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CONTRACTION SEMI-GROUPS IN A FUNCTION SPACE

J. R. DORROH

Using the concepts of a semi inner-product and a dissi-
pative operator, it is proven that if X is a complex Banach
space (under the supremum norm) of bounded complex valued
functions on a set S, p is a bounded positive function on S
which is bounded away from zero, pX c X, and A is the
infinitesimal generator of a strongly continuous (class (C)))
semi-group of contraction operators in X, then pA is also the
infinitesimal generator of such a semi-group.

The notion of a semi inner-product was introduced by G. Lumer
in [3].

DEFINITION 1. A semt inmer-product for a complex (real) Banach
space X is a function [-, -] from X x X into the complex (real)
numbers which satisfies

[ax + By, 2] = alw, 2] + Bly, 2],
[z, 2] | = [l l-]l2]l,

and
[x, 2] = |[=z]]".

There is at least one semi inner-product for every Banach space X,
because we can define [z, y] = f(x), where f is a bounded linear
functional on X such that || f|| = ||y]|, and |f(w)| = ||y |]* (see [4]).

By an operator in a Banach space X, we mean a linear transfor-
mation (not necessarily bounded) from a subspace of X to a subspace
of X. The notion of a dissipative operator in a Banach space is
treated by G. Lumer and R. S. Phillips in [4].

DEFINITION 2. An operator A in a Banach space X is said to be
dissipative (with respect to a given semi inner-product for X) if

re[Ax, 2] =0

for all # in the domain of A.

By a contraction semi-group in a Banach space X we mean a
strongly continuous semi-group of contraction operators in X which
is of class (C,) (see [2]). A contraction operator in X is a bounded
linear transformation T from X into X with ||T|| < 1. Lumer and
Phillips have given the following characterization [4, Theorem 3.1] of
the infinitesimal generator of a contraction semi-group.

35



36 J. R. DORROH

THEOREM (Lumer and Phillips). Suppose A is an operator in
a Banach space X, the domain of A is dense in X, and [-, -] is a
semt tnmer-product for X, Then A s the infinitesimal generator
of a contraction semi-group in X if and only if A is dissipative
with respect to [-, -], and the range of I—A is all of X, where I
denotes the tdentity transformation on X,

THEOREM. Suppose S is a set, X is a complex Banach space
(under the supremum morm) of bounded complex valued functions
on S, p is a bounded positive function on S which ts bounded away
from zero, pXC X, and A is the infinitesimal generator of a
contraction semi-group in X. Then pA s also the infinitesimal
generator of a contraction semi-group in X,

Proof. Let U denote the Banach algebra of all bounded complex
valued functions on S, and let S, denote the set of all nonzero mul-
tiplicative linear functionals on S. It follows from [1, pp. 272-277],
especially [1, Corollary 19, p. 276], that

(i) if m is in S, and ¢ is a nonnegative function in U, then
m(q) = 0, and

(ii) if « is in U, then there is an m in S, such that |m(z)| = ||z ]|.
For each z in X, let m, denote an element m of S; such that |m(z)| =
[lz|], and for each x,y in X, let

[x, yl = mu(x)[my(y)]* ’

where the * denotes complex conjugation. Then [-, -] is a semi inner-
product for X; it is the only one to be used from this point on. A
dissipative operator in X will mean one which is dissipative with respect
to this semi inner-product.

If ¢ is a bounded nonnegative function on S, and ¢X < X, then

re [¢Av, @] = m,(q) re [Ax, 2] < 0,

for all 2 in D(A), the domain of A, since A is dissipative by [4,
Theorem 3.1]. Therefore, gA is dissipative. Also, the domain of ¢A
is ©(A), which is dense in X by [2, Theorem 12.3.1, p. 360]. If

sup |1 —q(s) | < 1/2,
SES

then ||I — ¢]|, the operator norm of I — ¢, is less than 1/2, so that
I — gA is invertible, since

I—qA=T—A+(I—qA=1{I+(I—qARQ, A)I — A4),

and
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|ARQ, A) || = | R(L, 4) — I|| = 2

by [2, Theorem 12.3.1, p. 360]. Thus the range of I —qA4 is all of X,
and ¢A generates a contraction semi-group in X by [4, Theorem 3.1].

Since F(p)X c X for every polynomial F', and p is bounded and
nonnegative, it follows from the classical Weierstrass theorem that
pUm X c X for every positive integer #. Choose n so that

sup |1 — [p(s)]" [ < 1/2,

and let » = p/™, This is possible because the range of p is contained
in a closed and bounded interval of positive numbers. By what was
shown in the previous paragraph, rA generates a contraction semi-
group in X. If 1 <4< n, and r7A generates a contraction semi-group
in X, then "' A does also, for

rittA = r(riA) ,

and we can substitute » for ¢ and A for A in the argument given
in the previous paragraph.

REMARK. An argument similar to the one given will establish
the theorem if X is taken to be a real Banach space (under the
supremum norm) of bounded real valued functions on S, and the rest
of the hypothesis remains the same. Also, we could take A to be
the generator of a class (C;) semi-group [T'(f); 0 =t < =] of operators
in X such that for some w > 0,

N T@) | < et for t = 0.
If
T(t) = e~tT(t) fort =0,

then [7(t)] is a contraction semi-group in X and has the generator
A=A—w.
If

V(t) = e*»V(t)  for t =0,

where [V(t); 0 =t < o] is the contraction semi-group generated by
pA, then [V(¢)] is a class (C,) semi-group of operators in X,

| V@E) || < ewto for t =0,

and [V(¢)] is generated by pA. The author wishes to express his
thanks to the referee for his suggestions,
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