MAXIMUM AND MONOTONICITY PROPERTIES OF INITIAL-BOUNDARY VALUE PROBLEMS FOR HYPERBOLIC EQUATIONS

D. Sather

Abstract

Various maximum and monotonicity properties of some initial boundary value problems for classes of linear second order hyperbolic partial differential operators in two independent variables are established. For example, let M be such an operator in Cartesian coordinates (x, y) and let T be a domain bounded by a characteristic curve of M with everywhere negative slope, and segments $O A$ and $O B$ of the positive x-axis and the positive y-axis, respectively; under certain restrictions on the coefficients of the operator M, if $M u \leqq 0$ in $T, u=0$ on $O A \cup O B$ and $\partial u / \partial y \leqq 0$ on $O A$ then $u(x, y) \leqq 0$ in T.

Such maximum and monotonicity properties also have applications to ordinary differential equations; the above mentioned maximum property yields a comparison theorem on the distance between zeros of solutions to some ordinary differential equations.

The first maximum principles for a class of linear second order hyperbolic operators in two independent variables were formulated for problems in which conditions are imposed on the solution along characteristic curves $[1 ; 3]$.

A maximum property of Cauchy's problem, in which the hypotheses on the solutions are imposed along noncharacteristic curves rather than characteristic curves, was first formulated by Weinberger [12] for a class of hyperbolic operators of the form

$$
\begin{equation*}
H u=\frac{\partial}{\partial x}\left(a \frac{\partial u}{\partial x}\right)-\frac{\partial}{\partial y}\left(b \frac{\partial u}{\partial y}\right)+c \frac{\partial u}{\partial x}+d \frac{\partial u}{\partial y} \quad a>0, b>0 . \tag{1.1}
\end{equation*}
$$

Namely, under certain restrictions on the coefficients of the operator H, if $\partial u / \partial y \leqq 0$ on the initial line $y=0$ and if $H u \geqq 0$ for $y>0$ then u attains its maximum on $y=0$.

A generalized maximum property of Cauchy's problem was established by Protter [7] for essentially any smooth operator of the form (1.1). That is, the maximum of u divided by an appropriate function of the form $e^{\gamma x}\left(1-\beta e^{-\alpha y}\right)$, over a sufficiently small strip $0 \leqq y \leqq y_{0}$, is attained on $y=0$.

Recently, additional maximum properties and even some monotonicity properties of Cauchy and characteristic initial value problems have been obtained by Gloistehn [4] for some classes of linear and nonlinear hyperbolic operators in two independent variables. For example, under
certain restrictions on the coefficients of the operator H in (1.1), if $u \leqq 0$ and $\partial u / \partial y+\sqrt{a} \cdot \partial u / \partial x \leqq 0$ on $y=0$, and if $H u \geqq 0$ for $y>0$ then $u \leqq 0$ and $\partial u / \partial y+\sqrt{a} \cdot \partial u / \partial x+\alpha u \leqq 0$ for $y \geqq 0$; here $\alpha(x, y)$ depends only on the coefficients of the operator H.

In the case of linear second order hyperbolic operators in more than two independent variables, Weinstein [14, 15], Weinberger [13] and the author $[8 ; 9 ; 10$] have established maximum properties of Cauchy's problem. A typical result for the wave operator

$$
\begin{equation*}
W u=\frac{\partial^{2} u}{\partial t^{2}}-\Delta u \tag{1.2}
\end{equation*}
$$

where Δ is the n-dimensional Laplace operator, is the following [10; 13; 14]. Let $N=((n-2) / 2)(n$ even $), N=((n-3) / 2)(n$ odd $)$. If $\partial^{k} u / \partial t^{k}=0$ $(k=0,1, \cdots, N)$ and $\partial^{N+1} u / \partial t^{N+1} \leqq 0$ on the initial plane $t=0$, and if $\left(\partial^{N} / \partial t^{N}\right) \cdot(W u) \leqq 0$ for $t \geqq 0$ then $u \leqq 0$ for $t \geqq 0$. Here the t-derivatives of u on the initial plane $t=0$ are to be determined from the Cauchy data.

In this paper, we derive various maximum and monotonicity properties of some initial-boundary value problems for linear second order hyperbolic equations in two independent variables. These initialboundary value problems, first considered by Hadamard [5; 6], may be formulated in the following way.

Let L be a hyperbolic equation in characteristic coordinates (cf. [2]) of the form ${ }^{1}$

$$
\begin{equation*}
L u=u_{\xi \eta}+a u_{\xi}+b u_{\eta}+c u=F \tag{1.3}
\end{equation*}
$$

Let C_{l}, C_{0} and C_{r} be three curves with the following properties: (1) C_{l}, C_{0} and C_{r} may be represented as $\eta=F_{l}(\xi), \eta=f(\xi)$ and $\eta=F_{r}(\xi)$, respectively, where F_{l}, f and F_{r} are continuously differentiable and $F_{l}^{\prime}>0, f^{\prime}<0$ and $F_{r}^{\prime}>0$, (2) C_{0} and C_{l} intersect at the point $O(0,0)$, (3) C_{0} and C_{r} intersect at $D\left(\bar{\xi}_{0}, \bar{\eta}_{0}\right)$, where $\bar{\xi}_{0}>0$ and $\bar{\eta}_{0}<0$, and (4) C_{l} and C_{r} do not intersect. Let C_{l}^{+}and C_{0}^{+}be the parts of C_{l} and C_{0}, respectively, where $\xi \geqq 0$. Let C_{r}^{\prime} and C_{0}^{\prime} be the parts of C_{r} and C_{0}, respectively, where $\eta \geqq \bar{\eta}_{0}$.

In the initial-boundary value problem I_{l}, we assume that the coefficients of the operator L are defined in the region "between" C_{0}^{+}and C_{l}^{+}and on the boundary $C_{0}^{+} \cup C_{l}^{+}, u$ and u_{ξ} (Cauchy data) are prescribed on C_{0}^{+}and u is prescribed on C_{l}^{+}.

In the initial-boundary value problem I_{r}, the operator L is defined in the region "between" C_{0}^{\prime} and C_{r}^{\prime} and on the boundary $C_{0}^{\prime} \cup C_{r}^{\prime}, u$ and u_{η} (Cauchy data) are prescribed on C_{0}^{\prime} and u is prescribed on C_{r}^{\prime}.

In the initial-boundary value problem $I I_{l r}$, the operator L is defined

[^0]in the region "between" $C_{l}^{+}, C_{r}^{\prime}$ and the segment $O D$ of the curve C_{0} and also on the boundary $C_{l}^{+} \cup O D \cup C_{r}^{\prime}, u$ and either u_{ξ} or u_{η} are prescribed on $O D$ and u is prescribed on $C_{l}^{+} \cup C_{r}^{\prime}$.

In § 2 and § 3 , under certain conditions on the coefficients of the operator L, we establish some maximum properties of the initial-boundary value problems I_{l}, I_{r} and $I I_{l r}$. In $\S 4$, the results of $\S 2$ and $\S 3$ are extended to an operator that is not expressed in terms of characteristic coordinates; namely, we consider a hyperbolic operator of the form

$$
\begin{equation*}
M u=u_{y y}-h^{2}(x, y) u_{x x}+\alpha(x, y) u_{x}+\beta(x, y) u_{y}+\gamma(x, y) u, \quad h>0 \tag{1.4}
\end{equation*}
$$

In $\S 5$, we obtain a sort of a monotonicity property, as well as another maximum property, of an initial-boundary value problem for an operator of the form (1.4); in §6, an application of this maximum property yields a comparison theorem on the distance between zeros of solutions to some ordinary differential equations.
2. Maximum properties of the initial-boundary value problems I_{l} and I_{r}. We consider a hyperbolic operator L in characteristic coordinates of the form

$$
\begin{equation*}
L u=u_{\xi \eta}+a u_{\xi}+b u_{\eta}+c u \tag{2.1}
\end{equation*}
$$

Let $A\left(\bar{\xi}_{1}, \bar{\eta}_{1}\right)$ and $B\left(\bar{\xi}_{1}, \bar{\eta}_{2}\right)$ be points on C_{0}^{+}and C_{l}^{+}, respectively. Let $O A$ and $O B$ be the indicated segments of C_{0}^{+}and C_{l}^{+}; the points O and A are assumed to belong to $O A$. Let T_{B} denote the domain bounded by $O A, O B$ and the line $\xi=\bar{\xi}_{1}>0$ and let \bar{T}_{B} denote the closure of T_{B}. We assume that the coefficients of L are continuous in \bar{T}_{B} and $b(\xi, \eta)$ has continuous first derivatives in $\bar{T}_{B}-O B$. We consider functions u that are twice continuously differentiable in $\bar{T}_{B}-O B$ and continuous, together with their first derivatives, in \bar{T}_{B}.

We consider problem I_{l}; that is, u and u_{ξ} are prescribed on C_{0}^{+}and u is prescribed on C_{l}^{+}. In addition, suppose that

$$
\begin{equation*}
u_{\xi}<0 \quad \text { on } \quad O A-\{O\} .{ }^{2} \tag{2.2}
\end{equation*}
$$

We have the following maximum property of problem I_{l}.
ThEOREM 1. Let the coefficients of L satisfy the inequalities

$$
\begin{equation*}
b_{n}+a b-c \geqq 0 \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
c \geqq 0 \tag{2.4}
\end{equation*}
$$

[^1]in T_{B}, and
\[

$$
\begin{equation*}
b \geqq 0 \quad \text { on } \quad O A \tag{2.5}
\end{equation*}
$$

\]

Let u satisfy the inequality (2.2) and

$$
\begin{equation*}
L u \leqq 0 \quad \text { in } \quad T_{B} . \tag{2.6}
\end{equation*}
$$

Then if the maximum of u in \bar{T}_{B} is nonnegative it can only be attained on $O A \cup O B$.

Proof. Let the maximum of u in \bar{T}_{B} occur at the point Q and suppose that Q does not lie on $O A \cup O B$. Then

$$
\begin{equation*}
u_{\xi}(Q) \geqq 0 \tag{2.7}
\end{equation*}
$$

Let P denote the unique point of intersection of $O A$ and the characteristic $\Gamma(\xi=$ constant $)$ through Q.

The following fundamental identity is also used in the discussion of maximum principles for mixed elliptic-hyperbolic operators [1, $p .456]$:

$$
\begin{equation*}
v L u=\left(v u_{\xi}\right)_{\eta}+(b v u)_{\eta}+\left[c v-(b v)_{\eta}\right] u \tag{2.8}
\end{equation*}
$$

where v is a positive solution of the equation

$$
\begin{equation*}
v_{\eta}=a v \tag{2.9}
\end{equation*}
$$

We integrate (2.8) along Γ from P to Q and obtain

$$
\begin{align*}
\left.v u_{\xi}\right|_{Q}=\left.v u_{\xi}\right|_{P} & +\int_{P}^{Q} v L u d \eta-\left.b v u\right|_{P} ^{Q}+\int_{P}^{Q} v u\left(b_{\eta}+a b-c\right) d \eta \tag{2.10}\\
=\left.v u_{\xi}\right|_{P} & +\int_{P}^{Q} v L u d \eta+\left.(b v)\right|_{P}[u(P)-u(Q)]-u(Q) \int_{P}^{Q} c v d \eta \\
& +\int_{P}^{Q} v[u-u(Q)]\left(b_{\eta}+a b-c\right) d \eta
\end{align*}
$$

Since $u(Q) \geqq 0$ and $u \leqq u(Q)$ in \bar{T}_{B}, the equation (2.10) and (2.2) through (2.7) imply a contradiction. This completes the proof of Theorem 1.

The conditions (2.3), (2.4) and (2.5) are "best possible" in the sense that one can give examples where the maximum property in Theorem 1 does not hold when these conditions fail to be satisfied (see Examples 1,3 and 2 , respectively, in §4).

Corollary 1. If $c=0$ then the result of Theorem 1 holds without the requirement that the maximum of u be nonnegative.

Corollary 2. If, in Corollary 1, we have $u \leqq 0$ on $O A \cup O B$ then $u \leqq 0$ in \bar{T}_{B} holds without the requirement that the inequality (2.2) is strict.

The proof of Corollary 2 consists of applying Corollary 1 to functions of the form $\omega=u-\varepsilon e^{\lambda(\xi+\eta)}$, with λ chosen so large that $L \omega \leqq 0$, and then letting $\varepsilon \rightarrow 0$.

If we impose further restrictions on the data along $O A$ and $O B$ we can eliminate the restrictions (2.4) and (2.5) on the operator L.

THEOREM 2. Let the coefficients of L satisfy the inequality

$$
\begin{equation*}
b_{\eta}+a b-c \geqq 0 \text { in } T_{B} \tag{2.3}
\end{equation*}
$$

Let u satisfy the conditions

$$
\begin{equation*}
u=0 \quad \text { and } \quad u_{\xi} \leqq 0, \quad \text { on } O A \tag{2.11}
\end{equation*}
$$

and the differential inequality

$$
\begin{equation*}
L u \leqq 0 \quad \text { in } \quad T_{B} \tag{2.13}
\end{equation*}
$$

Then

$$
\begin{equation*}
u \leqq 0 \quad \text { in } \quad \bar{T}_{B} \tag{2.14}
\end{equation*}
$$

Moreover, if the strict inequality in (2.11) holds on $O A-\{O\}$ then $u<0$ in $T_{B} \cup A B$.

Proof. We define the functions

$$
u^{\delta}=e^{-\delta(\xi+\eta)} u, \quad \delta>0
$$

Each function u^{δ} satisfies a differential inequality

$$
\begin{equation*}
L^{\delta} u^{\delta} \equiv u_{\xi \eta}^{\delta}+a^{\delta} u_{\xi}^{\delta}+b^{\delta} u_{\eta}^{\delta}+c^{\delta} u^{\delta} \leqq 0 \quad \text { in } \quad T_{B}, \tag{2.15}
\end{equation*}
$$

where the coefficients of the hyperbolic operator L^{δ} are given by

$$
\begin{align*}
& a^{\delta}=a+\delta \tag{2.16}\\
& b^{\delta}=b+\delta \tag{2.17}\\
& c^{\delta}=c+\delta(a+b)+\delta^{2} \tag{2.18}
\end{align*}
$$

We note that for δ sufficiently large we have $b^{\delta} \geqq 0$ on $O A$ and $c^{\delta} \geqq 0$ in \bar{T}_{B}. Since the expression $b_{\eta}+a b-c$ is one of the two Laplace Invariants ${ }^{3}$ under transformations of the dependent variable u of the form $u=g U$, where g is any positive function (cf. [1, p. 460]), we have

$$
\begin{equation*}
b_{\eta}^{\delta}+a^{\delta} b^{\delta}-c^{\delta}=b_{\eta}+a b-c \tag{2.19}
\end{equation*}
$$

[^2]Suppose that the strict inequality in (2.11) holds on $O A-\{O\}$. Since

$$
\begin{equation*}
u_{\xi}^{\delta}=e^{-\delta(\xi+\eta)} u_{\xi} \quad \text { on } \quad O A \tag{2.20}
\end{equation*}
$$

Theorem 1 implies that $u^{\delta}<0$ in $T_{B} \cup A B$. Therefore $u<0$ in $T_{B} \cup A B$. This establishes the part of Theorem 2 when u_{ξ} is negative on $O A-\{0\}$.

In order to complete the proof of Theorem 2, we introduce the class of functions

$$
\omega=u-\varepsilon \phi e^{\lambda(\xi+\eta)}
$$

where ϕ is given by

$$
\phi(\xi, \eta)=\eta-f(\xi) \quad(\xi, \eta) \quad \text { in } \quad \bar{T}_{B}
$$

and $\eta=f(\xi)$ is the equation of the curve C_{0}. We note that

$$
\begin{equation*}
\left.\omega_{\xi}\right|_{O A}=\left.u_{\xi}\right|_{O A}+\left.\varepsilon f^{\prime} e^{\lambda(\xi+\eta)}\right|_{O A} \tag{2.21}
\end{equation*}
$$

(2.22) $L \omega=L u-\varepsilon e^{\lambda(\xi+\eta)}\left[\lambda\left(1-f^{\prime}\right)-a f^{\prime}+b+\phi\left(\lambda^{2}+\lambda(a+b)+c\right)\right]$.

Since $f^{\prime}<0$ on $O A$ and $\phi \geqq 0$, we may choose λ independently of ε and so large that $L \omega \leqq L u$ in T_{B}. It follows from (2.11) through (2.13) that ω satisfies the conditions of the first part of this proof and hence

$$
\begin{equation*}
u<\varepsilon \phi e^{\lambda(\xi+\eta)} \quad \text { in } \quad T_{B} \cup A B \tag{2.23}
\end{equation*}
$$

Finally, if we let $\varepsilon \rightarrow 0$ in (2.23), we obtain the desired result (2.14).
We remark that the condition (2.3) in Theorem 2 is "best possible" (see Example 1 in §4). In addition we wish to emphasize that the condition (2.3) is invariant under a wide class of transformations of the dependent variable u of the form $u=g U$ and also under transformations of the independent variables ξ and η which leave the form of the operator L unchanged [1, p. 461].

Let $C\left(\bar{\xi}_{2}, 0\right)$ be a point on C_{r}^{\prime}. Take A to be the point D and let $D C$ be the indicated segment of C_{r}^{\prime}. Let T_{σ} denote the domain bounded by $O D, D C$ and the line $\eta=0$ and let \bar{T}_{σ} denote the closure of T_{σ}. If we interchange ξ and η, together with a and b, in the above discussion we can establish, for example, the following maximum property of problem I_{r} (see Theorem 2).

Theorem 3. Let the coefficients of L satisfy the inequality

$$
\begin{equation*}
a_{\xi}+a b-c \geqq 0 \quad \text { in } \quad T_{\sigma} . \tag{2.24}
\end{equation*}
$$

Let u satisfy the conditions

$$
\begin{equation*}
u=0 \quad \text { and } \quad u_{n} \leqq 0, \quad \text { on } O D \tag{2.25}
\end{equation*}
$$

$$
\begin{equation*}
u \leqq 0 \quad \text { on } \quad D C \tag{2.26}
\end{equation*}
$$

and the differential inequality

$$
\begin{equation*}
L u \leqq 0 \quad \text { in } \quad T_{\sigma} \tag{2.27}
\end{equation*}
$$

Then

$$
\begin{equation*}
u \leqq 0 \quad \text { in } \quad \bar{T}_{\sigma} . \tag{2.28}
\end{equation*}
$$

Moreover, if the strict inequality in (2.25) holds on $O D-\{D\}$ then $u<0$ in $T_{o} \cup O C$.

The condition (2.24) is also "best possible" (see Example 1 in §4).
3. A maximum property of the initial-boundary value problem $I I_{l r}$. Let $B\left(\bar{\xi}_{0}, \bar{\eta}_{2}\right)$ be the point of intersection of C_{l}^{+}and the line $\xi=\bar{\xi}_{0}$ and let T_{B} and T_{σ} be defined as in $\S 2$. Let u satisfy the conditions

$$
\begin{gather*}
u=0 \text { and either } u_{\xi}<0 \text { or } u_{\eta}<0, \text { on } O D, \tag{3.1}\\
u \leqq 0 \text { on } O B \cup D C \tag{3.2}
\end{gather*}
$$

and the differential inequality

$$
\begin{equation*}
L u \leqq 0 \quad \text { in } \quad T_{B} \cup T_{\sigma} . \tag{3.3}
\end{equation*}
$$

Since $f^{\prime}<0$ on $O D, \quad u=0$ and $u_{\xi}<0\left(u_{\eta}<0\right)$, on $O D$, imply $u_{n}<0\left(u_{\xi}<0\right)$ on $O D$. Hence, if the coefficients of L satisfy the inequalities (2.3) and (2.24) then Theorem 2 and Theorem 3 imply

$$
\begin{equation*}
u<0 \quad \text { in } \quad T_{B} \cup T_{o} \cup D B \cup O C . \tag{3.4}
\end{equation*}
$$

In this section, we determine a domain Σ such that (1) $T_{B} \cup T_{\sigma} \cup$ $D B \cup O C \subset \Sigma$ and (2) under certain "invariant" conditions ${ }^{4}$ on the coefficients of L, if (3.1) through (3.3) are satisfied then $u<0$ in Σ.

Let $P\left(\xi_{1}, \eta_{1}\right)$ be any point such that $\bar{\xi}_{0}<\xi_{1}<\bar{\xi}_{2}$ and $0<\eta_{1}<\bar{\eta}_{2}$. Let $Q\left(\xi_{1}, \eta_{0}\right)$ denote the unique point of intersection of $D C$ and $\xi=\xi_{1}$ and let $R\left(\xi_{0}, \eta_{0}\right)$ denote the unique point of intersection of $O D$ and $\eta=\eta_{0}$. Hence, to each point $P\left(\xi_{1}, \eta_{1}\right)$ we may associate a unique point $S_{P}\left(\xi_{0}, \eta_{1}\right)$ and a characteristic rectangle with corners P, Q, R and S_{P} such that Q and R lie on $D C$ and $O D$, respectively; let T denote the set of all points $P\left(\xi_{1}, \eta_{1}\right)$ such that S_{P} is contained in $T_{B}{ }^{5}$ The set T is a domain.

[^3]Let $P\left(\xi_{1}, \eta_{1}\right)$ be any point in T and let Q, R and S_{P} have coordinates as in the definition of the domain T. We integrate (2.8) along the characteristic from $P_{1}\left(\xi, \eta_{0}\right)$ to $P_{2}\left(\xi, \eta_{1}\right)$ and obtain ${ }^{8}$

$$
\begin{equation*}
\int_{P_{1}}^{P_{2}} v L u d \eta=\left.(v u)_{\xi}\right|_{P_{1}} ^{P_{2}}+\left.\left(b v-v_{\xi}\right) u\right|_{P_{1}} ^{P_{2}}+\int_{P_{1}}^{P_{2}} u v\left(c-a b-b_{\eta}\right) d \eta . \tag{3.5}
\end{equation*}
$$

We integrate (3.5) with respect to $\xi\left(\xi_{0} \leqq \xi \leqq \xi_{1}\right)$ and obtain

$$
\begin{align*}
(v u)(P)= & (v u)(Q)+(v u)\left(S_{P}\right)-(v u)(R)+\int_{R}^{Q}\left(b v-v_{\xi}\right) u d \xi \tag{3.6}\\
& -\int_{S_{P}}^{P}\left(b v-v_{\xi}\right) u d \xi+\iint v\left[L u+u\left(b_{\eta}+a b-c\right)\right] d \xi d \eta
\end{align*}
$$

where the double integral denotes integration over $\xi_{0} \leqq \xi \leqq \xi_{1}$ and $\eta_{0} \leqq \eta \leqq \eta_{1}$. Let v^{0} be the particular solution of (2.9) given by

$$
\begin{equation*}
v^{0}=\exp \left[\int_{\xi_{0}}^{\xi} b\left(\tau, \eta_{0}\right) d \tau+\int_{\eta_{0}}^{\eta} a(\xi, \rho) d \rho\right] . \tag{3.7}
\end{equation*}
$$

Then

$$
\begin{align*}
&\left(v^{0}\right)^{-1}\left(b v^{0}-v_{\xi}^{0}\right)=0 \quad \text { on } \eta=\eta_{0} \tag{3.8}\\
&\left(v^{0}\right)^{-1}\left(b v^{0}-v_{\xi}^{0}\right)=b\left(\xi, \eta_{1}\right)-b\left(\xi, \eta_{0}\right)-\int_{\eta_{0}}^{\eta_{1}} a_{\xi}(\xi, \rho) d \rho \\
&=\int_{\eta_{0}}^{\eta_{1}}\left[b_{\eta}(\xi, \rho)-a_{\xi}(\xi, \rho)\right] d \rho \quad \text { on } \eta=\eta_{1}
\end{align*}
$$

It follows from (3.1) and (3.6) through (3.9) that

$$
\begin{align*}
\left(v^{0} u\right)(P)=\left(v^{0} u\right)(Q) & +\left(v^{0} u\right)\left(S_{P}\right)+\int_{\xi_{0}}^{\xi_{1}}\left[\int_{\eta_{0}}^{\eta_{1}}\left(a_{\xi}-b_{\eta}\right) d \rho\right]\left(v^{0} u\right)\left(\xi, \eta_{1}\right) d \xi \tag{3.10}\\
& +\iint v^{0}\left[L u+u\left(b_{\eta}+\alpha b-c\right)\right] d \xi d \eta
\end{align*}
$$

Let $\Sigma=T \cup T_{B} \cup T_{\sigma} \cup D B \cup O C$. Suppose that there is a point P in Σ such that $u(P)=0$. The inequality (3.4) implies that (1) P is in T and (2) we may assume without loss of generality that $u(P)=0$ and $u \leqq 0$ in the characteristic rectangle with corners P, Q, R and S_{P}. Let Σ_{B} and Σ_{σ} denote the parts of Σ where $\eta>0$ and $\xi>\bar{\xi}_{0}$, respectively. Under the assumptions (2.24) and

$$
\begin{gather*}
b_{\eta}+a b-c \geqq 0 \quad \text { in } \quad \Sigma, \tag{3.11}\\
a_{\xi} \geqq b_{\eta} \quad \text { in } \quad \Sigma_{B}, \tag{3.12}
\end{gather*}
$$

it follows from (3.2), (3.3) and (3.10) that $\left(v^{0} u\right)\left(S_{P}\right) \geqq 0$. Since S_{P} is

[^4]in T_{B}, this is a contradiction. Hence $u<0$ in Σ.
If we interchange ξ and η, together with a and b, in the above discussion, the conditions (compare (3.11) and (3.12))
\[

$$
\begin{gather*}
a_{\xi}+a b-c \geqq 0 \quad \text { in } \quad \Sigma, \tag{3.13}\\
b_{\eta} \geqq a_{\xi} \quad \text { in } \quad \Sigma_{\sigma}, \tag{3.14}
\end{gather*}
$$
\]

also imply that $u<0$ in Σ. We have established the following maximum property of problem $I I_{l r}$.

Theorem 4. Let the coefficients of L satisfy the inequalities

$$
\begin{align*}
& a_{\xi}+a b-c \geqq 0 \quad \text { in } \quad \Sigma, \tag{3.15}\\
& b_{\eta}+a b-c \geqq 0 \quad \text { in } \quad \Sigma
\end{align*}
$$

and either

$$
\begin{equation*}
a_{\xi}+a b-c \geqq b_{\eta}+a b-c \quad \text { in } \quad \Sigma_{B} \tag{3.16}
\end{equation*}
$$

or

$$
\begin{equation*}
b_{\eta}+a b-c \geqq a_{\xi}+a b-c \quad \text { in } \quad \Sigma_{o} \tag{3.17}
\end{equation*}
$$

Let u satisfy the conditions ${ }^{7}$

$$
\begin{gather*}
u=0 \text { and either } u_{\xi}<0 \text { or } u_{\eta}<0, \text { on } O D \tag{3.18}\\
u \leqq 0 \text { on } O B \cup D C \tag{3.19}
\end{gather*}
$$

and the differential inequality

$$
\begin{equation*}
L u \leqq 0 \quad \text { in } \quad \Sigma . \tag{3.20}
\end{equation*}
$$

Then

$$
\begin{equation*}
u<0 \quad \text { in } \quad \Sigma \tag{3.21}
\end{equation*}
$$

We remark that the domain Σ is the "largest possible" in the sense that if we relax the strict inequalities in (3.18)-and hence also the strict inequality in (3.21)-then one can give examples where the maximum property $u \leqq 0$ holds only in the closure of Σ (see Example 4 in §4).
4. Maximum properties of the initial-boundary value problems I_{l}^{\prime} and $I I_{l r}^{\prime}$. In this section we extend the results of § 2 and $\S 3$ to a hyperbolic operator of the form

[^5](4.1) $M u=u_{y y}-h^{2}(x, y) u_{x x}+\alpha(x, y) u_{x}+\beta(x, y) u_{y}+\gamma(x, y) u, \quad h>0$.

For the sake of simplicity we consider only initial-boundary value problems for M where u and u_{y} are prescribed on a portion of the x axis and u is prescribed on either the line $x=0$ (problem I_{l}^{\prime}) or the lines $x=0$ and $x=d_{0}>0$ (problem $I I_{l r}^{\prime}$).

We recall that the characteristic curves of M are the solutions of the ordinary differential equations

$$
\begin{gather*}
\frac{d x}{d y}=h \tag{4.2}\\
\frac{d x}{d y}=-h
\end{gather*}
$$

Let $A^{\prime}(d, 0)$ and $D^{\prime}\left(d_{0}, 0\right)$ be points on the positive x-axis. Let $B^{\prime}\left(0, y_{1}\right)$ [respectively $C^{\prime}\left(d_{0}, y_{2}\right)$] be the unique point of intersection of the line $x=0\left[x=d_{0}\right]$ and the characteristic curve $\Gamma_{-}\left[\Gamma_{+}\right]$with slope (4.3) [(4.2)] that passes through $A^{\prime}(d, 0)[O(0,0)]$. Let $O A^{\prime}, O D^{\prime}, O B^{\prime}$ and $D^{\prime} C^{\prime}$ be the indicated straight line segments. Let $T_{B^{\prime}}$ and $T_{\sigma^{\prime}}$ be the domains bounded by $O B^{\prime}, O A^{\prime}, \Gamma_{-}$and $D^{\prime} C^{\prime}, O D^{\prime}, \Gamma_{+}$, respectively. ${ }^{8}$

We consider functions u that are twice continuously differentiable in $\bar{T}_{B^{\prime}}-O B^{\prime}$ and continuous, together with their first derivatives, in $\bar{T}_{B^{\prime}}$. We assume that the coefficients of M are continuous in $\bar{T}_{B^{\prime}}, \alpha$ and β are continuously differentiable in $\bar{T}_{B^{\prime}}-O B^{\prime}$ and h has continuous second derivatives in $\bar{T}_{B^{\prime}}-O B^{\prime}$. (We assume that analogous conditions hold when we consider the domain $T_{0^{\prime}}$).

We define the operators

$$
\begin{align*}
\delta & =\frac{\partial}{\partial y}+h \frac{\partial}{\partial x} \tag{4.4}\\
D & =\frac{\partial}{\partial y}-h \frac{\partial}{\partial x}
\end{align*}
$$

The operators δ and D are essentially the directional derivatives along the characteristic curves defined by (4.2) and (4.3), respectively.

In this section we assume also that h is continuously differentiable and positive in $\bar{T}_{B^{\prime}}$ (and $\bar{T}_{\sigma^{\prime}}$). If we introduce characteristic coordinates $\xi=\xi(x, y)$ and $\eta=\eta(x, y)$ as new independent variables (cf. [2]) then we can apply the results of $\S 2$ to the transformed operator-an operator that is of the form (2.1). In terms of the operators δ and D the conditions (2.3), (2.5) and (2.24) become

[^6]\[

$$
\begin{align*}
& 2 E \equiv D\left(\frac{D(h)-\alpha+\beta h}{h}\right) \tag{4.6}\\
& -\frac{1}{2 h^{2}}(D(h)-\alpha+\beta h)(D(h)-\alpha-\beta h)-2 \gamma \geqq 0 \text { in } T_{B^{\prime}}, \\
& \quad D(h)-\alpha+\beta h \geqq 0 \text { on } O A^{\prime} \tag{4.7}
\end{align*}
$$
\]

and (compare [1, p. 464, (5")])

$$
\begin{align*}
2 F \equiv & \delta\left(\frac{\delta(h)+\alpha+\beta h}{h}\right) \tag{4.8}\\
& -\frac{1}{2 h^{2}}(\delta(h)+\alpha+\beta h)(\delta(h)+\alpha-\beta h)-2 \gamma \geqq 0 \quad \text { in } \quad T_{\sigma^{\prime}}
\end{align*}
$$

respectively. We have, for example, the following result. ${ }^{9}$
Theorem 1'. Let the coefficients of M satisfy the inequalities (4.6), (4.7) and

$$
\begin{equation*}
\gamma \geqq 0 \quad \text { in } \quad T_{B^{\prime}} . \tag{4.9}
\end{equation*}
$$

Let u satisfy the condition

$$
\begin{equation*}
\delta(u)<0 \quad \text { on } O A^{\prime}-\{O\} \tag{4.10}
\end{equation*}
$$

and the differential inequality

$$
\begin{equation*}
M u \leqq 0 \quad \text { in } \quad T_{B^{\prime}} \tag{4.11}
\end{equation*}
$$

Then if the maximum of u in $\bar{T}_{B^{\prime}}$ is nonnegative it can only be attained on $O A^{\prime} \cup O B^{\prime}$.

The following examples illustrate which conditions in the above theorems are "best possible".

Example 1. We consider an operator M of the form $M u=u_{y y}$ $u_{x x}+3 u$. Let $O A^{\prime}$ and $O B^{\prime}$ be the segments of the x-axis and the y-axis where $0 \leqq x \leqq 3 \pi / 4$ and $0 \leqq y \leqq 3 \pi / 4$, respectively. The domain $T_{B^{\prime}}$ is given by $x+y<3 \pi / 4, x>0$ and $y>0$. Since $h=1, \gamma=3$ and $\alpha=\beta=0$, the conditions (4.7) and (4.9) are satisfied. However, the condition (4.6) becomes $\gamma \leqq 0$ which is not satisfied. Let $u(x, y)=-\sin 2 y \cos (x-\pi / 2)$. Then $M u=0$ in $T_{B^{\prime}}$ and $\delta(u)=-2 \cos (x-\pi / 2)<0$ when $y=0$ and $0<x \leqq 3 \pi / 4$. Since $u(r,(\pi+r) / 2)=\sin ^{2} r>0(0<r \leqq \pi / 6)$ and $u=0$ on $O A^{\prime} \cup O B^{\prime}$, the function u does not attain its maximum on $O A^{\prime} \cup O B^{\prime}$. Therefore, the condition (4.6) in Theorem 1 ' is "best possible". Moreover, if we set $\xi=y+x$ and $\eta=y-x$, this example shows that the

[^7]condition (2.3) in Theorem 1 and Theorem 2 is also "best possible".
Example 2. Let $M u=u_{y y}-u_{x x}-2 u_{y}$. Let $O A^{\prime}$ and $O B^{\prime}$ be the segments of the x-axis and the y-axis where $0 \leqq x \leqq \pi / 3$ and $0 \leqq y \leqq \pi / 3$, respectively. Then domain $T_{B^{\prime}}$ is given by $x+y<\pi / 3, x>0$ and $y>0$. Since $h=1, \beta=-2$ and $\alpha=\gamma=0$, the conditions (4.6) and (4.9) are satisfied but the condition (4.7) becomes $\beta \geqq 0$ which is not satisfied. Let $u(x, y)=(y-1) e^{y} \cos (x-\pi / 2)$. Then $M u=0$ in $T_{B^{\prime}}$, $u \leqq 0$ on $O A^{\prime} \cup O B^{\prime}$ and $\delta(u)=\sin (x-\pi / 2)<0$ when $y=0$ and $0 \leqq x \leqq \pi / 3$. Since $u(r, 1+r)=\mathrm{re}^{1+r} \sin r>0(0<r<1 / 2(\pi / 3-1))$, the condition (4.7) in Theorem 1 ' is also "best possible".

Example 3. Let $M u=u_{y y}-u_{x x}-\gamma_{0}^{2} u$, where γ_{0} is a positive constant. Let β_{1} be the first positive zero of $J_{1}(\rho)$, the Bessel function of order 1. Let $O A^{\prime}$ and $O B^{\prime}$ be the segments of the x-axis and the y-axis where $0 \leqq x \leqq d$ and $0 \leqq y \leqq d\left(0<d<\beta_{1} / \gamma_{0}\right)$, respectively. We note that condition (4.9) is not satisfied. Let $u(x, y)=J_{0}\left(\gamma_{0} \sqrt{x^{2}-y^{2}}\right)$, where $J_{0}(\rho)$ denotes the Bessel function of order 0. It is well known that u has the properties (1) $M u=0$, (2) $u=1$ on $y=x$ (and $y=-x$) and (3) $|u(x, y)| \leqq 1$ (cf. [2, p. 120] and [11]). Moreover, $\delta(u)=$ $\gamma_{0} J_{0}^{\prime}\left(\gamma_{0} x\right)=-\gamma_{0} J_{1}\left(\gamma_{0} x\right)<0$ when $y=0$ and $0<x \leqq d$. Since u attains its maximum on $y=x$, the condition (4.9) is also "best possible".

In order to extend Theorem 4 to the operator M we first determine a domain $T^{\prime \prime}$ that plays the role of the domain T in $\S 3$. In the definition of the point B^{\prime}, we take A^{\prime} to be the point $D^{\prime}\left(d_{0}, 0\right)$. Let $\Gamma_{B^{\prime}}$ and Γ_{0}, be the characteristic curves given by (4.2) and (4.3), respectively, that pass through B^{\prime} and C^{\prime}. Let E be the characteristic quadrilateral bounded by $\Gamma_{B^{\prime}}, \Gamma_{q^{\prime}}, \Gamma_{+}$and Γ_{-}. As in $\S 3$, to each point $P^{\prime}(x, y)$ in E, we may associate a unique point S_{P}, and a characteristic quadrilateral with corners $P^{\prime}, Q^{\prime}, R^{\prime}$ and $S_{P^{\prime}}$ such that Q^{\prime} and R^{\prime} lie on $D^{\prime} C^{\prime}$ and $O D^{\prime}$, respectively. Let T^{\prime} denote the domain that consists of all points P^{\prime} such that $S_{P^{\prime}}$ is contained in $T_{B^{\prime}}$. Moreover, as in $\S 3$, let $\Sigma^{\prime}=$ $T^{\prime} \cup T_{B^{\prime}} \cup T_{0^{\prime}} \cup \Gamma_{-} \cup \Gamma_{+}$and let $\Sigma_{B^{\prime}}$ and $\Sigma_{0^{\prime}}$, be the parts of Σ^{\prime} "above $\Gamma_{+} "$ and "above Γ_{-}", respectively.

We can now formulate the desired extension of Theorem 4. Since the Laplace Invariants $b_{\eta}+a b-c$ and $a_{\xi}+a b-c$ are given essentially by (4.6) and (4.8), respectively, we need only restate the conditions (3.15) through (3.17) in terms of the operators δ and D.

Theorem 4'. Let the coefficients of M satisfy the inequalities

$$
\begin{array}{lll}
E \geqq 0 & \text { in } & \Sigma^{\prime} \\
F \geqq 0 & \text { in } & \Sigma^{\prime} \tag{4.12}
\end{array}
$$

and either

$$
\begin{equation*}
F \geqq E \quad \text { in } \quad \Sigma_{B^{\prime}} \tag{4.13}
\end{equation*}
$$

or

$$
\begin{equation*}
E \geqq F \quad \text { in } \quad \Sigma_{0^{\prime}} \tag{4.14}
\end{equation*}
$$

Let u satisfy the conditions

$$
\begin{gather*}
u=0 \quad \text { and } \quad u_{y} \leqq 0, \text { on } O D^{\prime} \tag{4.15}\\
u \leqq 0 \quad \text { on } O B^{\prime} \cup D^{\prime} C^{\prime} \tag{4.16}
\end{gather*}
$$

and the differential inequality

$$
\begin{equation*}
M u \leqq 0 \quad \text { in } \quad \Sigma^{\prime} \tag{4.17}
\end{equation*}
$$

Then

$$
\begin{equation*}
u \leqq 0 \quad \text { in } \quad \Sigma^{\prime} \tag{4.18}
\end{equation*}
$$

Moreover, if the strict inequality holds in (4.15) then the strict inequality holds also in (4.18).

Proof. If the strict inequality holds in (4.15), Theorem 4 implies the desired result $u<0$ in Σ^{\prime}.

In order to complete the proof of Theorem 4^{\prime}, we consider the functions

$$
w=u-\varepsilon y e^{\lambda y} \quad \varepsilon>0
$$

where λ is chosen independently of ε and so large that $M w \leqq M u$ in Σ^{\prime}. Since (4.15) through (4.17) imply that w satisfies the conditions of the first part of this proof, it follows that

$$
\begin{equation*}
u<\varepsilon y e^{\lambda y} \text { in } \Sigma^{\prime} . \tag{4.19}
\end{equation*}
$$

Hence, letting $\varepsilon \rightarrow 0$, we obtain (4.18).
The following example shows that the domain Σ^{\prime} in Theorem 4^{\prime} is the "largest possible".

Example 4. Let $M u=u_{y y}-u_{x x}$. Let $O D^{\prime}$ and $O B^{\prime}$ be the segments of the x-axis and the y-axis where $0 \leqq x \leqq \pi$ and $0 \leqq y \leqq \pi$, respectively, and let $D^{\prime} C^{\prime}$ be the segment of the line $x=\pi$ where $0 \leqq y \leqq \pi$. Then the domain Σ^{\prime} is given by $0<x<\pi$ and $0<y<\pi$. Let $u(x, y)=-$ $\sin y \cos (x-\pi / 2)$. Since $u \leqq 0$ in the closure of Σ^{\prime} but $u>0$ when $0<x<\pi$ and $y=\pi+\varepsilon(0<\varepsilon<\pi)$, the set Σ^{\prime} in Theorem 4^{\prime} is the "largest possible".
5. A monotonicity property of the initial-boundary value problem I_{l}^{\prime}. In this section (the notation and the various smoothness assumptions are the same as in §4) we consider the operator M without introducing characteristic coordinates. In addition to an extension of Theorem 2 this more direct approach also yields a sort of a monotonicity property for M.

Our discussion is based upon the fundamental identity (see (2.8) and [1, p. 465]; compare also [4, p. 385, (1.2)])

$$
\begin{equation*}
D[v \delta(u)]=v M u+[D(v)-\beta v] D(u)-\gamma v u \tag{5.1}
\end{equation*}
$$

where δ and D are the operators defined in (4.4) and (4.5) and v is a positive solution of the equation

$$
\begin{equation*}
2 h D(v)+v[D(h)-\alpha-\beta h]=0 .^{10} \tag{5.2}
\end{equation*}
$$

We rewrite (5.1) as

$$
\begin{equation*}
D[v(\delta(u)+\theta u)]=v M u+u v E \tag{5.3}
\end{equation*}
$$

where E is defined in (4.6) and

$$
\begin{align*}
\theta & =v^{-1}[\beta v-D(v)] \tag{5.4}\\
& =\frac{D(h)-\alpha+\beta h}{2 h}
\end{align*}
$$

The following theorem is a consequence of (5.1) and (5.3).
Theorem 5. Let the coefficients of M satisfy the inequality (4.6). Let u satisfy the conditions

$$
\begin{equation*}
u=0 \quad \text { and } \quad u_{y} \leqq 0, \quad \text { on } O A^{\prime} \tag{5.5}
\end{equation*}
$$

$$
\begin{equation*}
u \leqq 0 \quad \text { on } \quad O B^{\prime} \tag{5.6}
\end{equation*}
$$

and the ${ }_{2}^{7}$ differential inequality

$$
\begin{equation*}
M u \leqq 0 \quad \text { in } \quad T_{B^{\prime}} \tag{5.7}
\end{equation*}
$$

Then

$$
\begin{equation*}
u \leqq 0 \tag{5.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta(u)+\theta u \leqq 0, \tag{5.9}
\end{equation*}
$$

in $T_{B^{\prime}} \cup \Gamma_{-}$. Moreover, if the strict inequality in (5.5) holds on

[^8]$O A^{\prime}-\{O\}$ then the strict inequality holds also in (5.8).
Proof. Suppose that the strict inequality in (5.5) holds on $O A^{\prime}$ $\{O\}$. Since $D=d / d y$ on any characteristic curve $d x / d y=-h$, if we proceed as in the proof of Theorem 1 and Theorem 2-with the identity (5.1) playing the role of (2.8) and $u^{\delta}=e^{-\delta y} u$-we obtain $u<0$ in $T_{B^{\prime}} \cup \Gamma_{-}$. The remainder of the proof is a variation of a method used by Gloistehn [4] for the Cauchy problem. Assume that there is a point Q^{\prime} in $T_{B^{\prime}} \cup \Gamma_{-}$such that $\left.[\delta(u)+\theta u]\right|_{Q^{\prime}}=0$. Let $\Gamma_{Q^{\prime}}$ be the characteristic curve given by (4.3) that passes through Q^{\prime} and let P denote the point of intersection of $\Gamma_{Q^{\prime}}$ and $O A^{\prime}$. Since $\left.[\delta(u)+\theta u]\right|_{P}<0$ by our hypotheses there is a point Q on $\Gamma_{Q^{\prime}}$ such that $\left.[\delta(u)+\theta u]\right|_{Q}=0$ and $\delta(u)+\theta u<0$ on the arc of $\Gamma_{Q^{\prime}}$ between P and Q. Therefore, since $v>0$ and D is essentially differentiation along $\Gamma_{Q^{\prime}}$, it follows that
\[

$$
\begin{equation*}
\left.D[v(\delta(u)+\theta u)]\right|_{Q} \geqq 0 \tag{5.10}
\end{equation*}
$$

\]

The basic equation (5.3), together with $u(Q)<0, M u<0$, (4.6) and (5.10), yields a contradiction. Thus $\delta(u)+\theta u$ is negative in $T_{B^{\prime}} \cup \Gamma_{-}$ under the additional assumptions $u_{y}<0$ on $O A^{\prime}-\{O\}$ and $M u<0$ in $T_{B^{\prime}} \cup \Gamma_{-}$.

In order to complete the proof of Theorem 5, we consider again the functions

$$
w=u-\varepsilon y e^{\lambda y} \quad \varepsilon>0
$$

where λ is chosen independently of ε and so large that $M w<M u$ in $T_{B^{\prime}}$. It follows from (5.5) through (5.7) and the first part of this proof that

$$
\begin{equation*}
u<\varepsilon y e^{\lambda y} \tag{5.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta(u)+\theta u<\varepsilon e^{\lambda y}(1+\lambda y+\theta y) \tag{5.12}
\end{equation*}
$$

in $T_{B^{\prime}} \cup \Gamma_{-}$. Therefore, letting $\varepsilon \rightarrow 0$, we obtain (5.8) and (5.9).
Corollary 3. Let $Q_{1}\left(x_{1}, y_{1}\right)$ and $Q_{2}\left(x_{2}, y_{2}\right)$ be two points in $T_{B^{\prime}}$ that are joined by a characteristic curve Γ of the family (4.2) and suppose that $y_{1} \leqq y_{2}$. If (4.6) and (5.5) through (5.7) are satisfied then

$$
\begin{equation*}
u\left(Q_{2}\right) \leqq u\left(Q_{1}\right) \exp \left[\int_{\Gamma}^{Q_{2}} \theta d y\right] \tag{5.13}
\end{equation*}
$$

The proof consists of multiplying (5.9) by $\exp \left[\int_{y_{1}}^{y} \theta d y\right]$ and integrating along Γ from Q_{1} to Q_{2}.
6. An application to ordinary differential equations. In this section we establish a comparison theorem on the distance between zeros of solutions to some ordinary differential equations. Comparison theorems of this type have already been obtained by Weinberger [12] and Protter [7] as applications of some maximum properties of "pure" initial value problems. However, we show that in some cases a "stronger" result can be obtained by the use of a maximum property of an initialboundary value problem.

We consider the ordinary differential equations ${ }^{11}$

$$
\begin{array}{lll}
\left(f_{1}(x) \phi^{\prime}(x)\right)^{\prime}+g_{1}(x) \phi(x)=0, & f_{1}(x)>0 & c \leqq x \leqq d \\
\left(f_{2}(y) \psi^{\prime}(y)\right)^{\prime}+g_{2}(y) \psi(y)=0, & f_{2}(y)>0 & a \leqq y \leqq b \tag{6.2}
\end{array}
$$

Suppose that $\phi\left(x_{1}\right)=0$ and $\phi(x)>0, c \leqq x_{1}<x \leqq x_{2} \leqq d$. In addition, suppose that $\psi\left(y_{1}\right)=0$ and $\psi^{\prime}\left(y_{1}\right)<0, a \leqq y_{1}<b$. Let M be the hyperbolic operator given by

$$
\begin{equation*}
M u=u_{y y}-u_{x x}-f_{1}^{-1} f_{1}^{\prime} u_{x}+f_{2}^{-1} f_{2}^{\prime} u_{y}+\left(f_{2}^{-1} g_{2}-f_{1}^{-1} g_{1}\right) u \tag{6.3}
\end{equation*}
$$

Then the function $u(x, y)=\phi(x) \psi(y)$ is such that

$$
\begin{gather*}
u=0 \text { and } u_{y}<0, \text { on } y=y_{1} \text { and } x_{1}<x \leqq x_{2}, \tag{6.4}\\
u=0 \text { on } x=x_{1} \text { and } y_{1} \leqq y \leqq b, \tag{6.5}\\
M u=0, \quad a \leqq y \leqq b \text { and } c \leqq x \leqq d . \tag{6.6}
\end{gather*}
$$

Hence, if the functions $\alpha=-f_{1}^{-1} f_{1}^{\prime}, \beta=f_{2}^{-1} f_{2}^{\prime}$ and $\gamma=f_{2}^{-1} g_{2}-f_{1}^{-1} g_{1}$ are such that the operator M satisfies the condition (4.6), Theorem 5 implies that $u<0$ in the domain bounded by the lines $x=x_{1}, y=y_{1}$ and $x+y=x_{2}+y_{1}$. Thus $\psi(y)<0$ when $y_{1}<y<y_{1}+\left(x_{2}-x_{1}\right)$. Since ψ and ψ^{\prime} cannot vanish simultaneously and x_{1}, x_{2} and y_{1} were arbitrary, we have established the following comparison theorem (see [12, p. 512] and [7, pp. 123-125]).

Theorem 6. Let m be the greatest lower bound of the distance between zeros of ψ on the interval $a \leqq y \leqq b$ and let m^{*} be the least upper bound of the distances between zeros of ϕ on the interval $c \leqq x \leqq d . \quad I f$

$$
\begin{equation*}
2 f_{2}^{-1} f_{2}^{\prime \prime}-\left(f_{2}^{-1} f_{2}^{\prime}\right)^{2}-4 f_{2}^{-1} g_{2} \geqq 2 f_{1}^{-1} f_{1}^{\prime \prime}-\left(f_{1}^{-1} f_{1}^{\prime}\right)^{2}-4 f_{1}^{-1} g_{1} \tag{6.7}
\end{equation*}
$$

for $a \leqq y \leqq b$ and $c \leqq x \leqq d$, then

$$
\begin{equation*}
m \geqq m^{*} \tag{6.8}
\end{equation*}
$$

[^9]Corollary 4. If, in Theorem 6, we have $f_{1}(x) \equiv 1, g_{1}(x) \equiv \lambda^{2}$ and

$$
\begin{equation*}
2 f_{2} f_{2}^{\prime \prime}-\left(f_{2}^{\prime}\right)^{2}+4 f_{2}\left(\lambda^{2} f_{2}-g_{2}\right) \geqq 0 \quad a \leqq y \leqq b \tag{6.9}
\end{equation*}
$$

then

$$
\begin{equation*}
m \geqq \pi \lambda^{-1} \tag{6.10}
\end{equation*}
$$

We remark that, even under the conditions $\lambda^{2} f_{2}(y) \geqq g_{2}(y)$ and $f_{2}(y) f_{2}^{\prime \prime}(y) \geqq\left(f_{2}^{\prime}(y)\right)^{2}$, the direct application of a maximum property for a "pure" initial value problem would yield only the "weaker" result $m \geqq \pi \lambda^{-1} / 2$ [7, p. 124 Corollary 3].

Bibliography

1. S. Agmon, L. Nirenberg and M. H. Protter, A maximum principle for a class of hyperbolic equations and applications to equations of mixed elliptic-hyperbolic type, Comm. Pure Appl. Math. 6 (1953), 455-470.
2. P. Garabedian, Partial Differential Equations, John Wiley and Sons, New York, 1964.
3. P. Germain and R. Bader, Sur le problème de Tricomi, Rend. Circ. Mat. Palermo 2 (1953), 53.
4. H. Gloistehn, Monotoniesätze und Fehlerabschätzungen für Anfangswertaufgaben mit hyperbolischer Differentialgleichung, Arch. Rational Mech. Anal. 14 (1963), 384-404.
5. J. Hadamard, Sur un problème mixte aux dérivées partielles, Bull. Soc. Math. France 31 (1903), 208-224.
6. -, Résolution d'un problème aux limites pour les équations linéaires du type hyperbolique, Bull. Soc. Math. France 32 (1904), 242-268.
7. M. H. Protter, A maximum principle for hyperbolic equations in a neighborhood of an initial line, Trans. Amer. Math. Soc. 87 (1958), 119-129.
8. D. Sather, Maximum properties of Cauchy's problem in three-dimensional spacetime, Arch. Rational Mech. Anal. 18 (1965), 14-26.
9. ——, A maximum property of Cauchy's problem in n-dimensional space-time, Arch. Rational Mech. Anal. 18 (1965), 27-38.
10. -, A maximum property of Cauchy's problem for the wave operator, Arch. Rational Mech. Anal. 21 (1966), 303-309.
11. G. N. Watson, Theory of Bessel Functions, Cambridge, 1944.
12. H. F. Weinberger, A maximum property of Cauchy's problem, Ann. of Math. 64 (1956), 505-513.
13. -, A maximum property of Cauchy's problem in three-dimensional spacetime, Proceedings of Symposia in Pure Mathematics, Vol. IV, Partial Differential Equations, American Mathematical Society, 1961, 91-99.
14. A. Weinstein, On a Cauchy problem with subharmonic initial values, Ann. Mat. Pura Appl. 43 (1957), 325-340.
15. -, Hyperbolic and parabolic equations with subharmonic data, Symposium on the Numerical Treatment of Partial Differential Equations with Real Characteristics, Prov. Intern. Computation Centre, Rome, 1959, 74-86.

Received July 21, 1965. This research was partially supported by the National Science Foundation Grants No. GP 2067 with the University of Maryland and No. GP 4216 with Cornell University.

[^0]: ${ }^{1}$ A subscript $\xi(\eta)$ denotes partial differentiation with respect to $\xi(\eta)$.

[^1]: ${ }^{2}$ The set $\{O\}$ contains only the point O.

[^2]: ${ }^{3}$ The other invariant is $a_{\xi}+a b-c$.

[^3]: ${ }^{4}$ The conditions are stated in terms of Laplace Invariants (see footnote 3).
 ${ }^{5}$ In the definition of the set T we may also use $O B$ instead of $D C$ so that S_{P} lies on $O B$ and T consists of all points P such that Q is contained in T.

[^4]: ${ }^{6}$ In this section, u and the coefficients of L are assumed to be sufficiently smooth in T (see $\delta 2$).

[^5]: ${ }^{7}$ We may replace the condition "either $u_{\xi}<0$ or $u_{\eta}<0$ on $O D$ " by a condition involving the normal derivative of u on $O D$ (cf. (4.15) in \& 4).

[^6]: ${ }^{8}$ The points A^{\prime} and O do not belong to either Γ_{-}or Γ_{+}.

[^7]: ${ }^{9}$ The desired extension of Theorem 2 is contained in Theorem 5.

[^8]: ${ }^{10}$ On any characteristic curve given by $d x / d y=-h$, we see that $D(v)=d v / d y$ and, hence, the equation (5.2) becomes an ordinary differential equation.

[^9]: ${ }^{11}$ In this section, v^{\prime} denotes the derivative of the function v.

