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ON A THEOREM OF PHILIP HALL

DANIEL GORENSTEIN

Lemma 8.2 of ''Solvability of Groups of Odd Order" by
W. Feit and J. G. Thompson asserts that every finite p-group
P possesses a characteristic subgroup C of class at most 2
with the following properties: (i) Cβ(C) is elementary abelian,
(ii) M O = 3(C), and (iii) [P, C] e 3(C). Subgroups of es-
sentially the same type were used by Thompson in an earlier
paper "Normal p-complements for Finite Groups". We shall
call a subgroup with these properties a critical subgroup of P.

If C is an arbitrary characteristic subgroup of P such that
&i>(C) = 3(C), it is easily seen that any nontrivial p'-automor-
phism of P remains nontrivial when restricted to C. This
property of critical subgroups together with the restriction on
their class are the crucial ones for the applications. However,
in the present note we shall show that they can also be used to
obtain a rather direct proof of a frequently quoted, unpublished,1

theorem of Philip Hall which gives the structure of all p-
groups having no noncyclic characteristic abelian subgroups.

We recall that a p-group P is said to be extra-special if P is of
class 2 and 3(P) = P' = φ(P) is of order p. It is convenient to include
in the definition the trivial group P = 1.

LEMMA 1. Let P be a p-group which has no noncyclic charac-
teristic abelian subgroups and let C be a critical subgroup of P.
Then the following hold:

( i) S(C) is cyclic and C is the central product of an extra-
special group E and &(C).

(ii) If R — (£?(#), then 3(C) is a self-centralizing normal sub-
group of R and P — ER.

Proof. Since C char P, our hypothesis implies that C contains
no noncyclic characteristic abelian subgroups, so that, in particular,
Z = 3(C) is cyclic. Since (£P(C) = z , t h e lemma follows with E = 1
and R — P in case C = Z. Hence we may assume that C Z)Z, whence
C is nonabelian. Since C/Z is elementary, we thus have C" = ΩX(Z)
is of order p. Assume first that | Z \ > p.

Set C = C/C and let Z be the image of Z in C. If A is a cyclic
subgroup of C of maximal order containing Z, then C = A x E, where
E is elementary, and | A: Z \ = 1 or p. In either case ZE char C.
Hence if E denotes the inverse image of E in C and we set d = EZ,

1 A proof appears in a set of unpublished lecture notes of Philip Hall.
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then C1 char C and so CΊ char P. But then also Cx has no noncyclic
characteristic abelian subgroups, whence 3(CΊ) is cyclic. Since Z^ Z(C^)
and Z is a maximal cyclic subgroup of the image ZE of C1 in C, we
have, in fact, Z = 3 ( d ) . Since 3(J57) g 3(00 = Z and # Π ̂  = C", it
follows that $(E) = C". Furthermore, 22' =£ 1, since otherwise Cι — Z
and C would by cyclic. Hence Ef = C and so also #/£" = E/C = 2?
is elementary. But then 0(2?) — Er — 3(E) and we conclude that 2?
is extra-special.

Since [P, C] S Z, certainly [P, £7] £ Z. But ai(E)^S(E), which
implies that, in fact, [P, E] g ^ ( Z ) = C = &(E). Thus every element
of P induces by conjugation an automorphism of E which acts trivially
on the Frattini factor group E of E. It is well-known that any such
automorphism of E is inner. Indeed, if | E\ — pk, the number of such
automorphisms is, on the one hand, at most pJΰ; while, on the other-
hand, the number of inner automorphisms of E is exactly pk. From
this the assertion follows.

This last result implies that P = ER, where R — &P{E). In par-
ticular, C = E(C D R), Z s R, and R Π E = Ω^Z). Hence C_= B x E,
where B is the image of C Π R in C. But we know that C = A x E
with A cyclic; and it follows that C f] R is cyclic. But then
C Π 22 g 3(C), whence C ΓΊ 22 = Z. Thus C = Ct = EZ is the central
product of an extra-special group and a cyclic group. Furthermore,
&B(Z) centralizes both Z and E and so ( S ^ ) g ^ ( C ) - Z. Hence Z
is a self-centralizing normal subgroup of R and the lemma is proved
when \Z\>p. However, if \Z\=p, then C itself is extra-special,
and the preceding argument shows that P ~ C, so the lemma holds
in this case as well.

The effect of this lemma is to reduce the problem of classifying
^-groups which have no noncyclic characteristic abelian subgroups to
a study of p-groups which contain a self-centralizing cyclic normal
subgroup. For m ^ 4, we denote by Dm, Qmi and Sm respectively the
dihedral, generalized quaternion, and semi-dihedral groups of order 2m.
(Here Sm = <x,y\ x2m'λ = y2 = 1 and y~'xy = x~1+2W"2». We also in-
troduce the groups Mm(p) = (x,y \ xpm"x = yp = 1, y~ιxy = α;1+ί>m~2>. We
note for future use that Ω^MJj))) is abelian of type (p\ p), l g i ^ m ~ 2 ,
if p is odd or m ^ 4,

We next prove:

LEMMA 2. Le£ P be a noncyclic p-group which contains a self-
centralizing cyclic normal subgroup H of order p1*1, n ^ 2. / / n = 2,
then P is extra-special of order p3. If n > 2, then one of the follow-
ing holds:
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( i) p = 2 and P is ίsomorphic to Dn+1, Qn+1, or Sn+1;
(ii) M — ^p{ϋ\H)) is isomorphic to Mn+ί(p) and Ω^M) char P.

Proof. Since &P(H) — H,P — P/H is isomorphic to a nontrivial
p-subgroup of A = Aut i ϊ . The structure of A is well-known. First
of all, if n = 2, an S^-subgroup of A has order p, whence | P \ — p3.
But then $(P) — Pr = ^(P) is of order p and so P is extra-special.
(In fact, P is either dihedral, quaternion, or isomorphic to M3(p)).
Hence we may suppose n > 2 for the balance of the proof.

Now set H = < » . If p = 2, then A is abelian of type (2%~2, 2)
with basis α, /3, where xa = x5 and #/3 = or1; while if p is odd, an
Sp-subgroup of A is cyclic of order p%~x with generator α, where
xa = #1+ί>. In the first case, set 7 — a2n~3 and in the second case, set
7 = apn~2. Then ^7 = a;1+2)%~1 in both cases. Furthermore, one computes
directly that 7 generates the subgroup of A which acts trivially on

Put M — &P{U\H)). Then it follows from the preceding paragraph
t h a t either \M:H\~p and M — ζx, ί/>, where y^xy — x1+pn"τ

9 or

else p — 2, M — H, \P: H\ — p and P = ζx, yy, where y~λxy — x~x or

y^xy = x~δ2n~3 == a?~1+ίn"\ In the first and third cases it is possible to
choose y so that yp = 1, while in the second case, so that either y2 = 1
or 7/2 = ̂ 2W~1. We conclude that either Λf is isomorphic to Mn+ί(p) or
that P is isomorphic to Dn+1, Qn+11 or Sn+1.

Hence to complete the proof of the lemma, we need only show in
the first instance that Ω^M) char P. Let M be the image of M in
P. If P is cyclic, then M == ̂ ( P ) . Since A(P) maps into A(P), it
follows that Ω^P) g AίΛf), whence ^(Λf) = ^ ( P ) char P. On the
other hand, if P is noncyclic, then p = 2 and P necessarily contains
an element which inverts x. But then ^ ( i ί ) = <V> gΞ P ' . But P' ^ H
as P is abelian and so P ' is cyclic. Hence ϋ\H) char P ' char P and
consequently M = ^(ΰ'iH)) char P. But then fl^Λf) char P in this
case as well.

From these two lemmas, we can now easily derive our main
result:

THEOREM (P. Hall), If P is a p-group with no noncyclic
characteristic abelian subgroups, then P is the central product of
subgroups P± and P2, where Pt is extra-special and either P 2 is cyclic
or p — 2 and P 2 is dihedral, generalized quaternion, or semi-dihedral.

Proof. Let C be a critical subgroup of P and set Z — &(C).
We may assume PZDC, otherwise the theorem follows from Lemma 1.
By Lemma 1, Z is cyclic, C = EZ, where E is extra-special, and
P = ER, w h e r e R = &P(E), <£,Λ(Z) = Z, a n d R =) Z. I n p a r t i c u l a r , \Z\>p.
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Consider first the case C = Z. Then R = P. If \Z\ = p\ then P is
extra-special of order p3 by Lemma 2. On the other hand, if \Z\ ^ p\
then by the same lemma either P is dihedral, generalized quaternion,
or semi-dihedral, or else P contains a subgroup M isomorphic to Mm(p)
for some m with Ωt(M) char P. Since ^(i l ί) is abelian of type (p,p),
this latter case is impossible and so the theorem follows in all cases
when C — Z.

Assume then that Cz>Z, so that EΦ\ and E' = Ω^Z). If
ZI = ρ2, then R is extra-special of order p*y in which case R/Ωλ(Z)

is elementary of type (p, p). But then P/Ω^Z) is elementary and it
follows that P itself is extra-special. Thus we may suppose that
\Z\ — pn, n ^ 3. If i2 is dihedral, generalized quaternion, or semi-
dihedral, the theorem follows with Px — E and P 2 = R, so we may
also assume that R is not of this form. But then if M = fS,R(ΰ\Z)),
M is isomorphic to Mn+1(p) by Lemma 2. Furthermore, &F(ΰ\Z)) = EM.
On the other hand, ϋ\Z) char Z char P, and so EM char P. Thus
to complete the proof of the theorem, it will suffice to show that EM
possesses a noncyclic characteristic abelian subgroup.

Set F = Ωλ{EM). We shall argue that Q(F) is noncyclic. Since
M centralizes E and E Γi M = Ef is of order p, an element of F of order
p is the product of elements of E and M each of order at most p2.
It follows from this that F S EΩ2(M). But β2(M) is abelian of type
(p2, p) since | M | ^ p4 and so F Π Λί S Sί-F). Since ^ ( M ) g F n l
and ^ ( M ) is abelian of type (p, p), we conclude that 3 ( ^ ) is noncyclic,
and the theorem is proved.

When p is odd one can also show that the extra-special subgroup
P1 of P is necessarily of exponent p.
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