC)^1 £ Q, and
since (BC)*"1 g Q we again have C £ r(Q). Hence r(Q) is prime.

COROLLARY 1. If Q is a primary ideal, then Q has a unique
minimal prime r(Q) = P.

COROLLARY 2. Aw ideal Q is primary if and only if either
( i ) AB £ Q implies An Q Q for some n or B £ Q, or
(ii) (α)(δ) £ Q implies (a)n £ Q /or some w or (5) £ Q.

We shall say that the ideal Q is P-primary, or is primary for P,
if Q is primary and its prime radical is P.

THEOREM 13. An ideal Qφ M is P-primary if and only if either
(1) PnQQ for some n, and AB £ Q implies AξΞ: P or B^Q, or
(2) PnQQ for some n, and (a)(b) £ Q implies (a) g P or (b) £ Q.

1/ either condition (1) or (2) holds, then P is prime.

Proof. If Q is P-primary, then by definition Q is primary and
P — r(Q). P is prime by Theorem 12, and P w £ Q for some % by
Theorem 11, Corollary 2. Hence if Q is P-primary, then both (1) and
(2) hold, and P is prime.

Now suppose (1) holds. Then from QM £ Q with If g Q we have
Q g P , and from P w g Q follows P g r(Q). If AB £ P then (AB)n £ Q
and hence either Ag P or ί^AB)^1 £ Q. In the latter case either
ΰ g P o r (AB)*1-1 £ Q. Continuing, we have either A £ P or 2? £ P
so that P is prime. Thus P— r(Q), and (1) then says Q is P-primary.

Finally, suppose (2) holds. Then if AB £ Q, but B^Q, there
must exist 6 6 5fl Qc. Hence for every α e i , (α)(6) £ AB £ Q implies
(α) £ P, or A £ P. Thus (2) implies (1) and the proof is complete.

6* Primary representations of ideals in /Vrings* In this section
we obtain analogues of the classical Noether-Lasker theorems concerning
primary representations of ideals. Since Γ-rings include non-commutative
rings as special cases, even the ascending chain condition on ideals will
not assure that every ideal has a representation as a finite intersection
of primary ideals. But for ideals having such representations, the
usual uniqueness theorems hold. Recall that we are still assuming
the ascending chain condition for ideals.
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We call A = Qt (Ί Q2 Γ) Π Qn an irredundant primary represen-
tation of A, if each (^ is primary and none can be omitted. If in
addition the prime radicals Pu P2, , Pn are all distinct the represen-
tation is called short.

THEOREM 14. An irredundant intersection A = Qi Π Q2 Π Γι Q%

of primary ideals is again primary if and only if P1 = P2 = =
Pn, where P{ = riQ,).

Proof. If P— P1— ••• = Pw, then A is primary for P by the
corollary to Theorem 10. Conversely, suppose that the Pt are not all
equal, say Px g P2. Now P? g Q, for some n, hence P?(Q2 n nQ.)gA.
But Pin §£ P2 since P2 is prime, hence P? ξ£ r(A). Since the intersection
is irredundant, Q2 Π ΓΊ Qn g A, hence A is not primary if the P { are
not all equal.

COROLLARY. If the ideal A has a representation as the inter-
section of a finite number of primary ideals, then A has a short
primary representation.

Proof. Any redundant intersectants can be deleted to obtain an
irredundant representation. By the theorem, the intersection of those
intersectants having the same radical is again primary with the same
radical, and the representation so obtained is still irredundant, hence
short.

THEOREM 15. Let A = Qx Π Q2 Π - Π Qn be a primary represen-
tation of A, and r(Qi) = Pi% Then the minimal primes of A are
the minimal elements of {Pu P2, , PJ .

Proof. r(A) = Px Π P2 Π Π Pn S P for any minimal prime P of
A. Then PλP2 PnQ P implies P< £ P for some i. But P a minimal
prime of A then implies P{ = P. Thus the minimal primes of A are
among Pu P2, . . . , Pn. If P is minimal in {Pu P2, , P J then P4

cannot properly contain any other prime ideal divisor P of A, since
P must contain some Ph hence Pi is a minimal prime of A.

If A is any ideal of the Γ-ring Λf, and P ̂  Λf is a prime ideal,
then we define AP, the P-(isolated) component of A, to be the union
of all ideals C such that for each C there exists some ideal B ξ£ P
with BC £ A. For convenience AM is defined to be A.

AP is well-defined. For by the ascending chain condition there
exists at least one maximal such ideal C, with BC £ A, Z? §£ P. If also

g i , F g P, then £ £ ' g P since P is prime, and BB\C + Cr) £ A,
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so C + C" is again such an ideal. The maximality of C then implies
C" S C. Thus Ap is the unique maximal ideal such that BAP SΞ A
for some B §£ P. It is clear that Ag=AF, and that if 4 g P then
Ap = ilf. We collect some other simple properties of P-components in
the following.

LEMMA. (1) If P1S P2, then APl £ AP2.

( 2) 1/ A £ A, then ( A ) P £ (A)P.
(3) (A n A ) P - (Λ)P n (A)P.

( 4) Q ΐs P-primary if and only if QP — Q and Pm £ Q for
some m.

Proof. (1) BAPl £ A for some £ g P :, hence S gΞ P2 and
APl S AP2.

( 2 ) JB(A)P E Λ E Λ for some B g P, hence ( A ) P S (Λ)P.

( 3 ) J5( A n A ) P S Λ n A 2 S Λ for some B g P , hence (A Γ! A2)P s
(A)p, and similarly (AΠA)pϋ(A)p, whence (AίΊ A2)P c (A)pΠ (A2)P.
Now if x is in (AJp Π (A2)P then there exist ideals B^P and B 2 | P
such that B ί̂c) S A a^d B2(x) £ A, hence BJ}2{x) £ A 1Ί A. Then
P ^ g P implies a; e (A Π A)p.

( 4 ) Assume Q is P-primary. QP a Q trivially. If ΰ g P, then
PC £ Q implies C QQ since Q is P-primary, hence QP = Q. Conversely,
if Qp — Q then 5C £ Q and C g Q implies JS £ P, which together with
Pm QQ implies Q is P-primary.

THEOREM 16. Let A = Q^QzΠ ΠQΛ, Qί primary for Piy and
P be a prime ideal containing P$ ΐ/ α ĉ? o î̂ / i/ 1 ^ i ^ m ^ n.
Then AP = Q, Π Q2 Π Π Qm. // P contains no Pi, then AP = M.

Proof. If P contains no P< then since A contains a product of its
minimal primes, i.e. a product of the Piy P does not contain A and AP =
M. So suppose P^ Pi if and only if 1 ̂  i ^ m ̂  n. Then AP £ AP. £
(Qί)P. = Qί for l^i^m, and A P ^ Q I Π Q2 Π Π Q«. If m = n then
-4p C -4 £ -Ap, whence i P = 4 = ft n Q2 ίl ίl Q%. If m < % then
for m <i ^n, Qi^P since P< g P, hence Qm+1Qm+2 Q» S -P. Then
(Qw +iQw + 2 Q»)(Qi ί lQ 2 ί l n Q J g 4 , whence Qx ΓΊ Q2 Π Π Qw Q
AP^Q1f]Q2Π Π Qm, and the theorem is proved.

If A = ft Π Q2 Π Π Qn, Pi — r(Qi), is a short primary represen-
tation of A, a set S = {Pil9 , Pίjfc} of associated primes is an isolated
set of associated primes if P{e S and P3 £ P^ implies P, e S. For S
an isolated set of primes, As — Γ\Qi> Pi £ S, is an isolated component
of A. We then have the following.
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COROLLARY.1 Let A = Q, n Q2 Π Π Q«, Pi = HQi), be a short
primary representation of A and S an isolated set of associated
primes of A. Then the isolated component As depends only on A
and S, and not on the particular primary representation of A. In
particular, if P is a minimal prime of A, then AP — Q{ for some
i, hence the isolated component corresponding to a minimal prime
P is P-primary and occurs in every short primary representation
of A.

Proof. For S an isolated set, As — Γ\PiesQί = Γ\PiesΛP. and the
result follows at once.

THEOREM 17. Let A = Qλ n Q2 Π Π Qn, Pi = HQi), be a short
primary representation of A. Then a prime ideal P containing A
is one of the Pi if and only if PB £ AP for some ideal B §£ AP.

Proof. Suppose P~Pm and the indexing is so chosen that Pi^=P
if and only if i ^ m. Then AP — Qx Π Q2 Π Π Qm is short, hence
C = Q1 Π Q2 Π ΓΊ Qm^ £AP (C = M if m = 1). Since Pk £ Qm for
some k, PkC £ AP, and we may choose r minimal such that PrC £ AP.
(r Ξ> 1 since C §£ AP). If r = l then P C e 4 P and we may take
5 = C. If r > 1 then P{Pr-χC) £ AP but P ^ ^ g AP so we may take

Conversely, suppose P 3 4 and PJB £ AP with β g i P . We may
choose the indexing so that AP — Qι Π Q2 Π Π Qm (i.e. P^ Pi if
and only if 1 <̂  ΐ g m), which is a short representation of AP. Then
P β £ Qi for 1 <S i g m, but ΰ g£ Q5 for some j ^m. Qά primary for
P, then implies that P £ P y, hence P = P, .

COROLLARY. / / A = Qx n Q2 Π Π Qn = Qί Π Q2 Π Π Q'm are

two short primary representations of A, then m — n and the two
sets of radicals, {Pu P2, , P J and {P/, P2', , PJJ, are the same.
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