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ON INDECOMPOSABLE MODULES OVER
RINGS WITH MINIMUM CONDITION

R. R. CoLBY

Let A be an associative ring with left minimum condition
and identity. Let g(d) denote the number of nonisomorphic
indecomposable A-modules which have composition length d, d
a nonnegative integer, If, for each integer 7, there exists
an integer d > n, such that g(d) = o, A is said to be of
strongly unbounded module type.

Assume that the center of the endomorphism ring of
each simple (left) A-module is infinite. The following results
concerning the structure of rings of strongly unbounded type
are obtained.

I. If the ideal lattice of A is infinite, then A is of strongly
unbounded module type.

II. If A is commutative, then A has only a finite number
of (nonisomorphic) finitely generated indecomposable modules
if and only if the ideal lattice of A is distributive. Other-
wise, A is of strongly unbounded module type.

III. If the ideal lattice of A contains a vertex V of order
greater than three such that, for some primitive idempotent
ec A, the image Ve of V is a vertex of order greater than
three in the submodule lattice of Ae¢, then A is of strongly
unbounded module type.

These results are generalizations of earlier ones obtained
by J. P. Jans for finite dimensional algebras over algebraically
closed fields.

Let A be an associative ring with left minimum condition and
identity., The length, ¢(M), of a (left) A-module M with composition
series is the number of composition factors of M. Let ¢g(d) denote
the number of nonisomorphic indecomposable A-modules which have
length d, d a nonnegative integer. If 3, g(d) < o, A is said to be of
finite module type. If there exists an integer n such that g(d) =0
for all d > n, A is of bounded module type. If not of bounded module
type, A is of wnbounded module type. If for each integer =, there
exists d > n such that g(d) = «, 4 is of strongly unbounded module
type. R. Brauer, J. P. Jans, and R. M. Thrall have conjectured that
infinite algebras of unbounded type are of strongly unbounded type,
and that algebras of bounded type are of finite type [4]. A discus-
sion of the state of these conjectures may be found in [2] and [4].

J. P. Jans has given sufficient conditions that a finite dimensional
algebra over an algebraically closed field be of strongly unbounded
type [4]. Through extension and modification of the techniques used
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by Jans and by H. Tachikawa [6], some of these results can be
obtained for arbitrary rings with minimum condition, provided that
the endomorphism rings of the simple A-modules have infinite centers.

2. Rings with infinite ideal lattices. Let A be a ring with
left minimum condition with the property that the lattice of ideals
of A is infinite. H. Tachikawa showed that A is of unbounded type
[6]. If A is also a finite dimensional algebra over an algebraically
closed field, A is of strongly unbounded type [4]. The following
theorem generalizes these results.

THEOREM. If the center of the endomorphism ring of each simple
(irreducible) A-module is infinite and if the ideal lattice of A is in-
finite, then A is of strongly unbounded module type.

Proof. Since the ideal lattice of A is infinite, the lattice contains
a projective root [1].

By

B

Since A/B-modules are A-modules, we can assume that B=0. Also,
there exists an A — A isomorphism «: B, = B,. Let N denote the
radical of A and define M = U(N)Nr(N). Since B, and B, are
simple ideals we have B, + B, = B, @ B, & M. There exist primitive
idempotents ¢, f € A such that fMe 2 fB,e @ fB,e O (0). Choose u =
fue # 0 in fBe and let v = y(u). Let ACfAf be a set of repre-
sentatives for the nonzero distinct cosets of the center of fAf/fNf.
Evidently, 4 is infinite. For M€ 4, define s(\) = Av — u. Since fAu,
fAv, fAs(\), are all nonzero and u, v, s(») €M, we have Af/Nf =
Au = Av = As(\).

LEMMA 1. If M # ped, a,be A, and s(\)a = bs(y), then s(M)a =
bs(p) = 0.

Proof. We may assume that acede, be fAf. Since B,N B, =0,
we have A\wva = byw and ua = bu. Since v = (), va = bv so that Abv =
bpv. Thus, since fAf/fNf is a division ring, \b = by (mod fNf) =
pb (mod fNf). Since X\ # p (mod fNf), b =0 (mod fNf). Since ve M,
the lemma follows.
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LemMA 2. If @, b, ¢, de A and s(\)a + vb = es(\) + dv, then va =
cv, ua = cu, and vb = dv,

Proof. Since B,N B, =0 and v = (u), we have cu = ua, cv =
va, and \wa + vb — exv — dv = 0, Hence, since Ae¢ = en (mod £Nf),

vb = dw.
For each positive integer n, let X™ be the direct sum of n copies

of Ae,
X" =@ 3 elde)
and let Y denote the socle of X*, For \e 4, define
Ti = {Sefaiw + as):a,= 0,0, 4} .

Let Hy = X*/Ty and Sy = Y"*/T%. Since the length of 7% is =, the
length of St = 2n — n = n.

We proceed to show that Hy and Hj are not isomorphic, provided
N # ped. Suppose 0: Hy = Hp. Since X" is projective [3], there
exists §: X*— X" such that 6r, = =0, where «,, 7, are the natural
projections of X" onto Hy, Hp, respectively. There exist ,---,2, € ede,
such that

fe,(e) = 2:; () .

Since m,e,s(\) =0, and Oz, = 7,0, we have x,f¢,s(\) =0 and hence
Ge,s(\) € T, Thus,

S, es(Va:) = fe,s(v € Tk .

According to the definition of 77, there exist ¢,=0,a, -+, 0a,€ A,
such that

3(7\:)%,; = ;v + aiS(ﬂ) y 7= 1, e, m,
Using an induction and Lemma 1, we conclude that x,, ---, x, € eNe,
and hence

0, e, (v) = ﬂFi gi(vx)) =0,
=1

This contradicts the assumption that 6 is an isomorphism.

Next, suppose that H} decomposes. Let 7 be the idempotent
endomorphism of H? associated with an indecomposable direct sum-
mand of H} such that nm,e.(v) # 0,
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LeMMA 3. The restriction of 5 to Sy is a monomorphism,

Proof. Since X" is projective, » may be lifted to an endomor-
phism 77 of X", There exist y,; € ¢Ae such that
776.7'(6) = ;ez(yw) ’ .7 = 1; e, N,
From the definition of 7%, we have that
77(57‘—1(3(>V)) + Sj(/l))) € T;\L ’ .7 - 27 e, M
and 7¢,(s(\))e T?. Thus,

T(es (V) + €,0) = 3 e(s(Mys s + vus) € Th
for j=2,..-,7n, and
Te,s0\) = Sye(s(ym) € T4 .

Hence, there exist a;;€ fAf such that

S\Y1,5—1 + VY1; = Qy,j_1Sa
SaUi,j1 + VYij = Qi jSx + Qiyg, ;40 ,
SaYin = Q1Sa
and

SaAYin = QAinSa + @i1,,0
for 4,7=2,8,---,m .

Since fs,e = s, and fve = v, we may assume that a;;€ fAf, 1,7 =
1,2, ..., n. Applying Lemma 2, we obtain,

UY;; = AU,
and

VY = Q0 1, =1,2, 00 n;

VY = Q510 , 1,7=2,8, -+, m;
and
Yi1,n = 0 (mod eNe) , 1=2,8, 4,0,
Suppose ¢ < 7. Then we have
VYij = Q0 = VYiqr,01 = *** = Wign—ju = 0.

Therefore, y,; = 0 (mod eNe). Suppose ¢ > j. Then



INDECOMPOSABLE MODULES OVER RINGS 27

VY5 = Ajy,; U = VYig,51 = *** = VY;_ 411 »
Also,
VYirr = VYnn » k:]-yz’"','n.

Since 77A(6,(v)) = Tr&,(VY,n) = 0, wWe have y,, # 0 (mod eNe). From
these equations and the idempotence of 7 it follows that

e (mod eNe), ifi=7.
¥:; = {0 (mod eNe), ifi<yg.
Yi_j+11 (mod eNe), ifi1>73.

Next assume that @ € Y and yr,(x) = 0. Then 7(x)e T%. There
exist elements r; of the socle of Ae such that x = 37, &;7;, from
which the equation

— n 7—1
N(w) = E{ 5~;<7'¢ + J;. /"jy'i—j+1,1>

follows. Since 7(x) € T, there exist b, =0, b, ++-, b, € Ae such that

i—1

Zl T Yijrrn + T = bis(\) + b, 1T=2, 0, m,
=
Defining
o, =10,
o = b1 ’
k=1
ak:bk——,zlajak—j%—lyl! k=2,~'-,’n.
=

it follows that
’rk:aks()\f)‘l'ak_l'v, k:l’...’n.

Thus, e T and mx = 0. This proves Lemma 3,

From Lemma 3, we conclude that S? is contained in an idecom-
posable direct summand V, of H?. Calculation of H?/S? = X*/Y*
shows that every direct summand of H? not equal to V, is isomor-
phic to Ae/S(Ae), S(Ae) the socle of Ae. Thus, V, =V, if and only
if Hy=H: and hence V, 2V, if M pe A, This completes the
proof of the theorem,

3. Commutative rings.

THEOREM. If A is commutative, then A 1s of finite type if and
only if the ideal lattice of A is distributive. Otherwise, A s of



28 R. R. COLBY

unbounded type, strongly so if the endomorphism ring of each
stmple A-module is infinite.

Proof. It is sufficient to show that, if the ideal lattice of A is
distributive, A is generalized uni-serial (see [5]). Let e be a primi-
tive idempotent in A and consider the lattice of submodules of Ae.
Since A is commutative, these submodules are ideals in A. Suppose
the lattice contains a vertex

L2

Lo

where we assume, without loss of generality, that the lattice from
(0) to L, is a chain, Then L, = N*"'e for some k, and L, + L, & N'*e.
Choose a, € L; — L,, 2 = 1, 2, and define

L, = Ae(a, + ;) + L, .

The mapping ae — ae(®, + a,) + L, induces an isomorphism L,/L, =
Ae¢/Ne so that we have L,c L,c L,+ L,. Since L,NL,= L, it
follows directly that L, N L, = L, N L, = L,. Clearly L, + L, = L,+ L,=
L, + L,., Hence the ideal lattice of A contains the projective root

Ly + L

Ly

Ly

which contradicts the assumption that the lattice is distributive. Thus,
A is generalized uni-serial and of finite type.

4. Lattices with vertex of order four. In this section we as-

sume that the center of the endomorphism ring of each simple A-
module is infinite,

THEOREM. If the ideal lattice of A contains a wvertex V of
order greater than three such that for some primitive idempotent
ec A, the tmage Ve of V is a vertex of order greater than three in
the submodule lattice of Ae, then A is of strongly unbounded module
type.
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Proof. There exists an ideal B, & A with distinet covers B, B,,
B,, B, such that BieDBg,1=1,2, 3,4, Since A/B, modules are A-
modules we can assume that B, = 0. Because of the theorem of §1,
we assume that the ideal lattice of A is distributive and hence that

4 4

i; Bi - @ ; Bi .
There exist primitive idempotents f; € 4 such that f/;B,e # 0,1 =1,2, 3, 4.
Let Acede be a set of representatives for the nonzero cosets of the
center of ede/eNe. Choose u; = fiu,e = 0€ Be,© =1,2,3,4. For ne 4

we have Af;/Nf; = Au; = Au\, 1 =1, 2, 3, 4. For each positive integer
n define

2n
X" =@ 3 e(4e)
=1
and denote the socle of X™ by Y”. Define
T;f = {il ei(aiul + cus + d,ﬂlq)\, + di—~1u4) + 6i+n(biu2 + cus + di'uq):
do: Oy @, biy Csy dieAyi - 1y "'9n~}9
H; = X"IT%,
and
Sy =Y"Tz:.

Since the composition length of T% is equal to 4n and the com-
position length of Y™ is greater than or equal to 8n, the composition
length of S? increases without bound as n increases.

Let A == ¢ be elements of 4. We next prove that H} and H are
not isomorphic. Suppose 6 is an isomorphism from H} onto H:, Since

X" is projective, 6 can be lifted to a endomorphism 4 of X", There
exist @, +++, Bon, Y1, ***, You in eAe such that

Fewnle) = 3 &)
and

Geule) = 36w -
Since, Om,e,(u,) + 0, we have

2n
ny(gi ei(myi)) = 0m,e,(u) # 0.
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Thus, since u,€ M, there exists k,1 < k < 2n, such that
Y. ¢ eNe .

Since w,y; € Au, + Au, + Au, for ¢ > n, we have w,y;, =0 for 7 > m,
and hence, since ede¢/eNe is a division ring, y;€eNe, for ¢ > n.
Similarly, fe,,(u,) € T implies ;€ eNe, for 1 < n. It follows that

- n 2n
0(e,us 4 €;,1s5) = Zz:ll e(usy;) + .Zrl e(usx;) € Ty .

Therefore, uyy; = ux;,, for 2 =1, ..+, n, and hence,
Y; = %;1n, (mod eNe) i=1,,m,

From this we obtain

— n 2n
Blen(u) + eu(w) = Jewdy) + 3 euy: e Th .

Hence, using the definition of T there exist d,, ---, d,€ A such that
%7&% - d1u4/" ’
UMY ; = dju«x# + dj-1u4 y .7 = 2; e, M,

and
u4yj:dju4y j:]-:""/no

Replacing d,u, by u,y; in these equations, we have
UNY;, = UYL
and
UNY; = WY + WY, 1=2,-v,m,
Since u, € M, a simple induction shows that
Y; € eNe , 1=1,,m,

We conclude that H? and H? are not isomorphic,

Next, suppose that Hj decomposes and let » be an idempotent
endomorphism of H} such that ym,(e.(us)) = 0. Since X is projective,
7 can be lifted to an endomorphism 7 of X". There exist y,;cede

such that 7(g;(e)) = S ei(y;). If j = n, we have
- 2n
N(eu) = ; e(uy;;) e T

and hence

¥:;; =0, (mod eNe) 12i=n,n+1=25=2n.
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For j = n, we have,
Tes(u) + eal)) = Syeilui) + 35 elustisan) € T3 .
Thus, by the definition of 7%,

Yi;i = Yitnmitn (modeNe), 1=4,j=n.

We infer that

- n 2n
N(E(Uh) + &,(u)) = S;; E(U\Yin) + igﬂ €Ul in,m) € TS .

Hence, there exist d,, ---,d,€ 4, d, = 0, such that
UNY 5, = djuN + dj_ju,,
and
WY = AUy, j=1,¢e, 10,

Replacing du, by wy;,, we have

UMNY 10 = UY1aN
and

UMY ju = U 5ud + Ul jsyn, T =2, 00,0

Hence, for ¢ < n we obtain y;, = 0 (mod eNe), And, since 7 is idem-
potent and eAe/eNe is a division ring, ¥,, = ¢ (mod ¢Ne). Now suppose
kE<mn. Then

7(Ea(uad) + Era(Ws) + €4alus))
= é E(UNYir + Ul 1) + i:é}-l e(UYinr) € TX .
Hence, there exist df, df, -+, dke A, df = 0, such that
UNY i + Ul pr = d5UN + dE_ju, ,
and
Yz = dru, j=1,, 1.

Replacing diu, by wy;, we obtain wuy,,., =0, and wy;,pr1 = Ul spy
j=2,+,mk=1,---,m—1, It follows from these equations that
Y = 0, (mod eNe) for k=2, -+, m, and y;, = Y;11.44: (mod eNe), 7,k =
1,---,n—1, If i <j=m, then

Yii = Yictjmr = *** = Yu,j_ip. = 0 (mod eNe) .
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And, if n = ) = js
ylj = y’i—l:j—l T= eee T yi—j‘l—l»l (mOd eNe) .

These results imply

0 (mod eNe) , ifi<gj,orj=n<i,
¥;; = {e (mod eNe) , ifi=17,
Y;_j+1,1 (mod eNe) , ifj<i=s=morn<ji<i,

We shall now show that the restriction of » to S} is a monomorphism
and that 7(Sy) = S;. Suppose that # € Y* is such that m,(s) is an
element of the kernel of 7,

v = 3 e .
We have nm\(2) = 7,7 (x) = 0, and so
7(x)e T%.
N(w) = i NeHx;)

2n  2n
= 2 2 @)
J=11=1
n n 2n 2n
= ]z:.‘{; (@Y i jar) + __% igajei(xjyi—j-u,l) .

Thus, there exist a,, b;, ¢;, d;, 1 =1, -+, n in A, d, = 0 such that

i
_21. T = QU + cus + du + d;_u,
=
and
Z{ LoiiYs; = biths + CiUs + diuy for 1 =1,2,--+,m
o

Using the definition of T7, it follows that
T; = @, + YUy + 0;uN + 04, ,
and
xj+n:18ju2+7ju3+6ju4y j:]-y"'yln/_lv
where o, = a,, B, = b, v, = ¢, 0, =0, 6, = d,, and
KUy = Uy — O WYy — * o — & UY,
Brths = bty — Br_Ueloy — *++ — Lol

TieWs = CrUs — TpaUsYor — *** — VilslYp,
0% = Aty — Op_yUglss — ** — 0 UYp1 for k>1.
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Hence, m,(x) = 0, and the restriction of » to S} is a monomorphism.
The proof can now be completed as in §1.
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