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ON REPRESENTATIONS OF CERTAIN SEMIGROUPS

MICHAEL FRIEDBERG

A theory of representations for compact semigroups has
been lacking due in large part to the absence of a translation-
invariant carrying measure that exists for compact groups.
The object in this paper is to show that for a compact, group-
extremal affine semigroup there is a sufficient system of rep-
resentations by linear operators on finite-dimensional complex
linear spaces; in the abelian case, a sufficient system of affine
semicharacters is obtained. As a result, a compact group-
extremal affine semigroup is the inverse limit of compact,
finite-dimensional, group-extremal affine semigroups.

A subset S of a locally convex topological linear space X (over
the reals or complexes) will be called an affine semigroup if:

(1) S is convex.
(2) There is an associative multiplication defined in S which is

jointly continuous in the topology on S inherited from X.
(3) For fixed xe S the functions y—>yx and y-+xy are affine

functions of S into S.
In this paper, S will always be compact. By a theorem due to
Wendel [2], if S is a compact affine semigroup with identity u, then
each point of S with inverse is an extreme point of S. If, conversely,
each extreme point has an inverse then the set of extreme points of
S is the maximal group of the idempotent u and is, therefore, compact
[9]. In this case, we shall say S is group-extremal.

Following [2], we will say two affine semigroups S and T are
equivalent if there exists a bicontinuous isomorphism of S onto T
which is also an affine function.

DEFINITION 1. A representation of an affine semigroup S is a
function P from S to B(M) the set of bounded linear operator on
some finite-dimensional complex linear space M satisfying:

(a) P is continuous (with any locally convex topology on B(M),
all of which are equivalent),

(b) P is a homomorphism.
( c ) P is affine.

DEFINITION 2. An affine semicharacter on S is any complex-valued
continuous affine homomorphism defined on S. We point out that if
S is compact and / is any affine semicharacter on S then | f(x) | ^ 1
for each xe S.
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In the remainder of this paper, S will be a compact, group-extremal
affine semigroup with identity u, and whose extreme points form the
compact topological group G.

1. Representations of £• In this section, we shall prove the
following:

THEOREM 1. For x0, yoe S, x0 Φ y0 there exists a representation P
of S in B(M), M a finite-dimensional complex linear space, satisfying

( 1 ) P(xo)ΦP(yo).
( 2 ) P*(σ)eP(S) for all σeS (where P*(σ) is the adjoint of

the operator P{σ)).

Many of the details of the proof are quite similar to those in
group representations (cf. [1], [6], [7]) but we shall include them for
the sake of completeness. By C(S) (C(G)) we mean the collection of
all complex-valued continuous functions on S(G). The supremum norm
in C(S) is denoted by || || and in C(G) by || | |*. A(S) will denote
the norm closed subspace of C(S) consisting of all affine continuous
complex-valued functions. A(G) denotes the set of restrictions to G
of elements of A(S).

LEMMA 1.1. (a) A(G) is a closed subspace of C(G).
( b ) If f,ge A(S) and f(x) = g(x) for xeG then f(x) = g(x) for

all x e S.
( c ) IffneA(G),gneA(S) for n = 0,l,2, if fn{x) = gn(x) for

xeG, 71 = 0 , 1 , 2 , 3 , ••• and if | | A - / 0 | U — 0 then \\gn-go\\->O.

Proof of (a). Let / „ - > / where/, e A(G), n = 1,2,3,. a n d / e C(G).
There exist gn e A(S) such that gjx) = fjx) for xeG. For ε > 0 there
exists an N such that if m, n ^ N and xeG then \fn(x) — fm(x) \ < ε/2.
If xu , xr eG,Xi^ 0, 2,i=1 λ { = 1 and x = χ j β l X&t then

) I =

~2

Since gn — gm is continuous on S, and the elements x of the above
form are dense in S [4], we have | gn(x) — gm(x) \ < ε for x e S. Thus,
{#J~=i is a Cauchy sequence in C(S) and, hence, converges to g e C(S).
Since A(S) is clearly closed, geA(S). Now for xe G,fn(x)—>f(x) but

0n(a) - flr(») so that /(a?) - g(x) and

Proof of (b). An application of the Krein-Milman Theorem.
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Proof of (c). By an argument similar to the proof of (a)
\\Qn — A|| —>0 for some heA(S). But fn(x) = gn{x) for all xeG so
that h(x) = fo(x) = flro(aj) for XG G. By (b), h(x) = #0(^) for all ίueS.

Proof of theorem. By L2(G), we mean the Hubert space of all

functions on G which are square-in tegrable with respect to Haar measure

on G, where the inner product is defined as usual, (i.e. (/, g) == \fgdxY

We denote the norm of an element fe U(G) by | | / | | 2 = ([if^dj11

We now fix x0, yoe S where xQ Φ yQ. There exists a set U which
is open in G,ue U, and (Uyxof](UyyQ = 0 . «£Γ> denotes the closed
convex hull of U). This follows from uxQ Φ uy0, the continuity of
multiplication in S, and the local convexity of the containing space X.

There exists a real-valued function fQ e A(S) satisfying:

min {fo(z)} > max {fo(z}}

[3]. Choose h e C(G), h(u) = 1, h = 0 in G\Ϊ7, and 0 ^ A ^ 1. For
^ G G, let

then A: G C(G), 0 ^ Jfc ̂  1, fc(w) = 1, k = 0 in G\[7 and AJ(«) = A:^"1). We
then have

Hence,

( 1 ) j k(^1)f0(zx0)dz Φ j
The operator in L2(G) defined by

(2) Γ/(a?) = U ^ - 1 ) / ^ ) ^ for feU(G),xeG takes L2(G) into

C(G) and is a completely continuous, symmetric bounded linear operator

in U{G) [8; p. 242], Further, \\Tf\\* ^ ||fc||2 |l/ll« s o that / — Γ / is

continuous in the norm topology on C(G). If fe A(G) then there is

a g G A(S) such that gr(a ) = /(α) for xeG. If we define:

( 3 ) g'(x) = U ^ - 1 ) ^ ^ ) ^ then ^ ' G ^ ( S ) and for

O G G, flff(aj) = ^k(z"ι)g(zx)dz - jk(z~1)f(zx)dz = T/(x) .

Thus, if feA(G), then TfeA(G). If we let if denote the closure of
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A(G) in L2(G), then H is a closed invariant subspace of T. In fact,
if feH, there exists a sequence fneA(G) such that | |/ n — / | | Ϊ - > 0 .

But then || Tfn - T/|U->0 and since TfneA(G)9 which is norm closed
in C(G), we have Tfe A(G). Hence, Γ takes H into -A(G). Using Γ
again to denote the restriction of T to H, we have again that T is a
completely-continuous, symmetric bounded linear operator in H. By a
well-known theorem (cf. [8; p. 233]) there exists a sequence {ψi}T=i where

(4) ψiβH for i = 1, 2, •••
(5) 2Vί = Xiψi for some real number λ< =£ 0
(6) (i/r;, ψy) = <5̂  (δ^ is the Kronecker delta function)
(7) Tf = ΣZLi (Tf, ψi) ψi for each / e i ϊ and where the series

converges in L2(G) norm.
(8) For each λ Φ 0, Mλ = {/e iϊ: Γ/ = λ /} is finite-dimensional.

Note that <̂< = T((l/Xi)ψi) and since (l/Xjψi e jff, it follows that
ψieA(G). Also, using a computation that can be found in [1; p. 209]
the series in (7) converges to Tf in the supremum norm on C(G).

Now since ψt e A(G) for each i, there exists ψ- e 4̂(<S) such that
<$i(x) = o/r̂ ίc) for cc G G. Further, if gr e A(S) and / denotes the re-
striction of g to G then fεA(G) so that Γ / = ΣiT=i(Tf, ψ^ψi where
the series converges in supremum norm on C(G). As in (3), if g'(x) =
ί ft^"1)^^)^ for α e S then ^ G ^ L ( S ) and for xeG, g'(x) = Tf(x).

Also for α; e G, n ^ 1, Σ? β l (Tf, ψ%)h^) - Σ?=iJΓ/f tί)t*(») a n d> hence,
Lemma l.l(c) implies that gf — XΓ=i (Tf, ψi)ψi where the series con-
verges in A(S). In particular, if f0 is our original function (1) and g0

is the restriction to G of f0 then /„' = Σΐ=i(τ0o, ψi)ψi But by (1),
/o(̂ o) =£ /o(l/o) so that for some i, î(aj0) ^ ?

For λ = λ<, Λίλ = {fe H, Tf — λ /} is a finite-dimensional sub-
space of H; hence, by Lemma l.l(b) iVλ = {fe A(S): f = λ/} is a
finite-dimensional subspace of A(S), and there exists ψi£Nλ for
which ψi(x0) Φ ψi(y0). Nλ is easily seen to be a finite-dimensional
Hubert space with inner product again (f,g)~ \fgdx. In fact, if
feA(S) and (/,/) = 0 then [\f\2dx = 0 so that f(x) = 0 for xeG.
By Lemma l.l(b), f(x) — 0 for all xe S. For / e iVλ, it is easily seen
(|λ |/||A||OII/ll ^ (/,/) 1 / 2 ^ 11/II so that Nλ is complete with respect
to this inner product. For σe S, we define the linear operator P(σ)
in Nλ by:

(9) [P(σ)f](x) = /(ασ ) where / e iVλ, a; e S. We have

σ)/]'(aj) - ^k(z-1)P(σ)f(zx)dz = jk(sr1)f(zxσ)dz

= f'(xσ) =
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Hence, P(σ) clearly takes Nλ to Nλ. It is clear that the map σ —> P(σ)
is continuous in the strong operator topology. Further, [P(στ)f](x) —
f{xστ) = P(σ)[P(τ)f](x) so that P(στ) = P(σ)P(τ) and σ-+P(δ) is a
h o m o m o r p h i s m . F o r σ, τe S O ^ λ ^ l a n d x e S w e h a v e

[P(Xσ + (1 - λ = f(x[Xσ + (:
- Xf(xσ) + (

= [λP(σ) + (

1 - λ)r])
1 - X)f(xτ)

1 - X)PMf](x)

and σ —-> P(σ) is now an affine continuous homomorphism of S into
the bounded linear operators on the finite-dimensional space Nκ.

Note further that there exists <$•< 6 iVλ where ^i(x0) Φ ψi(y<ϊ) Then
[P(xo)f {](w) = t i W ^ f i(2/o) = [P(y«)ti\(u) and P(a;0) ^ P(yt). Finally,
for xeG,f,geNι

(P(x)f, g) =

H e n c e , w e h a v e f o r x e G , P * ( x ) = P ^ " 1 ) . I f *1( a?2, x n e G , X i ^ 0 ,

P*(a,) = tXiP*^) = ΣXiPixϊ1) = p ( Σ λ Λ r Λ e P(S) .

Since P(S) is compact and convex, it follows by continuity of P and
the Krein-Milman Theorem t h a t P*(σ)eP(S) for each σeS and the
proof is complete.

COROLLARY 1.1. // G is metrίzahle, there is a countable number
of representations which separate points.

Proof. In Theorem 1, to separate two points we obtained a
neighborhood of the identity, and then constructed a countable number
of representations using this neighborhood. It is clear this neighbor-
hood may be taken from a countable basis at the identity, giving rise
to a countable number of representations which separate the points
of S.

2. Affine semicharacters* In this section, we assume the ad-
ditional condition that S is abelian; then we have:

THEOREM 2. If xQ, yQ e S, x0 Φ y0 there exists an affine semi-
character p such that p(x0) Φ p(y0).
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Proof. By Theorem 1, there exists a representation P of S in
the bounded linear operators B(M) on the ^-dimensional complex vector
space M for which P(x0) Φ P(y0) and P*(σ) 6 P(S) for each σeS. The
space M is then a finite-dimensional space invariant under the abelian
family of operators {P(σ) :σeS} satisfying P*(σ) e P(S) for σeS and,
hence, is spanned by one dimensional invariant subspaces. We thus
obtain a basis eu , en for M where P{G)e{ — Pi(σ)ei for each i =
1,2, , n and Pι(σ) is a complex number. The functions p., •••,?>„
are easily seen to be affine semicharacters of S. Since P(x) ^ P(y),
Pi(x) Φ Pi(y) for some integer i and we are finished. Using the
representations of S and the fact that they are affine maps we have:

THEOREM 3. A group-extremal affine semigroup is equivalent to
the inverse limit of finite-dimensional group-extremal affine semi-
groups.

The proof of this theorem is completely analogous to the proof
of the well-known theorem that a compact group is the inverse limit
of compact Lie groups, so we shall omit it.
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