AN INEQUALITY FOR THE DENSITY OF THE SUM OF SETS OF VECTORS IN *n*-DIMENSIONAL SPACE

ALLEN R. FREEDMAN

A Schnirelmann type density is defined for sets of "nonnegative" lattice points. If A, B and C = A + B are such sets with densities α, β and γ respectively, then it is shown that $\gamma \ge \beta/(1-\alpha)$ provided $\alpha + \beta < 1$.

1. Let *n* be a positive integer and let *Q* be the set of all vectors $r = (\rho_1, \dots, \rho_n)$ where each ρ_i is a nonnegative integer and at least one ρ_i is positive. We define a partial order relation < on *Q* where r < s if and only if $\rho_i \leq \sigma_i$ $(i = 1, 2, \dots, n)$ with strict inequality holding for at least one index. Denote by L(r) the set of all x in *Q* for which either x < r or x = r.

A nonempty finite subset F of Q is called fundamental if, whenever $r \in F$, then $L(r) \subseteq F$. For $A, X \subseteq Q$ with X finite, let A(X) denote the number of vectors in $A \cap X$. Then the (Kvarda) density of A is

$$lpha = {
m glb} \, rac{A(F)}{Q(F)}$$

where F ranges over all fundamental subsets of Q.

Let $B \subseteq Q$ and define $A + B = \{a, b, a + b \mid a \in A, b \in B\}$ where addition of vectors is done coordinatewise. Let β and γ be the densities of B and C = A + B respectively. Kvarda [1] has proved the inequaliy $\gamma = \alpha + \beta - \alpha\beta$ which for n = 1 was first proved by Landau and Schnirelmann. In this paper we prove $\gamma \geq \beta/(1-\alpha)$ provided $\alpha + \beta < 1$. For n = 1, this has been proved by Schur [2].

2. Main results.

LEMMA 1. Let \overline{C} denote the complement of C in Q and suppose $\overline{C} \neq \Phi$. For a fundamental set F let F^* denote the set of maximal vectors of F with respect to the partial ordering <. Then

$$\gamma = \mathrm{glb} rac{C(F)}{Q(F)}$$

where F ranges over all fundamental sets with $F^* \subseteq \overline{C}$.

Proof. Let γ' denote this glb. Clearly $\gamma \leq \gamma'$. Let G be any fundamental set. If C(G) = Q(G) then $C(G)/Q(G) = 1 > \gamma'$. If C(G) < Q(G) then $\overline{C} \cap G \neq \emptyset$. In this case let F be the union of all

sets L(g) where $g \in \overline{C} \cap G$. Evidently F is a fundamental set, $F \subseteq G$, and $F^* \subseteq \overline{C}$. Thus,

$$\frac{-C(G)}{-Q(G)} = \frac{-C(F) + C(G - F)}{-Q(F) + Q(G - F)} = \frac{-C(F) + Q(G - F)}{-Q(F) + Q(G - F)} \ge \frac{-C(F)}{-Q(F)} \ge \gamma' \ ,$$

and so $\gamma \geq \gamma'$.

LEMMA 2. If F is a fundamental set with $F^* \subseteq \overline{C}$, then $C(F) \geq \alpha C(F) + B(F)$.

Proof. Let g_1, g_2, \dots, g_k be the vectors of $\overline{C} \cap F$, indexed in such a way that

(1)
$$g_i < g_j$$
 implies $i < j$.

Define $H_1 = L(g_1)$ and $H_{i+1} = L(g_{i+1}) - \bigcup_{j=1}^{i} H_j$. Then

- (2) the H_i are disjoint,
- (3) the union of the H_i is F, and
- (4) for each $i, g_i \in H_i$.

Now (2) follows immediately by definition, and (3) from the fact that since $F^* \subseteq \overline{C}$, we have for each $x \in F$, that $x \in L(g_i)$ for some *i*. To prove (4) notice that $g_i \notin H_i$ implies $g_i \in \bigcup_{j=1}^{i-1} H_j$, which in turn implies $g_i \in L(g_{j_0})$ for some $j_0 < i$, contrary to (1).

For each *i* let tH_i be the set of all vectors $g_i - x$ where x ranges over $H_i - \{g_i\}$. Then

(5) tH_i is either empty or is a fundamental set, and

(6) $Q(tH_i) = Q(H_i) - 1.$

To show (5) let z be an arbitrary vector in tH_i and let $y \in L(z)$. We have $g_i - z \leq g_i - y < g_i$. Thus $g_i - y \in L(g_i) - \{g_i\}$ and, since $g_i - z \in H_i$, we have $g_i - y \in H_i - \{g_i\}$. Hence $g_i - (g_i - y) = y \in tH_i$ and so $L(z) \subseteq tH_i$. Equation (6) is immediate.

Now, for each $a \in A \cap tH_i$, there exists a unique $x \in H_i - \{g_i\}$ such that $a = g_i - x$. Thus $x \in \overline{B}$. Also, by (4), we have $g_i \in \overline{B} \cap H_i$ and so

$$ar{B}(H_i) \ge A(tH_i) + 1$$

 $\ge lpha Q(tH_i) + 1 \quad (\text{from (5) and the definition of } lpha)$
 $= lpha(Q(H_i) - 1) + 1 \quad (\text{from (6)}).$

Summing over i, using (2) and (3), we obtain

$$ar{B}(F) \geqq lpha(Q(F)-k)+k \ = lpha C(F) + ar{C}(F)$$

that is,

$$C(F) \ge \alpha C(F) + B(F)$$
.

THEOREM. If $\alpha + \beta < 1$ then $\gamma \geq \beta/(1 - \alpha)$.

Proof. Since $\beta < 1 - \alpha$ and $\alpha < 1$, then $\beta/(1 - \alpha) < 1$. Hence if $\gamma = 1$, the theorem follows. If $\gamma < 1$, then $\overline{C} \neq \Phi$ and for any fundamental set F with $F^* \subseteq \overline{C}$ we have by Lemma 2

$$C(F) \ge \alpha C(F) + B(F)$$
.

Hence,

$$\frac{C(F)}{Q(F)} \ge \alpha \frac{C(F)}{Q(F)} + \frac{B(F)}{Q(F)} \ge \alpha \gamma + \beta .$$

By Lemma 1 $\gamma \ge \alpha \gamma + \beta$ that is, $\gamma \ge \beta/(1-\alpha)$.

3. Remark. A result of Kvarda [1] states that if $\alpha + \beta \ge 1$ then $\gamma = 1$. This result and the above theorem can be used to prove quickly that if $\alpha > 0$ then A is a basis for Q, that is, nA = Q for some n, where iA = (i - 1)A + A for $i \ge 2$. Thus let γ_i denote the density of iA and assume that $nA \ne Q$ for all n. Then, for all $k, \gamma_k + \alpha < 1$, and so

$$\gamma_{k+1} \geq rac{\gamma_k}{1-lpha} \geq rac{\gamma_{k-1}}{(1-lpha)^2} \geq \cdots \geq rac{\gamma_1}{(1-lpha)^k} = rac{lpha}{(1-lpha)^k}$$

But, for k sufficiently large, $(\alpha/(1-\alpha)^k) \ge 1$, a contradiction.

REFERENCES

 B. Kvarda, On densities of sets of lattice points, Pacific J. Math. 13 (1963), 611-615.
 I. Schur, Über den Begriff der Dichte in der additiven Zahlentheorie, S. B. Preuss. Akad. Wiss. Phys. Math. Kl. (1936), 269-297.

Received June 12, 1965. This paper is part of the author's Ph. D. thesis, written at Oregon State University under the direction of Professor Robert Stalley.