AN INEQUALITY FOR THE DENSITY OF THE SUM OF SETS OF VECTORS IN n-DIMENSIONAL SPACE

Allen R. Freedman

A Schnirelmann type density is defined for sets of ' nonnegative" lattice points. If A, B and $C=A+B$ are such sets with densities α, β and γ respectively, then it is shown that $\gamma \geqq \beta /(1-\alpha)$ provided $\alpha+\beta<1$.

1. Let n be a positive integer and let Q be the set of all vectors $r=\left(\rho_{1}, \cdots, \rho_{n}\right)$ where each ρ_{i} is a nonnegative integer and at least one ρ_{i} is positive. We define a partial order relation $<$ on Q where $r<s$ if and only if $\rho_{i} \leqq \sigma_{i}(i=1,2, \cdots, n)$ with strict inequality holding for at least one index. Denote by $L(r)$ the set of all x in Q for which either $x<r$ or $x=r$.

A nonempty finite subset F of Q is called fundamental if, whenever $r \in F$, then $L(r) \subseteq F$. For $A, X \subseteq Q$ with X finite, let $A(X)$ denote the number of vectors in $A \cap X$. Then the (Kvarda) density of A is

$$
\alpha=\operatorname{glb} \frac{A(F)}{Q(F)}
$$

where F ranges over all fundamental subsets of Q.
Let $B \subseteq Q$ and define $A+B=\{a, b, a+b \mid a \in A, b \in B\}$ where addition of vectors is done coordinatewise. Let β and γ be the densities of B and $C=A+B$ respectively. Kvarda [1] has proved the inequaliy $\gamma=\alpha+\beta-\alpha \beta$ which for $n=1$ was first proved by Landau and Schnirelmann. In this paper we prove $\gamma \geqq \beta /(1-\alpha)$ provided $\alpha+\beta<1$. For $n=1$, this has been proved by Schur [2].

2. Main results.

Lemma 1. Let \bar{C} denote the complement of C in Q and suppose $\bar{C} \neq \Phi . \quad$ For a fundamental set F let F^{*} denote the set of maximal vectors of F with respect to the partial ordering $<$. Then

$$
\gamma=\operatorname{glb} \frac{C(F)}{Q(F)}
$$

where F ranges over all fundamental sets with $F^{*} \subseteq \bar{C}$.

Proof. Let γ^{\prime} denote this glb. Clearly $\gamma \leqq \gamma^{\prime}$. Let G be any fundamental set. If $C(G)=Q(G)$ then $C(G) / Q(G)=1>\gamma^{\prime}$. If $C(G)<Q(G)$ then $\bar{C} \cap G \neq \Phi$. In this case let F be the union of all
sets $L(g)$ where $g \in \bar{C} \cap G$. Evidently F is a fundamental set, $F \cong G$, and $F^{*} \cong \bar{C}$. Thus,

$$
\frac{C(G)}{Q(G)}=\frac{C(F)+C(G-F)}{Q(F)+Q\left(G-F^{\prime}\right)}=\frac{C(F)+Q(G-F)}{Q(F)+Q\left(G-F^{\prime}\right)} \geqq \frac{C(F)}{Q(F)} \geqq \gamma^{\prime},
$$

and so $\gamma \geqq \gamma^{\prime}$.

Lemma 2. If F is a fundamental set with $F^{*} \subseteq \bar{C}$, then $C(F) \geqq \alpha C(F)+B(F)$.

Proof. Let $g_{1}, g_{2}, \cdots, g_{k}$ be the vectors of $\bar{C} \cap F$, indexed in such a way that

$$
\begin{equation*}
g_{i}<g_{j} \quad \text { implies } \quad i<j \tag{1}
\end{equation*}
$$

Define $H_{1}=L\left(g_{1}\right)$ and $H_{i+1}=L\left(g_{i+1}\right)-\bigcup_{j=1}^{i} H_{j}$. Then
(2) the H_{i} are disjoint,
(3) the union of the H_{i} is F, and
(4) for each $i, g_{i} \in H_{i}$.

Now (2) follows immediately by definition, and (3) from the fact that since $F^{*} \subseteq \bar{C}$, we have for each $x \in F$, that $x \in L\left(g_{i}\right)$ for some i. To prove (4) notice that $g_{i} \notin H_{i}$ implies $g_{i} \in \bigcup_{j=1}^{i-1} H_{j}$, which in turn implies $g_{i} \in L\left(g_{j_{0}}\right)$ for some $j_{0}<i$, contrary to (1).

For each i let $t H_{i}$ be the set of all vectors $g_{i}-x$ where x ranges over $H_{i}-\left\{g_{i}\right\}$. Then
(5) $t H_{i}$ is either empty or is a fundamental set, and
(6) $Q\left(t H_{i}\right)=Q\left(H_{i}\right)-1$.

To show (5) let z be an arbitrary vector in $t H_{i}$ and let $y \in L(z)$. We have $g_{i}-z \leqq g_{i}-y<g_{i}$. Thus $g_{i}-y \in L\left(g_{i}\right)-\left\{g_{i}\right\}$ and, since $g_{i}-z \in H_{i}$, we have $g_{i}-y \in H_{i}-\left\{g_{i}\right\}$. Hence $g_{i}-\left(g_{i}-y\right)=y \in t H_{i}$ and so $L(z) \subseteq t H_{i}$. Equation (6) is immediate.

Now, for each $\alpha \in A \cap t H_{i}$, there exists a unique $x \in H_{i}-\left\{g_{i}\right\}$ such that $a=g_{i}-x$. Thus $x \in \bar{B}$. Also, by (4), we have $g_{i} \in \bar{B} \cap H_{i}$ and so

$$
\begin{aligned}
\bar{B}\left(H_{i}\right) & \geqq A\left(t H_{i}\right)+1 \\
& \left.\geqq \alpha Q\left(t H_{i}\right)+1 \quad \text { (from (5) and the definition of } \alpha\right) \\
& =\alpha\left(Q\left(H_{i}\right)-1\right)+1 \quad \text { (from (6)) } .
\end{aligned}
$$

Summing over i, using (2) and (3), we obtain

$$
\begin{aligned}
\bar{B}(F) & \geqq \alpha(Q(F)-k)+k \\
& =\alpha C(F)+\bar{C}(F)
\end{aligned}
$$

that is,

$$
C(F) \geqq \alpha C(F)+B(F) .
$$

Theorem. If $\alpha+\beta<1$ then $\gamma \geqq \beta /(1-\alpha)$.
Proof. Since $\beta<1-\alpha$ and $\alpha<1$, then $\beta /(1-\alpha)<1$. Hence if $\gamma=1$, the theorem follows. If $\gamma<1$, then $\bar{C} \neq \Phi$ and for any fundamental set F with $F^{*} \subseteq \bar{C}$ we have by Lemma 2

$$
C(F) \geqq \alpha C(F)+B(F) .
$$

Hence,

$$
\frac{C(F)}{Q(F)} \geqq \alpha \frac{C(F)}{Q(F)}+\frac{B(F)}{Q(F)} \geqq \alpha \gamma+\beta .
$$

By Lemma $1 \gamma \geqq \alpha \gamma+\beta$ that is, $\gamma \geqq \beta /(1-\alpha)$.
3. Remark. A result of Kvarda [1] states that if $\alpha+\beta \geqq 1$ then $\gamma=1$. This result and the above theorem can be used to prove quickly that if $\alpha>0$ then A is a basis for Q, that is, $n A=Q$ for some n, where $i A=(i-1) A+A$ for $i \geqq 2$. Thus let γ_{i} denote the density of $i A$ and assume that $n A \neq Q$ for all n. Then, for all $k, \gamma_{k}+\alpha<1$, and so

$$
\gamma_{k+1} \geqq \frac{\gamma_{k}}{1-\alpha} \geqq \frac{\gamma_{k-1}}{(1-\alpha)^{2}} \geqq \cdots \geqq \frac{\gamma_{1}}{(1-\alpha)^{k}}=\frac{\alpha}{(1-\alpha)^{k}}
$$

But, for k sufficiently large, $\left(\alpha /(1-\alpha)^{k}\right) \geqq 1$, a contradiction.

References

1. B. Kvarda, On densities of sets of lattice points, Pacific J. Math. 13 (1963), 611-615.
2. I. Schur, Über den Begriff der Dichte in der additiven Zahlentheorie, S. B. Preuss. Akad. Wiss. Phys. Math. Kl. (1936), 269-297.

Received June 12, 1965. This paper is part of the author's Ph. D. thesis, written at Oregon State University under the direction of Professor Robert Stalley.

