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ON THE ESSENTIAL SPECTRUM OF THE HYDROGEN
ENERGY AND RELATED OPERATORS

P. A. REJTO

Titchmarsh determined the spectrum of the Schriodinger
energy operator associated with the hydrogen atom, i.e. the
operator — 4—1/r. He showed, in particular, that its essential
spectrum consists of the positive real axis, On the other hand,
Agudo-Wolf and Birman formulated overlapping criteria for
a potential, which ensured that addition of such a potential
does not change the essential spectrum of — 4,

These criteria do not admit the potential 1/ and a criterion
admitting it is formulated in the forthcoming work of Balslev
where he also considers operators in L, spaces. In this paper
we slightly extend this Balslev criterion, in case the operator
is a Schriodinger operator., Our proofs are different, inasmuch
as we capitalize on the representation of the kernel of the
unperturbed resolvent, Then we make essential use of a result
of Friedrichs which gives a bound for the norm of an integral
operator.

A criterion which ensures that the essential spectra of two self
adjoint operators are equal is the following: for an appropriate complex
number { the difference of their resolvents is compact. We shall refer
to this property by saying that these operators are resolvent congruent.
This property requires less and ensures less, then the one introduced
independently by de Branges [18] and Birman-Krein [11] in connection
with the perturbation of the continuous spectrum. It is implied by
one which we called relative compactness by Gokhberg-Krein [24] and
for convenience this is shown in §1. For semi-bounded operators still
another property was introduced by Birman [9] who showed that his
property also implies this one.

In §1 we recall the classical notion of the essential spectrum, and
formulate some general operator theoretic facts, which are used in
the subsequent sections. Section 2 contains two theorems. In the
first one we show, in particular, that the local square integrability of
1/r and the fact that

i-—)O as r— oo,

r

imply that this potential is compact with reference to 4. Theorem
2.1 is our basic theorem inasmuch as it is used to establish the ones
that follow. Theorem 2.2 shows that the resolvent congruence pro-
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perty holds for a wider class of potentials. In §3 we consider potentials
which are bounded from below and Theorem 3.1 formulates conditions
under which the Friedrichs extensions of the perturbed and unperturbed
operator are resolvent congruent. In §4 we combine Theorem 2.1
with the coerciveness estimates for elliptic operators with variable
coefficients. Specifically in Theorem 4.1 we take the unperturbed
operator to be a second order differential operator with variable co-
efficients acting in free space. The main requirement on the coefficients
being uniform ellipticity, including the point at infinity. Then accord-
ing to this theorem the basic Theorem 2.1 remains valid for such
unperturbed operators. From this fact it is easy to derive that to
such a perturbed operator there is an appropriate elliptic operator with
constant coefficients to which it is resolvent congruent. Hence the
essential spectrum of such a perturbed operator is the positive axis.
This is the statement of Theorem 4.2. Finally in §5 we illustrate
that similar statements hold for operators acting in the exterior of a
bounded region.

It is a pleasure to thank Professors Balslev and Schechter for
valuable correspondence and conversations respectively. In particular
the author appreciates a Balslev remark, which led to a sharper
formulation of the basic Theorem 2.1.

1. The notion of the essential spectrum and Weyl’s theorem.
The notion of the essential spectrum of an operator can be defined in
several different ways [12] [44, Definition 1.19 36, §133]. In a
forthcoming work M. Schechter [37] introduces a new such definition,
for operators acting on a Banach space, and discusses its relation to
these ones. At the same time he introduces criteria on a perturbation,
which ensure that it produces no new essential spectrum.

For normal, in particular, self adjoint operators, these definitions
are equivalent to the following [39, §2, Corollary 3]: the essential
spectrum of N, o.(IN), consists of those points of the spectrum of N
which are mot isolated point eigenvalues of finite multiplicity. Accord-
ing to Weyl’s well known theorem [36, Theorem in §134] if A and B
are strictly self adjoint operators and B — A is compact then

(L.1) 0(4) = 0/B) .

This theorem was extended to normal operators by J. Schwartz [36,
§2, Corollary 3], who showed that if N and M are normal and M—N
is compact then

(1.2) 0(N) = o (M) .
Suppose that 4 and B are strictly self adjoint operators on possibly
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different domains and the intersection of their resolvent sets contains
a point ¢ such that:

(1.3) (C— By — (€ — A)™* is compact.
Then setting

M= 4"
and

N=(@E-p)"

in relation (1.2), we see from the spectral mapping theorem that
0,(4) = o,(B) .

Thus in order to establish that the essential spectra of A and B are
equal it suffices to establish relation (1.83). Note that if A is not
strictly self adjoint, ({ — A)~' may not exist, or it may not be normal.
Hence keeping the previously mentioned definition of the essential
spectrum this conclusion may not hold. Actually this definition of the
essential spectrum has no intrinsic value. We use it for convenience,
since at the preparation of this work, the announcement of Schechter
[31] was not available.

For brevity we shall refer to relation (1.3) by saying that the
operators A and B are (-congruent to each other. Following Calkin
[16], who initiated the calculus modulo compact operators, in this case
we set

-4 —-E—-B*=0,
or in short
(1.4) A=B(@Q).

Observe that the validity of this relation does not imply that the
difference B — A is defined. For, unbounded operators are defined on
dense sets and the intersection of two dense sets may be empty.

It is an interesting special case of relation (1.4) in which this
difference is defined. To emphasize this fact we set

A:AO,B:AhAl"‘Ao:Py

and call P the perturbation. Actually instead of relation (1.4) we
shall assume that there is a value { in p(4,), the unperturbed resolvent
set, such that

(1.5) PR({) =0, R©Q)=(@C—4)".
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More specifically we assume that PR({) is an everywhere defined
operator, for which this holds. Hence we also assume that

(1.6) D(4,) < D(P) .

Note that if this holds for any complex number { in p(4,), then it
holds for every { in p(4,). According to F. Wolf [44, Corollary to
statement 1.11] this property is equivalent to the property introduced
by Gokhberg and Krein [24] that P is A;-compact.

This property is defined with reference to an operator A, whose
resolvent set is not empty, in particular, which is closed on its domain.
It is convenient to extend this definition by admitting a closable A,.
Let A, be closable on some set ® and as usual, let A, be its closure.
For convenience, let P on ® be closable. Suppose that there is a
number { in o(4,), such that the closure of PR({) on ({— A4)D is
compact. Then we claim that P, the closure of P is Ai-compact. To
see this, clearly it suffices to show that

1.7) D(A,) « D(P) .

Accordingly let f be in D(4,). By assumption  is in o(4,) and hence
there is a vector g such that

f=R(Qyg .

At the same time it follows that the set ({ — A4,)® is dense. Hence
there is a sequence of vectors {g,} in this set, which tends to g. Then
setting

fo = RoQ)g. ,

we obtain a sequence in D, which tends to f, and it is clear that for
an appropriate subsequence {Pf,} is a Cauchy sequence. Thus (1.7)
follows and the claim is established. Since every nonreal number
belongs to the resolvent set of a strictly self adjoint operator [19,
Theorem X. 4.2], such a situation arises if A, and P are essentially
and formally self adjoint on some set ®, and PR,({) is compact for a
nonreal {. Then the claim says, that it is no loss of generality to
assume that A, is strictly self adjoint,

Next we maintain that if 4, and P are self adjoint and P is A4,
compact then under general circumstances A, + P has a unique strictly
self adjoint extension, which is resolvent congruent to A4,. To see
this we formulate a lemma, which summarizes some facts, used some-
times implicitly, by Kato [29]. In it, for brevity, we say that an
operator is invertible if it admits an everywhere defined and bounded
inverse.
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LEmMMA 1.1. Let the operators A, and P be defined on some dense
set D and suppose that { — A, on D is invertible. Then a necessary
and suffictent condition that { — A, = — A, — P on D be also
invertible ts that P 1is Aibounded and 1 — PR({) is invertible.
Denoting the inverses by Ry({) and R,({) we have

(1.8) R.(C) = R(0) 1 — PR(Q))™ .

Furthermore, if A, and P are strictly' and formally self adjoint on
D respectively and P is Ajicompact then (1.8) holds for every nonreal
. In particular A, is strictly self adjoint on .

We derive this lemma from the relation
(1.9) C—4)=Q—-PRQ)C—4) on D,

which holds since P is A,-bounded.

To see the sufficiency of this condition assume that PR(() is
bounded and 1 — PR,() is invertible. Then we see from this relation
that

R (1 — PR(O)™C—A)=10onD
and
C—A)RQ) A~ PRL)*=1o0n 9,

if we remember that R, () maps © onto ©. Thus conclusion (1.8)
follows.

To see the necessity of this condition assume that { — A, on ®
is invertible, and recall that £ — 4, on ©® is also invertible. Hence
the operators { — A4,, and { — A, are closed on ®, This in general
does not imply that P, their difference is also closed. Nevertheless
we have a weaker property, to which Schechter [37] referred as P-
being A-closed. An elementary argument shows that this weaker
property implies that PR,({) is closed. Clearly this operator is defined
on the entire space and hence according to the closed graph theorem
[19, Th. II. 2.4] it is bounded. This yields one of the conclusions.
By assumption { — A, is invertible on ®, in particular it is one to one.
We claim that this implies that 1 — PR({) is one to one on the entire
space . To see this let

(I — PRQ)f=0.

! To emphasize the difference between operators which are Hermitian symmetric
and self adjoint in the strict mathematical sense, we speak about formally and
strictly self adjoint operators, respectively.



114 P. A. REJTO

Since £ — 4, on D is invertible, there is a vector ¢ in D, such
that

f=E€—-A4)g.
Insertion of these facts in (1.9) yields
—A)g=0.

Since (£ — A,) is one to one on D, g = 0 and f = 0 follows. Hence 1 —
PRy(Z) is one to one on . By assumption { — A, maps D onto all of
9. Insertion of this fact in (1.9) shows that the range of 1 — PR,({)
equals . Thus this operator on © is one to one and onto. Therefore
according to a theorem of Banach [19, Th. II. 2.2] it admits a bounded
inverse.

Finally we consider the self adjoint case. Then clearly for any
nonreal £, { — A, is one to one on ®. We have seen in the proof of
the necessity part that this implies that 1 — PR({) is one to one on
all of . Note that since A4, is strictly self adjoint and ¢ is nonreal,
R,() exists. By assumption PR,({) is compact and thus we can
conclude from the Fredholm alternative [19, p. 609] that 1 — PRy(()
is invertible. Therefore remembering the already established sufficiency
part we see that { — A on ® is invertible. Since this holds for any
nonreal ¢ the strict self adjointness of A, on ® follows [19, Corollary
XII. 4.13 (b)].

Having established Lemma 1.1 as a simple consequence, we derive
the following:

PROPOSITION. Suppose that A, and P are strictly and formally
self adjoint on D respectively, and suppose that P is A, compact.
Then A, = A, + P is strictly self adjoint on © and it is resolvent
congruent to A,.

The first conclusion which says that A, is strictly self adjoint on
D, the domain of A, appears explicitly in Lemma 1.1. Hence for
any nonreal { the operator ({ — A,) R,({) is defined on all of . Then
we see from equation (1.9) which appears in the proof of Lemma 1.1
that

€ - A1)R0(C) =1- PRO(C) .
Thus

€ — A) (B(Q) — RQ)) = PR(?) .
Since PR,({) is bounded on all of , we obtain
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(1.10) R\(€) — B(Q) = B:(O)PR(Q) .

This is the second resolvent equation and note that since P is possibly
unbounded its validity is not obvious.

By assumption PR,({) is compact and insertion of this fact in
(1.10) shows that this difference is compact. Thus A, and A, are
resolvent congruent, and this establishes the proposition.

2. Perturbation of the Laplacian in free space by a potential.
Let €, denote the set of twice continuously differentiable functions
with bounded support in &,, the n-dimensional real Euclidean space.
Then as is well known, — 4, the negative Laplacian, is essentially
self adjoint on €,. We denote its closure by — 4 again, which we
take to be the unperturbed operator and accordingly set

B =C+ a7,

whenever a bounded inverse exists. Let p be a measurable, locally
square integrable real function and assign to it the operator

M(p) f(2) = p(@) (@) ,

which is also essentially self adjoint on €,. In this section we formulate
conditions on the function p which ensure that the operator M(p) is
d-compact. According to Lemma 1.1, these conditions also ensure
that the perturbed operator — 4 + M(p) is essentially self adjoint on

G,, and we set
R()= (€ + 44— Mp).

The question of the essential self adjointness of this operator was
investigated by several authors. Specifically T. Kato [29] formulated
conditions on the potential p which ensured that this is the case. His
results were extended by Stummel [41], which in turn was extended
by Ikebe and Kato [31]. Recently this problem was taken up again
by Jorgens [28]. Of course the conditions of these authors for
essential self adjointness is much weaker than our conditions, to be
stated, for relative compactness.

We start by introducing an expression which is defined with the
aid of a weighted integral mean for powers of the potential:

DEFINITION. Given two real numbers « and g, and a measurable
function p. Then set

@) Lop)=sw|  |pw)Fo—yldy.
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Such an expression was used by Stummel [41, Satz 4.2 and condi-
tion (4.4)] to formulate a condition on p under which the operator
— 4 + M(p) is essentially self adjoint on €,. It reads as follows:

ConDITION S(a). In case of dimensions n =1,2,3, L,(p) < <,
and in case of dimensions n — 4,5, ---, to the function p, there is a
number «, such that

a<4—mnand I .(p) < o .

An overlapping condition was used by Birman [9, Condition K and
Condition R, p. 142] to ensure that the Friedrichs extensions of the
perturbed and unperturbed operators are resolvent congruent. Specifi-
cally he showed that this is the case if I,,.(p) < o, where a <1 — n.
A related condition was used by Brownell [13, Th. 1] for essential
self adjointness. His condition requires that to the function p there
is a number ¢ such that

/¢ > max (2, %) and I,,(p) < oo .

This implies Condition S(«), which is seen by an elementary application
of the Holder inequality [35, Appendix 1].

After these preparations we show that if the function p satisfies
Condition S(«) and in addition it is “small” at infinity, then the

operator M(p) is d-compact. Our first smallness condition is formulated
as follows:

SUBTHEOREM 2.1. Suppose that the function p satisfies Condition
S(e) and in addition assume that it is square integrable over the
entirve space. Then the operator M(p) is d-compact 1.e.

(2.2) M(p)Ry(t) = 0.

Here, for the complex number { entering the definition of relative
compactness we have taken ¢ — 4. Actually, according to a result of
Wienholtz [43] the Stummel condition ensures that — 4 + M(p) is
bounded from below and hence for ¢, we could have taken a sufficiently
small negative number. Nevertheless, we prefer not to make use of
the semiboundedness of this operator.

(a) The special cases of dimensions n = 1,2 3. Since 4 com-
mutes with translation sc does R,(i) and hence it can be represented
as convolution by a tempered distribution [25]. We shall need, how-
ever, detailed information on this distribution. Specifically, that it
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corresponds to a function g, the Green’s function, and in view of
n < 8, g is square integrable. That is, denoting by R,(7)(x,y) the
value of the kernel of R,(?) at the point (z, y), we have

Ry(1) (2, y) = 9(@ — v)

and

(2.3) lg =g du< .

In view of our additional assumption, these formulae imply that

[| M(p) (¢ + 4)~* ||, the Hilbert-Schmidt norm of this operator, is finite.
For, evidently,

. 1/2
(2.4 1340) Bi(i) | = (|| @)@ — vy dar) "
According to (2.3) for each fixed value of the vector x

|p@oe - ndy = p@)lg I,
which inserted in (2.4) yields

| M(p) B(0) [l = [l 2 || [ g 1] -

Since by assumption p is a square integrable over all of &, the right
member is finite. Hence the Hilbert-Schmidt norm of this operator is
finite and conclusion (2.2) follows. In case of dimension n = 1, this
result was obtained by Agudo and Wolf [1]. In case of dimension
n = 3, this generalizes another result of Agudo-Wolf [2], inasmuch as
it is not required that » be bounded.

(b) The general case. In spite of the assumption, that p is
square integrable over all of &,, it is no longer true that the operator
in (2.2) is Hilbert-Schmidt; the reason being that g, the Green’s
function, is not square integrable over all of &,. Nevertheless we
have the following estimates [27, Chapter III], [17, Subsection III.
2.2],

0(1) for n =1
(2.5), g(u) = 0(log|u|) at |u| =0, for n=2

0] w |*™) for n = 3,4, --.
and
(2.5).. gu) =0 at || = o, forn=12 ...,

Here v is an appropriate positive constant. Evidently these estimates
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imply that
2.6) [l ow1du <

moreover, for every positive number o

(2.6); S.m' g(w) Pdu < oo
Next set
out) = {g(u) ful>0 ,
0 lu| <o
and

R,;(1) (%, ¥) = gs(x — v) .

Then, from the assumption that p is square integrable over all of &,,
we see that

(2.7) M(p)R,,5(?) = 0,

since R,;(¢) is convolution by the function g, which in view of (2.6);
is square integrable over the entire space.

Relation (2.7) shows that in order to establish conclusion (2.2), it
suffices to establish

(2.8) lim || M(p)By(i) — M(p)Bas(6) | = 0.

To see the validity of this relation, we need an observation of Friedrichs
[20, relations (20.07) and (20.08)], which gives a generalization of the
Hilbert-Schmidt bound. Specifically for an arbitrary integral operator
K and for the given number B, 0 =< 8 =<1, he introduced

1K s = sup [ || K(o, 9) 1 | K@, ) -dy d

and showed that

(2.9) K =l Klls

We apply this bound to the operator

(2.10) As = M(p)Ry(?) — M(p)Rs,5(2)
which evidently has the kernel

_ (p@)gx —y) [z —y|<é
Aﬁ(xyy)'_ 0 !w—‘y!>6.
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Hence

@1) [ Alsssw(| @) o~ )o@ — 2y do.

lz—z

First we choose the value 28 in such a way that
(2.12) 0<28=<2, g|g(u) # du < oo .

In view of estimates (2.5) in case of dimensions n =1,2,3 such a
value is 28 = 2. At the same time it follows that in case of higher
dimensions this relation is implied by

(2.13) 28(—n+2)>—n, 0282,

if we remember that, introducing polar coordinates in (2.12), the weight
function is a constant multiple of |« |**. For such values of 28 the
y-integration in (2.11) can be carried out, yielding

0(1) sgpg _pe)da for n=1,2,3,

lo—z

[| As llep =
0(1) sup sz(x) | g(z — 2) **de for m—=4,5, -+

This in turn, upon insertion of estimate (2.5),, yields

0(1) supg Pie) dz | forn=1,2,3
z lz—zi<1

(2.14) || Asllee =
0(1) sup S! (@) & —2|*PCdy  for m=4,5 -
z z—z|<1

Our first requirement on 24 was that it should be small enough to
allow the integral in (2.12) to converge. Now we impose the second
requirement on 28, namely that it should be large enough and hence
2 — 28 should be small enough to make the right member of (2.14)
small. Specifically

(2.15) 2—-28)2—n) >a
where « is an arbitrary number such that
(2.16) 4—n>d >a,

and « is the value entering Condition S(a). Note that in view this
condition there is such a value of a’. Next we observe the following
elementary fact, which we shall not verify: for any «’ which satisfies
the left inequality of (2.16), inequalities (2.18) and (2.15) are compatible,
provided that % > 3, which is the case. Hence choosing 28 to satisfy
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both of these inequalities (2.14) yields

0(1) supg P(w)dz for n=1,2,3

lz—z|<

2.17) 1| As [lee =

0(1) sup S sp2(x)1 x—z|“dx for m=4,5,---

lz—z
Now it is an interesting fact, which was pointed out to the author
by E. Balslev, that in case of » > 3, Condition S(«) alone, implies

(2.18) supg '>8p2<x) |& —z|vde = o(l) at d=0.

lz—z|

This is clear from

g P@) | @ — 2 |dy < 5l S (@) | 7 — 2z |*d

le—z|< 8 lz—2]< 8

and from definition (2.16), which show that the exponent of 4 is
positive. On the other hand we assumed that p is square integrable
over all of & ,, hence

(2.19) sup S 8p“’(ac)olo& =o(l) ato=0.
jz—z|<

z

Insertion of relations (2.19) and (2.18) in relation (2.17) yields
| As [lss = o(1) at 6 =0,

for all dimensions, n = 1,2, ---,. This in turn, yields the validity of
relation (2.8), if we remember definition (2.10) and the Friedrichs
bound (2.9). Thus conclusion (2.2) is established and this completes
the proof of Subtheorem 2.1. Note that one of the assumptions was
that p is square integrable over the entire space and the proof of
relation (2.8) used only a weaker assumption. For, in case of dimen-
sions n = 1,2, 3, we needed relation (2.9) and in case of dimensions
n > 4 the sole Condition S(a) was needed.

Clearly this assumption on p cannot be removed completely. For,
the function p(x) =1 evidently satisfies Condition S(a) and the
operator M(p) is not compact with respect to — 4, since the spectrum
of — 4+ M(p) consists of [1, «]. We maintain, however, that this
condition can be weakened and to see this we formulate a more general
smallness condition at infinity. In it let .&“(x, 1) = .5(x) denote the
sphere of radius 1 with center at  in &,.

CoNDITION B(pt). Given the positive number g,

lim { [ p@)ldy = 0.
g0 J F(z)
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This is a one parameter family of conditions labeled by z, which
for the value ¢ = 1 gives the original one of Birman [9, Condition
K, p. 142]. Actually this family of sphere conditions was stated for
future reference only, since in the theorem that follows we choose
another special value, namely p = 2.

THEOREM 2.1. Suppose that the real valued fumction p satisfies
Condition S(a) and Condition B(2). Then the operator M(p) s 4-
compact i.e.

M(p)Ry(1) = 0.
Moreover
O.e(— 4 + M(p)) = 06(— A) = [Oy oo) .
We shall establish this theorem by showing that the operator

M(p)R,(7) is the limit in the norm of a sequence of compact operators.
Specifically, setting

pule) = p) |z <k
g 0 |z|>k’
we maintain that
(2.20) 1152 1§gl | M(p)R(i) — M(p.)Ro,5(1) || = 0 .

Since the function p, is square integrable over the entire space, rela-
tion (2.7) appearing in the proof of Subtheorem 2.1 applies to it and
hence each of the operators M(p,)R,s(t) is compact.

To see the validity of relation (2.20) we first show that,

(2.21) }‘gg I| M(p)Ro,5(2) — M(pi)Ro,5(1) || = 0,
0 being arbitrary but fixed. Setting
(2.22) B, = M(p)R,,5(¢) — M(pi)E,,5(7) ,

we evidently have

1 Belle = sup {1 p@) — pa(e) F 19 — ) | | 9@ — 2) | dy de,

the integral being extended over |z — y | >0 and | — 2| > 6. Hence
carrying out the y-integration yields

@23)  [Bli=0Wsu| 5@ - puie) e,

lz—2z}

if we remember estimate (2.5).. Now clearly
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|11 p(a) — puo) e = o7z, &, m)
where

alz, e, m) = | | () — pu(@) [ides .

m<|z—z|<m+1
Next consider the sequence of numbers

a(z, k, m)
mn—l ’

n being the dimension of the space %, over which our operators are
defined. We claim the assumption that the potential p satisfies Condi-
tion B(2) implies that these numbers tend to zero, as k tends to
infinity, and that this is uniform in z and m. To see this we reformulate
the Birman sphere condition with the aid of cubes of unit length.
Then cover the spherical shell, m < |z — z| < m + 1, in the x-space
by unit cubes in such a way that each point is either covered exactly
once, or is on the boundary of several cubes. This way actually we
cover a set which is slightly larger than the shell. Nevertheless since
the volume of the shell is proportional to m™* we see the validity of
the claim. This shows that for an arbitrary positive number v,

(2.24) lim [ sup e~ p(s) — pi@) [ dr] = 0.

Insertion of this relation in (2.23) yields

lim || B, [l, = 0.

Thus remembering definition (2.22) and the Friedrichs bound (2.9),
we see the validity of relation (2.21).

Since Condition B(2) and Condition S(a) clearly imply relation
(2.19), relation (2.8) entering the proof of Subtheorem 2.1, holds under
the present assumptions. Finally combining relations (2.8) and (2.21)
we arrive at the validity of relation (2.20). Thus, the operator
M(p)R,(2) is compact, and this completes the proof of Theorem 2.1.

Clearly, the Coulomb potential — 1/r satisfies the assumptions of
Theorem 2.1, which show that the essential spectrum of the hydrogen
energy operator consists of the positive axis, i.e.

oe(—4~l) = [0, o) .

T

Having established Theorem 2.1 let us return to Condition B()
for arbitrary positive p. Note that an elementary application of
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Holder’s inequality shows that for g, < y,, Condition B(g,) implies
Condition B(g,), the converse implication being false in general. Hence
only the case 0 < ¢t < 2 is of interest. We do not claim that replacing
Condition B(2) by such a Condition B(z) the conclusion of Theorem
2.1 still holds. In fact the remark after the following Theorem 2.2
shows that in general this is false. Nevertheless we have the slightly
weaker conclusion that the perturbed and unperturbed operators are
resolvent congruent. This is the statement of the theorem that fol-
lows.

THEOREM 2.2, Suppose that the real valued function p satisfies
Condition S(a) and Condition B(yt), p being arbitrary and positive.
Then the operator — 4+ M(P) s essentially self adjoint on G,.
Furthermore it is resolvent congruent to — 4, i.e.

(2.25) R(7) — Ry(?) =0,
and
(2.26) o,(— 4+ M(p)) = [0, + o).

According to a result of Kato [29] and Stummel [41], Condition
S(«) alone implies that

lim || M()R(i0) || = 0.

This relation could also be derived [35, Appendix II], using a variant
of relation (2.24), but we shall not be concerned with this fact. We
choose a fixed value of o in such a way that

(2.27) Il M(p)Ry(ip) || < 1.

Then clearly the operator 1 — M(p)R,(¢p) admits an everywhere defined
bounded inverse. Hence according to Lemma 1.1 the perturbed operator
is essentially self adjoint on €,. At the same time it follows from
equation (1.8) that

(2.28)  R.(i0) — Ry(ip) = Ro(i0)M(p)Ri(i0) - (1 — M(p)Ry(0))™" ,
if we remember that for arbitrary A

1—-—A)7—1=A41— 4.
We claim that the first factor is compact. To see this set

s(x) = sgn p()
(2.29) i) = | p(x) [~
Do(%) = | p(w) [#* .
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Then clearly, the first factor in turn, can be factored as
(2.30) Ry(ip)M(p,) - M(s) - M(p;)R,(i0) .
Since 0 < ¢ < 2, definition (2.29) shows that

pi=1+p and pi=1+ 9.

Combining this fact with the assumption that the function p satisfies
Condition S(«), we see that the function p, and p, do too. On the
other hand from the assumption that p satisfies Condition B(y) we
see that p, satisfies Condition B(2). Hence according to Theorem 2.1
the third factor in (2.30) is compact. Next recall that an estimate
similar to (2.27) shows that

| M(p) By — 10) || < eo .

Since this operator on (ip + 4)® is formal adjoint to Ry (¢0)M(p,) on
D, the latter operator is bounded. Thus the operator in (2.30) is
compact, which inserted in (2.28) yields the validity of conclusion (2.26)
and Theorem 2.2 is established.

Theorem 2.2 is a family of theorems labeled by g. For the value
1 = 2 the hypothesis coincide with the ones of Theorem 2.1. We
observe that replacing this value of g by a strictly smaller one,
0 < ¢ < 2, the resulting hypothesis are strictly weaker. For, it was
noted before that in this case Condition B(2) implies Condition B(z).
Also, it is easy to construct a potential which satisfies Condition B{(y)
and Condition S(«) but does not satisfy Condition B(2). It is an
interesting fact, however, observed by W. Roelcke that there is no
best possible choice of p¢. For, an elementary argument, which
involves the Holder inequality, shows the following: if the function
p satisfies Condition S(a) and Condition B(z;) then it also satisfies
Condition B(,), provided that p, is strictly less than 2.

Finally let us observe that in order that the relation

M(p*)Ry(t) = 0

should hold, the validity of Condition 8(2¢) is necessary. This observa-
tion is an extension of an earlier one of Molchanov [34]. To see it
we proceed indirectly and assume accordingly that the potential does
not satisfy this condition. Then there is a sequence of spheres,
{&(x,)}, such that even the spheres {.57(x,, 2)} are disjoint from each
other, and

(2.31) lim S | p(@) [#de > 0 .
o0 d F(xy)

Let j(x) be a smooth function of the variable x such that its support
is in .£7(0, 2) and



ESSENTIAL SPECTRUM OF THE HYDROGEN ENERGY 125

(2.32) jx) = 1, for  in &7(0,1).
We maintain that setting

T(xy) f(w) = flw — @)

and
g = (0 + HT ()7 ,

we obtain a bounded sequence which is not mapped into a compact
sequence by M(p*)R,(t). To see this first note that {T(«,)} is a family
of isometries which commute with 4, hence

@+ DT =1+ 1471 -

Next recall that by assumption for & # 1 the spheres .&7(x,, 2) and
(., 2) are disjoint, which shows that the support of the functions
T(x,)7 and T(x,)7 are also disjoint. Hence

| M(p*)Ro(i)g: — M(p*)Ry(i)g: |
= || M(p*) T(x,)5 — M(p*) T(x,) |
= || M(p*) T(x)g |I* + || M(p*) T(=,)7 |

Insertion of inequality (2.81) in this relation yields
| ME9Bg: — MR, 12| 10 e+ | () e

Thus we see from relation (2.31) that the sequence

{M(p*)R(1)g}

is not compact.

3. Potentials which are bounded from below. Recall that
Theorem 2.2 was established using an appropriate factorization of the
difference of the perturbed and unperturbed resolvents. This in turn,
was made possible by an appropriate factorization of the potential.
Clearly, this is not unique and for different classes of potentials dif-
ferent factorizations are suitable. Such a factorization is the essential
feature of the abstract theorem of Birman [9, Th. 1.2] of our Theorem
2.2 and of the theorem to be stated in this section.

We consider potentials which are bounded from below and for
brevity assume that they are positive. In the theorem that follows
we formulate a factorization for such potentials, which ensures that
the Friedrichs extension [19, Section XII. 5] [20, Th. 31.1] of the
perturbed and unperturbed operators are resolvent. For this purpose
it is convenient to express the perturbed resolvent in terms of the
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unperturbed resolvent and the perturbation. This is done in the lemma
that follows, in which the subscript F' denotes the Friedrichs extension
of the operator. Note that since the perturbed operator need not be
essentially self adjoint on the domain of the unperturbed operator,
equation (1.8) of Lemma 1.1 need not hold.

LEmMmA 3.1. Suppose that the operators A and P are formally
self adjoint on the dense set D and

(3.1) (L ANz, (fLPf)=z0, onD.
Then the set AL D is also dense and
(3.2) (9, X + A7'"PA;"")g) = (9,9) on A¥D.
Furthermore
(3.3) (A + P)p' = AFP(1 4+ AFPPAGP) AR .
The conclusion that AY*® is dense is implicit in the Friedrichs
construction and was emphasized by Kato [30, § 1.6]. Inequality (3.2)

is clearly implied by assumption (3.1).
Since A is bounded away from zero,

D(Ar) < DAY,
and so A}* is defined on . Hence
(3.4) A+ P = AP + A7'PPA)AY on D.
Next we show that
(3.5) APD(A + P)r D1 + AFPPAZ)p
To see this, recall that by definition
(3.6) DA+ P)r = DA+ P)* N DA + P].

Here the second symbol on the right, denotes the domain of the
closure of the form

[A+ PI(f, f)=(A+ P)f,f) onD.
We see from inequality (3.2) that
(3.7) AFDA + Pl = D1 + AFPPAFF],

if we remember that AY* on D is formally self adjoint and hence
closable. We claim that

(3.8) AVD(A + P)r © D1 + AFPPAF)* .



ESSENTIAL SPECTRUM OF THE HYDROGEN ENERGY 127

To verify (3.8), for an arbitrary vestor 2 in D(4 + P),
h* = (A + P)*h .
Then for every f in © we have,
(A¥h, (1 + A7PPAF ) AYf) = (h, (A + P)f) = (h*, f) = (A7"*h*, A¥*f).
Setting
e* = A;'’h*, e = A’h, g = APf,
in the first and last of these equations yields, for every g in AY*®
(e, 1 + A7°PAF")g) = (e*, 9) .

Remembering the definition of the adjoint operator, this equation says
that ¢ is in the domain of the adjoint of 1 4+ A7/2PA;'? on AY*D.
This establishes (3.8), which together with (37) establishes (3.5),

From this relation we derive that the factorization given in equa-
tion (3.4) remains valid for the extended operators. To see this let
e DA + P)r. Then remembering that P is positive, the considera-~
tions of Friedrichs [20, Th. 31.1] [19, § XII.5] show that there is a
sequence {f,} in ®, such that

(3.10), linm ALf, = AVS
(3.10), lim £, = f
and for every A in D
(3.10), liin (h,(A+ P)f,)=(h,(A+ P)f).
We maintain that
(3.11) Iiin (h, AP (A + P)f,) = (h, 1 + AF*PAZ'?)A¥S) .
For, an elementary argument shows that
(h, (1 + AF"PAFR)ALS,) = (1 + AFPAF)R, AiPS,)
and hence according to (3.10),

lim (k, (1 + A7"*PA7")ALF,) = (L + A7 PPAF)h, ALF) .

Now we make use of the fact that according (3.5) the vector AY:f is
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in the domain of the extended operator, which is self adjoint. Hence
(1 + AF'PPAF")h, APS) = (h, (1 + AF'PAFP)AFS) .

Since on ® factorization (3.4) holds, the last two equations together
imply relation (3.11). Remembering that » was an arbitrary vector
in the dense set D, we see from this relation and from (3.10), that

A7P(A + P)p = (1 + A7PPA;?) ;A on D(A + P), .

This equation shows that the operator on the right maps the extended
domain ®(A + P), into the extended domain D(AY?). Thus the factoriza-
tion (3.4) remains valid for the extended operators, that is

(A+ P)y, = AP + AF'PPAF) A on DA + P)r.

Since all three factors on the right are invertible, this implies coneclu-
sion (3.3), and completes the proof of Lemma 3.1.

We use this lemma and Theorem 2.1 to formulate a condition on
the potential function p, which ensures that the Friedrichs extensions
of — 4 and — 4 + (M(p)) are resolvent congruent. Lemma 3.1 plays
the same role in the proof of the theorem that follows as Lemma 1.1
did in the proof of Theorem 2.2.

THEOREM 3.1. Suppose that the function p is positive and locally
square integrable. Suppose further that it can be factored as

(3.12) p(x) = py(®)pe() ,
where p, is such that
(3.13) Lo w(p) < o0

and p, satisfies Condition S(a) and Condition B(2). Then the value
L =1 is in the resolvent set of the Friedrichs extensions of 4 and

4 — M(p) on €, Furthermore
(3.14) A—4+Mp)s'— Q1 —27"=0.

Note that previously the unperturbed operator A, was — 4 and
now its is 4. This slight inconvenience is due to the fact that we
have taken R,({) = ({ — A,)~* and we wish to make { — A, positive.

As is well known [20, Th. 31.1] [19, §XII. 5] the Friedrichs
extension preserves the lower bound of an operator and hence { =1
is in the resolvent set of both extended operators.

To see conclusion (3.13) we first claim that there is a dense set
& which is mapped by (1 — 4)7* into the domain of M(p). For, the
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set

S = (1 — 276,
is dense, since 1 — 4 is essentially self adjoint on €,. Then from the
assumption that p is locally square integrable we see the validity of

the claim. Therefore the second resolvent equation applies on &,
i.e.,

(3.15) 1—4+ M)z —@A— )z =1—4+ Mp)zMp) (1 — A7 .
Note that since the perturbed operator need not be essentially self
adjoint on €, this equation need not hold on the entire space.

Since 1 — 4 on €, is essentially self adjoint, its Friedrichs exten-

sion equals its closure. This fact and the assumptions on p, imply,
according to Theorem 2.1 that

(3.16) M(p) (1 — H7*=0.

Finally from Lemma 3.1 we derive that
(3.17) 11— 4+ Mp)7Mp,) || < e .
For, according to this lemma

(8.18) (1 — 4 + M(p))z'M(p,)
=1 —=27"- 01+ @0—=H""Mp) 1 — H7PF - 1 — NHF"M(p,)

and the first two factors are bounded. We claim that
(3.19) | M(p,) (1 — 47 M(py) ) < oo .
For, this is an integral operator and its kernel is given by

M(p,) (1 — 4~ M(p,) (%, y) = pi(@)g9(x — ¥)0:(y) .

On the other hand, from assumption (3.13) we see that

sup SI 9@ — ) || ply) fdy < o,

if we remember definition (2.1), estimate (2.5),, and the way the ex-
pression in (2.23) was estimated. Hence the Carleman norm associated
with the weight function p,(y), of the operator in (8.19) is finite.
Therefore this operator is bounded [20, relation (20.18)], and (3.19) is
established. Since the operators (1 — 4)~*M(p,) and M(p,) (1 — 4)~?
are formal adjoints to each other on €,, this relation implies that

11— A7 EM(p) || < o .
Insertion of this relation in (3.18) yields the validity of (3.17). Then
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insertion of this relation and of (3.16) in (3.15) shows the validity of
conclusion (3.14). This completes the proof of Theorem 3.1.

This theorem overlaps with a theorem of Balslev [6], which extends
a result of Birman [9].

4. Elliptic operators with variable coefficients. As is well
known, every formally self adjoint second order elliptic operator with
constant coefficients is unitarily equivalent to the Laplacian, via a
change of independent variables [17, Subsection III. 3.1]. Since the
validity of Conditions S(«) and B(2) is not affected by such a change
of variables, Theorem 2.1 holds for such unperturbed operators.

In this section we define the unperturbed operator with the aid
of a formally self adjoint second order differential operator with
variable coefficients which has no 0 order term and acts in free space.
The main requirement on the coefficients is ellipticity, which is to
hold uniformly including the point at infinity. In Theorem 4.1 we
combine the coerciveness estimates for elliptic operators [3] [38,
Lemma 6] with Theorem 2.1 and show that it remains valid for such
unperturbed operators. In other words, if the potential satisfies the
conditions of Theorem 2.1 then the Gokhberg-Krein property holds for
it. From this fact it is easy to derive, using Theorem 2.1 and the
coerciveness estimates again, that such a perturbed operator is re-
solvent congruent to an appropriate elliptic operator with constant
coefficients. Hence its essential spectrum consists of the positive axis.
This is the statement of Theorem 4.2.

To be more specific let L be the form

(4.1) L = 3,D;M(a;)D;

k=1

where the Hermitian matrix {o;(x)} is positive definite at every point
x. Suppose that these functions are continuously differentiable at
any finite point and at infinity we have,

(4.2) lim a,(0) = a,,, and lim 2%:@®) _ g

|@]|—0 N

o e O
Suppose further that the matrix {«;,} is positive definite and set

(4.3) A= 3 Ma;)D;D, .
k=1

Friedrichs showed [21] that under condition (4.2) the weak and strong
extensions of the operator L in &, are equal, that is the closure equals
the strict adjoint. This means that this operator is essentially self
adjoint and we denote its closure by L again. After these preparations
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we formulate:

THEOREM 4.1. Suppose that the operator L satisfies condition
(4.2) and the function p satisfies the conditions of Theorem 2.1.
Then the operator M(p) is L-compact, that s

(4.4) M(p) (i + L)y =0.

It is part of conclusion (4.4) that this operator is defined on the
entire space &,(%,), that is

(4.5) D(L) < D(M(p)) .

It is easily seen from Theorem 2.1 that
D(4) < D(M(p)) ,

and hence relation (4.5) is implied by

(4.6) D(L) c D(4) .

To see the validity of this relation we need the coerciveness estimate
of Browder, [12, Th. 2], which holds for more general operators L,
and says the following: there is a constant < such that for every f
in (L)

4.7) WD FI = (L LA+ 11 FID -

This holds, in particular, on &, and we see that if L maps a Cauchy
sequence {f,} into another Cauchy Sequence, then so does D}. Thus
relation (4.6) follows. Actually the novelty of Browder’s estimate is
the large class of regions & that he admits, over which the functions
f are defined. Since in our case & = %,, the validity of (4.7) on G,
could be derived from Aronszajn’s original estimate [3], [38], if we
remember the following: the boundedness of & was used only to
establish the uniform continuity and ellipticity of the coefficients of
L.

As a first consequence of relation (4.6) we see that the second
resolvent equation applies to the operators A and L. That is

48 (G + Ly — G+ A" =G+ A (L — A) G+ L)

As another consequence of relation (4.6), or rather of the
coerciveness estimate (4.7) we shall derive that the second factor on
the right of (4.8) is bounded. For, setting f = (¢ + L)™¢g in (4.7) we
obtain

4.9) I Di+ Ly7gll = 271lgll,



132 P. A. REJTO

if we remember that since L is self adjoint
WL+ fll =2l @+ D)fIf.
Thus
(4.10) | (L—A)@+ L) < oo
Insertion of this fact in relation (4.8) shows that
(4.11) M)+ Ly — (@ + 4)7]1=0,

since by assumption p satisfies the conditions of Theorem 2.1, accord-
ing to which

M(p) (i + 4~ =0.

Applying this fact again, relation (4.11) yields conclusion (4.4). Next
we formulate:

THEOREM 4.2. Let the operator L satisfy condition (4.2) and
let the operator A be defined by (4.3). Suppose that the fumction p
satisfies the conditions of Theorem 2.1. Then the operators A and
L + M(p) are resolvent congruent, i.e.

(4.12) L+Mp=A4A (7).
First we maintain that
(4.13) L=A (@1).

To see this let ¢, be the characteristic function of the sphere of radius
k. Then clearly

G + L)y — (i + A)™
=+ A~ 'M(c,) (A— L) (¢ + L)™
+ G+ A"MIL —¢)(A— L) (i + L)

Hence we see from Theorem 2.1 that

414) C+L)y'—@@+A)'=0+4)" - M1L—c)(A—L)(t+ L),
We claim that

(4.15) ;101_1.2 [ M1—c)(A—L)yG@+ L)"||=0.

For, we see from conditions (4.2) that there are functions {»{*'}, {s{},
such that

(16 M —c)(A—I)= 5 M#)D; + 3 M),
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and

(4.17) }cim (sup r{¥(x)) = lim (sup s(z)) = 0 .
—00 £ k—oo z

Combining this relation with the coerciveness estimate (4.19), we see
that

(4.18) iim Il i M(r#)Di( + L)y™||=0.
—oo  j=1
Although we did not state it in (4.7) the coerciveness estimates also
assert that - for operators more general than L-there is a constant v
such that for every f in (L),

(4.19) WD I = (L LFIF + [IP) -
This implies, in the same manner as (4.7) did imply (4.9), that
(4.20) [| Di7 + L)y™|] < oo .

Combining this relation with (4.19) we obtain
lim || 3%, M(s$*)Dy(i + L) || = 0.
k—oc0 =1

This in turn, combined with (4.18) establishes (4.15) in view of (4.16).
Thus the operator on the left side of (4.14) is congruent to an operator
of arbitrarily small norm and hence it is congruent to the 0 operator
establishing relation (4.13).

Recall Theorem 4.1 which says that M(p) is L-compact in the
sense of Gokhberg-Krein. According to Lemma 1.1 it is a general
operator theoretic fact that this implies the resolvent congruence
property, i.e.

L+ Mp) =L (i).

Combining this relation with (4.13) we arrive at conclusion (4.12) and
the proof of Theorem 4.2 is complete.

In conclusion, let us remark that the coerciveness inequality (4.19)
is an elementary fact, since

I D, fIF = (D;f, D;f) = 7(f, L) = W LANILFIE = (L AP+ 11 FIP)

5. Perturbation of the Laplacian in an exterior region by a
potential. Let & be a bounded hypersurface in &,, which divides
it into two parts and denote the bounded interior by %, and the
unbounded exterior by Z,. We define the unperturbed operator with
the aid of the Laplacian acting in £,(%,) and with the aid of homo-
geneous boundary conditions. For the perturbation we take a potential
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acting in the same space %(%,). We show that if the potential is
locally bounded and satisfies the conditions of Theorem 2.1 then it
defines a perturbation for which the Gokhberg-Krein property holds.

Specifically let &7 be some subsurface of &7, and let ¢ be a
continuous function on &4. Denote by D(o) the set of those twice
continuously differentiable functions with bounded support in &,
which satisfy the boundary condition,

51 %{;(x)—o(x)f(x)=0 ve A
fle) =0 zxe X — XK

n-being the outer normal on .&”. Suppose that .57 is so smooth that
the Gauss formula applies to it, i.e.

(f, (= 4+ Mw)S)
65 = S()w+| swiswrd+ | ose s,

u .

on (o) .

We shall also assume that S is smooth enough to allow the following
property [47, §3] [40], which we state for future reference: to any
positive number & there is a number (¢), such that

(5.3)
[, olrwras| =< 3

=t

I az 9| 1@, o D).
amj u

Let 4, denote the Laplacian in D(o) in L£(%,). The essential self
adjointness of this operator is far from being evident, as was the
case with the corresponding free space operator. It follows from a
result of Lax and Phillips [32], which says that for formally self
adjoint elliptic boundary value problems-more general than ours-the
weak solution is a strong solution. After these preparations we
formulate:

THEOREM 5.1. Suppose that the real valued function p is locally
bounded and satisfies the conditions of Theorem 2.1. Then the
operator M(p) is 4,-compact, i.e.

(5.4) M(p)t+ 4,)"=0
and
(5.5) a(— 4, + M(p)) = [0, =) .

It is part of conclusion (5.4) that the operator on the left is
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defined on all of &(%,). Actually all that we need, at present, is
that it is densely defined; and this is the case since the set (¢ + 4,)(0)
is dense. It is convenient to extend this operator to the larger space
(&, by setting

0 re <&,
(5.6) p(w) = {p(m) re &,
and
L (G 4)T on 8(Z)
(5.7) (t+4)7 = {(i + 4,)7 on &(Z,).

Here 4, is the operator defined with the aid of 4 in (% ;) and a
homogeneous boundary condition. The specific form of this boundary
condition is not important since all of the operators (¢ + 4,)~* are
compact.

This extension is convenient inasmuch as the extended operator
can be compared with the operator M(p,) (¢ + 4,)~', 4, being the
Laplacian in free space. Specifically we see from Theorem 2.1 that
conclusion (5.4) is equivalent to

(5.8) M@) [0 + 4)7 — (1 + 4)7]=0.

We first maintain that if w, is a function which equals I in and
near &, and vanishes near infinity, then

(5.9) M(wy)M(p) [(0 + 4)7" — (1 + 4)7] = 0.

For, it was emphasized by Wolf, [47, §12] that relations (5.2) and
(5.3) imply that (¢ + 4,)~* maps an arbitrary bounded set of functions
in £(%,), into a set of functions whose Dirichlet norm is bounded.
From this and from the fact that the support of w, is bounded we
conclude, using Rellichs’ compactness criterion [17, vol. 1, Subsection
VI. 2.2], that

M(w,) (v + 4)" =0.
Hence, in veiw of the local boundedness of p,
M(p)M(w,) (1 + 4,)7" =0.

Since evidently the function w,p, satisfies the conditions of Theorem
2.1

M(pe)M(wb) (?’ + AO)_1 = 0 ’

and relation (5.9) follows.
Next we set
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(5.10) w,=1—w,,
and maintain that
(5.11) Mp)M(w,) [(¢ + 4)7 — (1 + 4)7]1=0.

For, one expects that the operator (¢ + 4,)™* maps an arbitrary func-
tion in £,(%,) into a function to which 4 is applicable locally, with
the exception of the points of &”. In fact, according to Birmann
[10, Lemma 1.3, p. 33], it is easy to show that for an arbitrary twice
continuously differentiable bounded function which vanishes near .57,
in particular for w,,

(5.13) M(w,) (t + 4,)7'8(,) C D + 4,) .
Thus

M(p)M(w,) [(i + 4)7" — (@ + 4)7'] = M(p,) (0 + 40)7" .
(@ + d)M(w,) [(¢ + 4)7" — (¢ + 4)7],

and according to Theorem 2.1 the first factor is compact. Therefore
to complete the proof of relation (5.12) it suffices to show that

(5.14) I+ ) M(w,) [(2+ 4)7 — (0 + )7 < oo

Since the function (¢ + 4,)7'f is essentially a Poisson integral the
validity of this relation would follow from the integral representations
for the first and second derivates of a Poisson integral [17, Subsection
IV. 1.2]. Nevertheless, we prefer not to make use of these formulae
and proceed differently. First we observe that since w, vanishes near
S, there is a function d which also vanishes near & and equals 1 on
the support of w,: Hence

(5.15) M(w,) = M(d)M(w,)
and
(5.13), M(d) (v + 4)78( &) S D + 4,) .

Insertion of relation (5.15) in (5.14) shows that the latter is equivalent
to

(5.14)s | (¢ + d)M(w,)M(d) [(2 + 4)™ — (@ + )7 || < oo .
To see this, recall the well-known relation,

(¢ + 4)M(w,) - M(d) = > M(0;w.) - M(d)

(5.16) )
+ 23 M@©G,w,)D; - M(d) + M(w,) (¢ + 4,) - M(d) ,

where we have set
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o) = 20 @), dw o) = T (),
0x; ox’
since w, is not in ®(D,). Clearly the first term on the right of (5.16)

is a bounded operator. In view of the coerciveness estimates [3] [38,
Lemma 6] the second term is bounded with reference to (7 + 4.), i.e.

(5.17) [| M(0;w,)D;M(d) (1 + 4,)7" || < o i=12,---m.
Finally we claim that
(5.18) M(w,) (@ + 4)M@)[(2 + 4.)7 — (i + 4)7]=0.
For, according to the second resolvent equation
@+ 4)yT— @+ d)y =@+ 4) N4, — 4) (8 + 4)

holds on any set of functions which is mapped under (¢ + 4,)' into
the intersection of the domains of 4, and 4,. In particular this holds
for any function f in @2, which ecan be written in the form f = w,g.
Since (4, — 4,) equals zere on the intersection of their domain, we
have

[(G+ 4)" — (i + 4) G + 4)M(w,) =0 .

Remembering the definition of the function d and the local character
of differentiation, this yields

[+ 47 — (& + 4)71M(@) (¢ + 4)M(w,) =0 .
Thus taking adjoints, at least formally, we have
M(w,) (¢ + 4)M@)[(@ + 4)™ — (¢ + 4)7]1 =0

and in view of the presence of the factor M(d) this also follows
rigorously. In other words, relation (5.18) has been established. In-
sertion of relations (5.16), (5.17), and (5.18) in (5.14), shows the validity
of this relation. This in turn establishes relation (5.11), which in
view of (5.9) establishes (5.8) and conclusion (5.4) follows.

Having established this conclusion we derive conclusion (5.5).
First observe that

(5.19) — 4, + M) = — 4,(1) .
For, we have seen that
- Ae + M(pe) = — Ae (’l’) ’

and according to definition (5.7) the operator 4, is the orthogonal sum
of 4, and 4,. Next we need the relation
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(5.20) 4, = 4,3) ,

which is a special case of a result obtained independently by Glazman
[23] and Wolf [47, §14, Main Theorem]. It also follows from rela-
tion (5.18) and from the fact that Theorem 2.1 applies to the functions
{o,w,} and {¢*w,}. For, a repetition of the arguments leading to (5.11)
shows that this relation holds for the function p.(x) =1, although
Theorem 2.1 does not apply to this function. Since the essential
spectrum of 4, is empty, relation (5.20) implies that

Ue(— Au) = [0’ oo] .

Finally combining this fact with relation (5.19) we arrive at conclusion
(5.5), and the proof of Theorem 5.1 is complete.

In conclusion let us remark that this theorem is a slight generali-
zation of a result obtained independently by Glazman [22] and Wolf
[46], inasmuch as these authors required that the potential p should
be uniformly bounded and

lilm p(x) =0.
13—
Added in Proof.

Agmon, S., Lectures on Elliptic Boundaryvalue Problems, Van
Nostrand Co., 1966.

Schechter, M., On the invariance of the essential spectrum of an
arbitrary operator, parts I and II. J. Math. Anal. Appl. 13
(1966), 205-215, and to appear.

Jorgens, K., Uber das wesentliche Spektrum elliptischer Differ-
entialoperatoren vom Schrodinger-Typ, to appear.

REMARK to LEMMA 3.1. The assumption P=0 can be replaced
by the assumption that the operator Az;'*|P| Az7'* is compact. For,
in this case inequality (3.2) holds on the complement of a finite dimen-
sional subspace. Note that this assumption is equivalent to the
compactness of | P[V* Az | P2,
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