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THE PSEUDO-RADICAL OF A COMMUTATIVE RING

ROBERT W. GILMER, JR.

If D is an integral domain with identity having quotient
field K, the pseudo-radical of D is defined to be the inter-
section of all nonzero prime ideals of D. Consideration of
the pseudo-radical arises naturally in examining the relation
between the statements "D has Jacobson radical zero"
and "D[u] has Jacobson radical zero, where ueK". Theorem
4 proves that the first statement implies the second. As a
corollary it follows that if M is a prime ideal of the polynomial
ring R[X] over a commutative ring R and if P=MnR, then
M is an intersection of maximal ideals of R[X] if P is an
intersection of maximal ideals of R. Consequently, if R is a
Hubert ring, R[X] is also a Hubert ring. The remainder of
the paper is devoted to a study of domains having nonzero
pseudo-radical.

Goldman has defined in [6] the concept of a Hubert ring:
the commutative ring R with identity is a Hubert ring if each
proper prime ideal of R is an intersection of maximal ideals;
here proper means an ideal different from R. The terminology
is motivated by the observation that Hubert's Nullstellensatz
may be interpreted as asserting that each proper prime ideal
of the polynomial domain K[Xlf - —, Xn] for K a field, is an
intersection of maximal ideals. In work done independently
but at approximately the same time, Krull introduced in [10]
the concept of a Jacobson ring; the reason for the terminology
being obvious from the definition: the commutative ring R
with identity is a Jacobson ring if for each proper ideal A of
R, the radical of R/A and the Jacobson radical of R/A coincide.
From these two definitions it is easily seen that R is a Hubert
ring if and only if R is a Jacobson ring. [10; p. 359]. In
the remainder of this paper we shall use the term Hubert
ring for the notions described above.

In Theorem 3 of [6], Goldman shows R and the polynomial ring

R[X] are simultaneously Hubert rings. Also, (Theorem 5 of [6]),

R[X] is a Hubert ring if and only if for each maximal ideal M of

R[X], Mf]R is maximal in R. We originally set out to consider the

following "local" case of Goldman's Theorem 3:

Suppose M is a proper prime ideal of R[X] and P — M Π R.

What is the relation between the following statements ?

(1) M is an intersection of maximal ideals of R[X\.

(2) P is an intersection of maximal ideals of R.

Corollary 2 shows that (2) implies (1). Goldman's Theorem 3
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follows as a corollary. It can be seen that the above question may be
reduced to considering the following problem.

Suppose D is an integral domain with quotient field K and
te K. What is the relation between the statements

(a) the Jacobson radical of D is zero.
(b) the Jacobson radical of D[t] is zero.

Hence, as one might expect from the equivalence of the concepts
Hubert ring and Jacobson ring, we are led into a consideration of the
Jacobson radical of a ring and its overrings. For integral domains it
becomes natural in this connection to consider the pseudo-radical,
defined as follows: If R is a commutative ring with identity, the
pseudo-radical of R is the intersection of all nonzero prime ideals
of R.

Section 2 of this paper lists some known results concerning rela-
tions between the ideal theory of R and that of the polynomial ring
R[X]. Section 3 considers domains D with nonzero pseudo-radical and
the effect of this hypothesis on the ideal theory of D[X]. In §4 we
consider the italicized questions previously listed.

Our notation and terminology will in general be that of Zariski-
Samuel [19] [20]. In particular "ring" always means a commutative ring
with identity and it is assumed that each subring contains the identity
of the larger ring. We use the following terms which are not found in
Zariski-Samuel. If D is an integral domain with quotient field K we
say D has the QR-property if each domain between D and K is a
quotient ring of D with respect to some multiplicative system in D.
[5]. If for each prime ideal P of D the quotient ring DP is a valua-
tion ring, we say D is a Prufer domain. For elementary properties
of Prufer domains see [7]. If each DP is in fact a rank one discrete
valuation ring, we say D is almost Dedekind [3],

2* The ideal theory of R and of R[X] The relationship be-
tween the ideal theory of a ring R and its polynomial ring R[X] has
been studied extensively; for the case when R is Noetherian principally
by Krull [10], for R Prufer by Seidenberg [15], for R Dedekind by
Nagata [13], and for R arbitrary by numerous persons. We list now
a few of the results which we shall need to refer to in § 3 and § 4.

RESULT A. If Q is a prime ideal of R, the set of all polynomials
f(x) in R[X], all of whose coefficients belong to Q is a prime ideal of
R[X], denoted bγ_Q[X]. If M is prime in R[X] and if P= R n M,
then R[X]/M s R[τ] where R = R/P and τ is the M-residue of X
We have P[X] S M and M=P[X] if and only if τ is transcendental
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over R. [20; Appendix I],

RESULT B. If Mu M2, Mz are prime ideals of R[X] with M i c M"2c M"8,
then M1Γ) R c M"8 Π # . Also, if Mi Π i2 = M2 Π -B then Mi = [M1 Π 22] [X|.
In particular if Mi ^ (0) and Mi Π R = (0), Mi is a minimal prime of
R[X]. [15; I; p. 505].

RESULT C. The element f(X) = α0 + αxX + +αwX% of
is a unit of 2?[X] if and only if a0 is a unit of 2ϋ and for i > 0, α4 is
nilpotent in iϋ. As a consequence, it follows that the Jacobson radical
R[X] is the set of nilpotent elements of R[X]. [16; p. 683],

3* The pseudo-radical of an integral domain* Suppose R is
a ring. If R is not an integral domain then it is clear from the
definition given in the introduction that the radical of R and the
pseudo-radical of R coincide. Hence in considering the pseudo-radical
in this section we restrict ourselves to the case when R is an integral
domain. We note that for a one-dimensional domain D the pseudo-
radical of D and the Jacobson radical of D are equal. Theorem 3
shows how the property that the pseudo-radical of the domain D is
nonzero is reflected in the ideal theory of the polynomial domain D[X],
If D is a domain with quotient field K then by an overling of D we
mean any domain between D and K.

LEMMA 1. Suppose A is a subring of the domain D2 and that
each nonzero ideal of D2 intersects Dx in a nonzero ideal of A If
the pseudo-radical P* of D1 is nonzero, then the pseudo-radical P2*
of D2 is also nonzero.

The hypothesis clearly implies that Px* S P2* ΓΊ A, from which the
conclusion follows.

Examples are easily constructed for which P2* is nonzero but P*
is zero see, for instance, Example 1.

The hypothesis of Lemma 1 is satisfied if and only if each nonzero
prime ideal of A meets A in a nonzero ideal. [12; 105], In particular
the hypothesis of Lemma 1 holds if A is an overring of A or if A
is integral over A [19; 259]. In the latter case we obtain a stronger
conclusion than that of Lemma 1.

LEMMA 2. If the domain A is integral over its subring A,
if P* is the pseudo-radical of Dif and if Ji is the Jacobson radical
of A, then J2 Π A = «/i and P2* n ΰ , = Pf.

Both conclusions follow essentially from the "lying-over" theorem
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of Krull [9; 749] and its consequences. For example, to show
P* = P2* n A , we have P? g ^2* Π A by the proof of Lemma 1.
And if t G A — P*9 t $ P for some nonzero prime P of A . By the
lying over theorem, there is a nonzero prime ideal M of A such
that P = Λf Π A . Hence ί g ilf and consequently £ g P2* Π A . Hence
P2* Π A E iΊ* and equality holds.

LEMMA 3. Let D be a domain with quotient field K and pseudo-
radical P* . The following statements are equivalent.

(a) P * Φ (0) .
(b) K is a simple ring extension of D.
(c) K is a finite ring extension of D.
(a) — (b): If ί is a nonzero element of P*, then D[l/t] = D^γ^

is a quotient ring of D such that each nonzero prime ideal of D
meets {ί*}JLi. Therefore (0) and D[l/t] are the only prime ideals of
D[l/t]. [19; p. 224]. Consequently D[l/t] is the field K [19; p. 133]
and (b) holds.

(b) —• (c): trivial
(c) -> (a): Let K = D[tu , tJ where ί< = ajb^ ai9 6< e Jλ Then

clearly i ί = -D[l/δ] = D[bt}~=1 where b = bj)2 bn. If M is a nonzero
prime ideal of D then ί ί = MK = MD^i^ so that ikf meets {6{}r;
hence 6 e Λf and 6 e P * — {0}, showing that (a) holds.

REMARK 1. If D is a domain with pseudo-radical P * ^ (0) we
let d be a nonzero element of P*. Then if I f is any nonzero proper
prime ideal of D, d e ikf so that Λf contains a minimal prime P of (d).
[11; p. 12]. But by choice of d, P is a minimal prime of D. Hence
if the pseudo-radical of D is nonzero, each nonzero proper prime of
D contains a minimal prime of D.

THEOREM 1. Suppose D is a domain with pseudo-radical P*.
/ / D is Noethβrian, P* is nonzero if and only if D is a one-
dimensional semi-local domain. If D is a Krull domain, P* is
nonzero if and only if D is a semi-local principal ideal domain.

If D is Noetherian, the conclusion that D is one-dimensional and
semi-local is the content of Theorom 4 of [2]. And the converse is
obvious.

If D is a Krull domain, let {va}aeΛ be a family of essential valua-
tions for D (see [10; p. 82] for terminology) with va associated with
the minimal prime Pα . If t is a nonzero element of P*,va(t) is nonzero
for only finitely many of the va*8. But by choice of t, va(t) is posi-
tive for each a e A. Hence A is a finite set and D is an intersection
of finitely many rank one discrete valuation rings. Hence D is a semi-
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local principal ideal domain.1 Again it is clear that the pseudo-radical
of such a D is nonzero.

Theorem 1 shows that a Noetherian domain or a Krull domain
having nonzero pseudo-radical is one-dimensional and has only finitely
many maximal ideals. That one-dimensionality is not a necessary
condition for the pseudo-radical to be zero may by seen by considering
a valuation ring D of rank > 1 such that D has a minimal prime
ideal. The following example shows that a domain with pseudo-radical
nonzero may contain infinitely many maximal ideals.

EXAMPLE 1. Let A be the domain of all algebraic integers. The
set {Ma} of maximal ideals of A lying over a given maximal ideal (p)
of Z is uncountable. [17; p. 31]. Moreover if N= A-(\JaMa),
{MaAN} is the set of maximal ideals of AN. Because AN is one-dimen-
sional, the pseudo-radical of AN is Π MaAN = pAN Φ (0).

Example 1 is more complicated than it need be to illustrate the
fact that a domain with infinitely many maximal ideals may have
nonzero pseudo-radical. But Example 1 illustrates some of the dif-
ficulties involved in characterizing Prϋfer domains having nonzero
pseudo-radical. And other than a restatement of Lemma 3 or Theorem
3 for the special case when D is Prϋfer we have, in fact, no such
satisfactory characterization. The domain AN of Example 1 is one-
dimensionl and has the property that its finitely generated ideals are
principal; hence AN is a domain with the Qiϋ-property [5; p. 99]. In
particular AN is Prϋfer. Theorem 2 represents our best result concern-
ing arbitrary Prϋfer domains having nonzero pseudo-radical.

THEOREM 2. Suppose D is a Prϋfer domain with nonzero pseudo-
radical P*. If {Pa}aeΛ is the s&t of minimal prime ideals of D, the
complete integral closure Df of D is Π aDp therefore Όf is com-
pletely integrally closed.

We shall use in the proof the following result which appears in
an unpublished paper of the author, On the strong integral closure of
an integral domain.

If D2 is an overring of the domain Όx and if the conductor of
Dx in D2 is nonzero then D1 and D2 have the same complete integral
closure.

Hence if we show the conductor C of D in Π DP<Λ = D* is nonzero,

χ) This result should be known though we are unable to give an explicit
reference for the proof. Its validity follows from the following: By Theorem 11.11
of [14], D is an almost Dedekind domain with only finitely many maximal ideals.
By Theorom 3 of [3], D is a semi-local principal ideal domain.
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then D and D* have the same complete integral closure. But D* is
an intersection of rank one valuation rings, each of which is com-
pletely integrally closed [8; p. 170], so D* is completely integrally
closed, and D* = D' as asserted.

We show then that P * g C ( Thus let p e P * and let teD*.
We show pt e D.

If {M'β} is the set of maximal ideals of D it suffices to show
pteDMβ for each β. [20; p. 94], Let Pβ be the minimal prime of D
contained in• Mβ. Since teDPβ, t = a/b where ae D, be D — Pβ. If
now bg Mβ, te DM so that pt e DMβ. If be Mβ then we have

it follows that p/b e DMβ and (p/b)a = pte DMβ. This completes our
proof.

Finally, if D is a domain having nonzero pseudo-radical P*, we
observe how this fact is reflected in the ideal theory of D[X].

THEOREM 3. Suppose D is a domain with pseudo-radical P*,
X is an indeterminate over Z), and K is the quotient field of D.
The following statements are equivalent.

(a) P*Φ(0).

(b) there is a linear polynomial f(X)eD[X] such that (f(X))
is a maximal and minimal prime ideal in D[X].

(c) there exists a prime ideal M of D[X] such that M is both
maximal and minimal in D[X}.

(d) there exists a maximal ideal of D[X] lying over (0) in D.

(a)—•(&): By Lemma 3, (a) implies K~ D[l/t] for some nonzero
element t of D. If then f(X) = tX - 1, we have D[X]/(tX - 1) ^
D[l/t] = K. Hence P=(tX- 1) is a maximal ideal of D[X].

If Pi is a prime ideal properly contained in P, P1 — AP for some
ideal A of D[X] since P is principal. Since Pi)P1 this implies
i g P ^ A P g i , Thus P, = PXP = PXP2 = and P1 S Π Γ=i^w =
Π n=ι{fn{X)), which is clearly zero. Hence Px = (0), P is minimal, and
(6) holds.

(6) — (c): trivial.
(c) —v (tί): Suppose M is both maximal and minimal in D[X] and

let P=MΠD. P[X] g ikΓ and P[X] is not maximal in Z)[X] by
Results C and A. Hence M=)P[X] 3 (0). By the minimality of M
it follows that P[X] = (0) and hence that P = (0) and (d) holds.

(d)—>(a): We let M be a maximal ideal of D[X] such that
l n f l = (0). Then D[X]/M ^ 7?/2) n M[τ] = D[τ] is a field; r the
M-residue of X. This implies τ is algebraic over D so that dτ is
integral over D for some nonzero ώeZλ [18; 78], Then D[dτ] has
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quotient field D[τ] = D[dτ][τ]. By Lemma 3, the pseudo-radical of
D[dτ] is nonzero. By Lemma 2, P* Φ (0) also.

To prove (d) —+ (a) we could have appealed to a theorem of Nagata
[13; I; p. 85], proved using different methods, which shows that (d)
implies condition (b) of Lemma 3.

4* A generalization of a theorem of Goldman* Let R be a
ring and let I be a prime ideal of the polynomial ring R[X]. If
P — M Pi R we seek a relation between (*) and (**):

(*) P is an intersection of maximal ideals of R.
(**) M is an intersection of maximal ideals of R[X].

Since R[X]/M ~ R[τ] where R = R/P and τ is the Λf-residue of X,
we see that (**) holds if and only if the Jacobson radical of R[τ] is
zero. And (*) is equivalent to the condition that the Jacobson radical
of R is zero. By Result A, τ is transcendental over R if and only if
M = P[X]. And by Result C, τ transcendental over R implies the
Jacobson radical of R[τ] is zero. Hence (**) does not imply (*) in general.
In fact, Theorem 3 shows that if the pseudo-radical of the domain D is
nonzero, then there is a maximal ideal M of D[X] such that (*) is
not valid for M ΓΊ D = (0).

We turn to the case when R[τ] is algebraic over R that is,
the case where MZDP[X], Here dτ is integral over R for some
nonzero de R. Further R has Jacobson radical zero if and only if
R[dτ] has Jacobson radical zero. Noting that τ is in the quotient
field of R[dτ] and that Λ[c£τ][r] = R[τ] it is then apparent that our
earlier question concerning (*) and (**) is equivalent to a consideration
of this question: Let ΰ be a domain and t be an element of the
quotient field of D such that D is integrally closed in D[t\. What is
the relation between these statements ?

(#) The Jacobson radical of D is zero.
(##) The Jacobson radical of D[t] is zero. Our earlier observa-

tions concerning (*) and (**) show that (##) does not imply (#) in
general. We shall show, however, that (#) implies (##). From this
it will follow that (*) implies (**); then Goldman's Theorem 3 of [6]
follows as a corollary. We first prove one preliminary lemma.

LEMMA 4.2 Suppose R is a commutative ring with Jacobson
radical (0). If A = {alf a2, , an} is a finite set of regular elements of
R, the intersection of all maximal ideals of R not meeting A contains
no nonzero regular element. If "Jacobson radical" is replaced by
"pseudo-radical" and "maximal" is replaced by "nonzero prime" the

2) For the proof of Lemma 4 as well as for several other helpful suggestions
concerning the preparation of this paper, the author is grateful to W. J. Heinzer.
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statement obtained is also valid.

We prove the first statement of the lemma. Let r be a nonzero
regular element of R. By hypothesis x = rax an is nonzero so
there is a maximal ideal M of R such that xgM. Hence r$M and
no aι is in M; therefore r does not belong to the intersection of the
maximal ideals of R not meeting A.

THEOREM 4. If D is a domain with quotient field K and if
the Jacobson radical of D is (0) then for teK, D[t] has Jacobson
radical zero.

We let t = a/b; a,beD. If A = D[t] and if A = Z>[l/δ] = I V w
then D S A £ A. If W«} i s the set of maximal ideals of D not
containing 6, Lemma 4 shows Π Ma = (0). For each α we have Mα =
MαA Π ΰ a ΛίαA Π D 3 Mα; hence Λfβ = M«A Π -D for each α. Con-
sequently MαA ^ A s o that ΛίαA is contained in a maximal ideal Pα

of A. By the maximality of Ma in D, we must have Pap[D — Ma

for each α. Thus (Γ\ Pa) f) D = f)(PaC)D)= Π l α = (0). Because A
is an overring of D, this implies Π Pα = (0); in particular the inter-
section of all maximal ideals of A that is, the Jacobson radical of

A is z e r o

In view of our remarks preceding Lemma 4, the next two corol-
laries follow immediately from Theorem 4.

COROLLARY 1. If τ is algebraic over the domain D, if D[τ] is
an integral domain, and if the Jacobson radical of D is (0), then
the Jacobson radical of D[τ] is (0).

COROLLARY 2. Let M be a prime ideal of the polynomial domain
D[X] over the domain D, and let M Π D = P. If M = P[X], M is
an interesection of maximal ideals of D[X]. If MZDP[X] and if
P is an intersection of maximal ideals of A M is an intersection
of maximal ideals of D[X].

COROLLARY 3. (Goldman) Let X be an indeterminate over the
ring R. R[X] is a Hilbert ring if and only if R is a Hilbert
ring.

From the definition of a Hilbert ring, homomorphic images of
Hilbert rings are again Hilbert. Thus if R[X] is a Hilbert ring, so
is R[X]/(X) = R. The converse follows from Corollary 2.

It follows from Corollary 1 and from Result C that if the domain
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D has Jacobson radical zero then A has Jacobson radical zero where
A is any domain which is a finite ring extension of D. The hypothesis
that A be a domain is necessary as may be seen by taking D = Z
and A = Z[X]/(X2). Also, it is clear that Corollary 3, as well as
most of our other results could be stated for polynomial rings in
finitely many indeterminates.

In conclusion we consider what can be said about the ideal struc-
ture of a domain D such that for some element t of the quotient field
of Z>, D[t] has Jacobson radical (0). Up to this point what we have
observed is that we cannot conclude in general that D has Jacobson
radical zero. We now note that by Lemma 1 it is clear that if D[t]
is not the quotient field of D then D has pseudo-radical zero. If D
is finite-dimensional we nave a partial converse of this result.

THEOREM 5. // the finίte-dimenisonal domain D has Jacobson
radical nonzero and pseudo-radical zero, there exists an overing
D[t] of D such that D[t] has Jacobson radical zero.

We first observe that if d is a nonzero element of D, the inter-
section of all nonzero primes of D not containing d is (0). This follows
from Lemma 4. Hence if zx is a nonzero element of the Jacobson radical
of D, what we have just noted implies A — Dfl/ίsJ is a domain with
pseudo-radical (0). Also A has dimension less than that of D since
Zι belongs to each maximal ideal of D. If the Jacobson radical Jι of
A is zero we have proved the theorem. If Jx Φ (0) then Jx Π D Φ (0)
also since A is an overring of D. Hence if z2 is a nonzero element
of J1f\D and if A = A[l/£2], A has pseudo-radical zero, the dimen-
sion of A is less than that of A, and A = Dll/z^] is a simple ring
extension of D. If the Jacobson radical J2 of A is zero our proof is
complete; if not, we continue the process. The process stops after
finitely many steps since D is finite-demensional and since for a one-
dimensional domain the Jacobson radical and the pseudo-radical coincide.

COROLLARY 4. Suppose D is a finite-dimensional domain with
nonzero Jacobson radical. In order that each simple overring D[t]
of D which is not a field have nonzero Jacobson radical it is neces-
sary and sufficient that the pseudo-radical of D be nonzero.

Corollary 4 follows at once from Theorem 5 and the remarks pre-
ceding Theorem 5. The hypothesis of finite-dimensionality for D
cannot be dropped; if D is a valuation ring having no minimal prime
ideal, then each simple overing D[t] of D has nonzero Jacobson radical,
but the pseudo-radical of D is (0).
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