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ON THE TRANSFORMATION OF INTEGRALS
IN MEASURE SPACE

RoBIN W. CHANEY

One objective of this paper is to prove a formula for the
transformation of integrals by means of a change of variable
in purely measure—theoretic setting. The classical prototype
of such formulas is the one in which the change of variable
is effected by an (appropriately differentiable) one-to-one trans-
formation from some subset of Euclidean n-space R” onto some
other subset of R"; the jacobian of the transformation plays
a key role here, For the present study the transformation
which gives the change of variable is no longer assumed to
be one-to-one but it is required to satisfy certain standard
conditions relative to the measure spaces at hand.

Some of the results presented in this paper can be sum-
marized informally as follows. ILet 7 be a function from a
nonempty set S onto a set X, let {S, I, »} and {X, N, v} be
measure spaces, and let 2B be a sub-s-field of M. These entities
are subjected to certain standard requirements. Within this
basic setting is proved a formula which takes the form

(1) L(H° T)f dp = STBH'W("B) dv;

in (1), H is some Tt-measurable function, B is a set in B, f is
analogous to the jacobian, and 'V is a function having certain
measure-theoretic properties, Indeed 'W(x, B) is intended to
““count or weigh’> the number of points in B mapped into x
by T. In this paper certain theorems are proved which reveal
in detail the relationship between f and 'W,

Rado and Reichelderfer have developed in [5] a “general transfor-
mation formula” from which the classical formulas for the transfor-
mation of integrals can be derived. In [3] Craft extended this formula
and Reichelderfer proved a transformation formula in 4,10 in [6] which
extends Craft’s result. Reichelderfer’s formula applies not merely to
Lebesgue integration in R* (as the earlier formulas did) but rather is
proved in a measure-theoretic (quasi-topological) setting. Formula (1)
is also an extension of Craft’s result. The theorem (see 3.1 below) in
which (1) is proved neither implies nor is implied by the theorem in
4,10 in [6].

Thus the present paper is somewhat similar to [6] in purpose and
spirit. For example, in this paper the concept of “weighing function”
(the function 'W in (1) is a weighing function) is a generalization of
the concept of multiplicity function discussed in [5]. The corresponding
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role in [6] is played by the “weight function.” In §5, we explore
certain relationships between weight functions and weighing
functions.

Moreover, in 4.5, we establish a fundamental connection between
the functions 'W and f appearing in (1); this theorem has as yet no
analogue in the theory developed in [6].

1. Standard hypotheses. The standard hypotheses for the present
theory are denoted by A1-A6. These hypotheses are stated below.

Al. {S,M, p} is a o-finite, complete, positive measure space.

A2, {X,M,v} is a o-finite, complete, positive measure space.

A3. T is a function (transformation) from S onto X.
Al, A2, and A3 are respectively H1, H2, and H3 in 1 of [6] except
for the notational change made in passing from H2 to A2.

A4, B is a o-field of subsets B of S having the following
properties. B is a subfamily of M and TB = {TB: Be B} is a sub-
family of . For each set M in I there is a set B in B such that
M < B and B = pM.

It follows at once from Al and A4 that for each set M in M
there are sets B, and B, in B such that B, M < B, and B, = ¢B,.

A5, U is a o-field of subsets A of X having the following
properties. A is a subfamily of N and T A ={T'A: AU} is a
subfamily of 8. For each set N in 3 there is a set A in 2 such
that N A4 and vN = vA.

It follows at once from A2 and A5 that for each set N in N
there are sets A, and A4, in U such that A, & N & A4, and vA, = vA,.

DEFINITION. Assume Al-A5. Let’W be a nonnegative, extended
real valued function defined on X x B. 'W is said to be a weighing
function for T if the following conditions are satisfied:

(i) If Bis in B then 'W(z,B) =0 a.e. v on CTB (CTB denotes
the complement of TB relative to X).

(ii) If a set B in B is the union of a countable number of pair-
wise disjoint sets B; in B then 'W(x, B) = 3, W(x, B;) a.e. v on X.

(iii) For each B in B the function ' W{(., B) is N-measurable (on X).

A6. 'W is a weighing function for 7.
There will be several weighing functions in certain discussions in
the sequel. Every weighing function will be denoted by the basic
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symbol ' W together with some subscript or possibly even a superscript.
Thus 'W, 'W,, and 'Wx will denote weighing functions for 7.

2. Bounded variation and absolute continuity. Throughout
this section the standard hypotheses A1-A6 are assumed to hold.

DEFINITION 1., For each B in B the function 'W(., B) is M-
measurable; set WB = X’ W(x, B) dv. The nonnegative, extended real
valued number WB is called the weight attached to B by 'W. W
denotes the function which associates with each B in B the attached
weight WB.

It follows from A4 and A6 that WB = S '"W(x, B) dv for each B
in B. Observe that W is a nonnegative, extended real valued measure
on B.

For each weighing function there is the corresponding function
which associates with each B in ¥ its attached weight. This function
will henceforth be denoted by the symbol for the corresponding weighing
function with the “prime” removed. Thus W, W,, and Wx denote the
weights induced by the weighing functions ' W,” W,, and ' Wx respectively.

DEFINITION 2. The transformation T is said to be of bounded
variation with respect to the weights W—briefly, T is BVW—if WS

is finite.
Hence T is BVW if and only if each function 'W(., B) is v-

integrable over X.

DEFINITION 3. Let f be a nonnegative, extended real valued, M-
measurable function defined on S and assume that for each B in ®B it

is true that S f(s)dp < WB = Sx' Wi(z, B)dv. Such a function f is said
B
to be a lower bound function for the weights W—briefly, a 1.b.f. W.

LEMMA 4. Assume that T is BVW and that f is o Lb.f.W.
Assume that N is a set tn N for which vYN = 0. Then f(s) =0 a.e.
r on T7'N.

Proof. By A5 there is a set A in 2 such that NS A4 and
YA =0. Then T7'A is in B and so

S Fs)dp < WTA = S "W, T-A)dy = 0 .
714 4

THEOREM 5. Assume that T is BVW and that f is a Lb.f.W.
Suppose that H is a real valued, N-measurable function defined on



232 ROBIN W. CHANEY

X. Then, for each B in B, the function H(x)'W(x, B), x€ X, is N-
measurable and the function HT(s)f(s), s€ B, is M-measurable.

The proof is omitted. It resembles the proof of 2.13 in [6].
The following lemma is easy to check.

LEMMA 6. Assume that T is BVW and that f is a L.b.f.W. such
that S f(s)dp = WS. Then S F(s)dpr = WB for every B in .
S B

DEFINITION 7. Assume that T is BVW and that there exists a
nonnegative, extended real valued function f defined on S which is a

Lb.f.W such that SS f(s)dp = WS. Then the transformation 7' is said

to be absolutely continuous with respect to the weights W—briefly, T
is ACW—and f is termed a greatest lower bound function for the
weights W—briefly, a g.l.b.f. W.

Observe that if f is a g.l.b.f. W then it follows from Lemma 6 that

S f(s)dpe = WB for every B in B. It follows from A4 that f is unique
B
in the sense that any other g.l.b.f. W must be equal to f a.e. ¢ on S.

THEOREM 8. Assume that T is BVW. The following statements
are equivalent.

(1) T s ACW,

(2) The measure W is absolutely continuous with respect to the
measure pt|B.

(3) If B is a set in B for which pB = 0 then WB = 0.

(4) If B is a set in B for which uB =0 then 'W(x,B) =0
a.e. Y on X.

Proof. That (2) implies (1) follows at once from the Radon-Nikodym
Theorem. The other implications are obvious.

REMARK. Now assume in addition that yTB = 0 whenever B is
any set in B for which uB=0. Then T is ACW if and only if T
is BVW (Use (4) above.).

3. The transformation formula. A basic formula for the trans-
formation of integrals is established in this section. The standard
hypotheses A1-A6 are assumed throughout the section.

THEOREM 1., Assume that T is ACW and assume that f is a
g Lb.f.W. Assume that B is in B and that H is a real valued,
N-measurable function defined on X. Suppose that either H'W(., B)
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18 v-integrable over X or that (Ho T)f is p-integrable over B. Then

SXH’W(., B)dy = SB(Ho T)fdg .

Proof. The proof is quite similar to the proof of 4.10 in [6]. In
fact, a careful study of the details of 4.7-4.10 of [6] reveals that,
for the present discussion, it suffices to consider the case in which H
is the characteristic function of some set N in RN. Indeed it follows
from A5 and 2.4 that we need only consider the case in which H is
the characteristic function of a set in 2L,

Thus assume that H is the characteristic function H, of the set
A in A, It follows from 2.5 that (HoT)f is p-integrable and that
H'W(., B) is v-integrable. Evidently (CT—'A denotes S — TA)

SXH’W(., B)dp = SXH'W(., BN T A)dy + SXH’W(., BN CTA)dy

= S H'W(., BN T-'A)dy + S H'W(., BN CT-A)dy
TBNA A4

TBNO

- S 'W(., BN T-A)dy + 0
TBNA

|, S =\ HeT)rdp
BNT—'4 B

COROLLARY 2, Assume that T is ACW and that f is a g.l.b.f.W.
Fix B in B. Suppose that H is a real valued, N-measurable function
defined on X and assume that H is bounded a.e. v on TB. Then
H'W(., B) is v-integrable over X and (Ho T)f is p-integrable over B.
Moreover SXI-I’W(.,B) dy = S (Ho T)f dp.

B

LeMmA 3. Let 'W, be a weighing function for T and assume
that T is ACW, and that W, = W. Then for each B imn B it s
true that "Wz, B) = 'W(x, B) a.e. v on X.

Proof. Let f, be a g.1.b.f.W,. Fix B in B and let A be any set
in A. Then Theorem 1 and the properties of 'W, and 'W lead to

SA’Wl(., B)dy = SB(HAO T)fdpe

fidp = W(Bn T-4)

SBﬂT_lA

< W(BN T-4) = ST W, BN T Ay
B

< L’W(., By .
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THEOREM 4. Assume that T is ACW and that f is o g.L.b.f.W.
Assume that 'W, is a weighing function for T and that T is ACW,.
Suppose that f, s a glb.f.W,. Then fi(s) < f(s) a.e. ¢ on S if and
only iof 'Wi(x,B) < 'W(x, B) a.e. v on X for every B in B,

Proof. Assume first that "Wz, B) < 'W(x, B) a.e. v on X for
every B in 8. Then W, < W and so SB fis)dp = 5 f(s)dy for every B
B

in B. It follows from A4 that fi(s) < f(s) a.e. £ on S. The opposite
implication follows from .3.

COROLLARY 5. Assume that T is ACW and let f be a g.l.b.f.W.
Assume that 'W, is a wetghing function for T, that T is ACW,,
and that f is also o g lb.f.W,. Then 'W(x, B) ='W(x, B) a.e. v on
X for every B in B.

This corollary tmplies that if two weighing fumnctions 'W and
"W, have the same weights W =W, and <f T is ACW (and hence
ACW)) then the functions 'W and 'W, are essentially the same.

4. A fundamental theorem. In this section a fundamental
theorem is proved which gives a necessary and sufficient condition for
an arbitrary nonnegative, real valued, p-integrable function f to be a
g.1.b.f.W for some weighing function 'W. This result is presented
in Theorem 8.

1. We introduce a new standard hypothesis.

A0. Ais a o-field of subsets A of X having the following properties.
A is a subfamily of N and TUA is a subfamily of M. For each set
N in R there is a set 4 in A such that NS A and yN = vA. Also,
® is a subfamily of MM with the property that T® < .

DEFINITION 2. Assume A0-A3. Let’W be a nonnegative, extended
real valued function defined on X xIM. ‘W is said to be a weighting
function for T if the following conditions are satisfied:

(i) If Gis in ® then 'W(.,G) =0 a.e. v on CTG.

(ii) If a set M in I is the union of a countable number of pair-
wise disjoint sets M; in MM then 'W(., M) = 3V W(., M,) a.e. v on X.

(iii) For each M in M the function 'W(., M) is N-measurable (on
X).

REMARK. Assume Al-A5. Then A0-A3 hold with ® taken as 9B.
If 'W is a weighting function for T then 'W | X x B is a weighing
function for T.
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LEMMA 3. Assume A0-A3. There exists a set Ay in U such that
VA, =0 and such that for every N imn N for which vN =0 it is
true that T7'(N N CAy) is in M and pT-(N N CA,) = 0.

Proof. Define €' to be the family of all sets A in A for which
vA =0. By Al the set S can be expressed as the union of a countable
number of sets M,,n =1, in M for which pM, < «, n =1, For
each positive integer % let €, be the family of all sets of the form
T*AN M, where A is in €', Each family €, is a subfamily of M.
For each n=1 set P, =sup{uM:Mec€,} and observe that P, =
uM, < o, For each n =1 there is a sequence of sets 4,,,m =1, in
€' such that lim, #(T~'4,,.NM,) =P,. Set Ay = U, nluwn. Then A,
is in € and (T4, NM,) = P,, n=1.

To see that A, has the desired properties let N be a set in R for
which yYN =0. By A0 there is a set 4 in A such that NS 4 and
vA = 0. For each n it is true that

P, = (T4, N M,) < p(T— Ay 0 M,)
+ p[T-(A N CAg) N M,]
=puT7 (A, UANCA)NM,] = P, < .

Consequently pT-'(A N CAy) = 0. According to Al, T-(N N CA,) is
in M and #T-(N N C4,) = 0.

DEFINITION 4. Assume A0-A3. A set A, having the properties
listed in the lemma is termed an essential T-set. (Hence, according
to the lemma, there exists an essential T-set.)

If A, is an essential T-set and if A is any set in 2 for which
vA =0 then A, J 4 is an essential T-set; hence, essential T-sets are
by no means unique. However, if ,4, and ,A, are essential T-sets
then p(T-A4,4T7,A;) =0 (where E4F is the symmetric difference
of the sets E and F'). Hence a function f with domain S vanishes
a.e. ¢t on T7" A, if and only if it vanishes a.e. ¢ on T7%,A4,.

THEOREM 5. Assume A0-A3. Let A, be an essential T-set. Let
f be a nonnegative, real valued, p-integradble function defined on S.
If f(s) =0 a.e. p on T7'A, then there exists a weighting function
"W, for T which has the property that SM fdp = SX'Wf(.,M)dv for
every M wn M.

Moreover the transformation formula holds for ' W, and f. More
precisely, let M be a set in WM and assume that H is a real valued,
N-measurable function defined on X. Suppose that either H'Wi(., M)
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18 v-integrable over X or that (Ho T)f is p-integrable over M. Then
SXH'Wf(., Mydy = SM(Ho T)fdp.

Proof. Assume f(s) =0 a.e. £ on T7'A,. Define a function ¥
on M by F(M) =S fdp, MeIMM. F is a nonnegative, real valued
M

measure on M. Now define for each M in M a nonnegative, real valued
set function v;, on A by setting v,y A = F(M N T—*A) for every A in A.
Each of the functions v, is clearly a measure on 2. Next it is shown
that each of the measures v, is absolutely continuous with respect to
the measure v |2. Thus fix a set M in M and let A be a set in A
for which vA = 0. Since A, is an essential T-set one finds that

VA = F(MN T-A) = F(M N T-An CT-'Ay)
<FTANCA;)=0.

Hence for each M in 9% there is by the Radon-Nikodym Theorem
a nonnegative, real valued, 2(-measurable function 'W,(., M) defined on
X such that v, A = S W, M) |2 = L'Wf(., M)dy for every A

4

in . Assert that 'W;, is the desired weighting function for 7. Clearly
each function 'W,(., M) is N-measurable (on X). Now fix G in .
By A0 there is a set A in A such that CTG < A and vy(ANTG) = 0.
Hence

Sa WA, G = L'Wf(., Gy = A
T
=FGNT'A) =FGNT'ANT'C4;) =0,
since GNT'ANT'CA, € T(TGN AN CA;) and since A, is an es-
sential T-set. Therefore 'W,(.,G) =0 a.e. vy on CTG. Next assume

that the set M in 9 is the union of a countable number of pairwise
disjoint sets M; in M. For every A in U it is clear that

SA’W,(., M)dy = S SUWA., M)dy .
A4
Thus ' W, is a weighting function for T. Moreover if M is in M then
SM fdp = F(M N T-'X) = v, X = SX' WA, M)dy .

Finally we prove that the transformation formula holds for 'W;
and f. We first appeal to Definition 4 to deduce that f(s) = 0 a.e. ¢ on
TN whenever N is a set in : such that vN = 0. Then observe that
if we employ arguments entirely similar to those required in 3.1 it
becomes clear that we need only consider the case in which H is the
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characteristic function of a set 4 in 2. Thus fix M in M and let
H be the characteristic function of the set A in 2. We have

gXH'Wf(., Mydy = L'Wf(., M)dy = F(M T-A) = SM(HOT)fdp :

(It must be emphasized that this transformation formula has been
proved only for those particular weighting functions 'W, which arise
in this proof. We have not proved a full analogue of 3.1.)

COROLLARY 6. Assume A0-A3. Let f be a monnegative, real
valued, p-integrable function defined on S. Assume f(s) =0 a.e. p
on T™*N whenever N is any set in N for which YN =0, Then
there exists a weighting function 'W, for T which has the property

that S fdp = SX' We(., M)dy for every M in M. Moreover the trans-
M
formation formula holds for 'W, and f(cf. Theorem 5),

COROLLARY 7. Assume Al-A5, Let A, be an essential T-set.
Let f be a momnegative, real valued, p-integrable function defined
on S. Then there exists a weighing function 'W, for T for whose
weights f is a greatest lower bound function if and only if f(s) =0
a.e pon TA,.

THEOREM 8. Assume A1-A5, Let f be a nonnegative, real valued,
p-integrable function defined on S. Then there exists a weighing
function 'W; for T for whose weights f is a greatest lower bound
Sumnction if and only if f=0 a.e. £ on T7'N whenever N is any
set im N for which vN = 0.

The rest of the section is concerned with a “Lebesgue decompo-
sition” theorem for weighing functions. Rather similar theorems for
weight functions appear in [1].

DEFINITION 9. Assume A1-A6 and assume that 'W, is a weighing
function for T having the properties that 'W, ='W and that T is
ACW,. Then 'W, is termed an AC part of 'W.

DEFINITION 10, Assume A1-A6. Assume that 'W, is an AC part
of 'W. Then 'W, is said to be a maximal AC part of 'W in case it
is true that whenever ‘W, is any AC part of 'W then, for each B in
B, one has 'W,(x, B) =< 'W,(»,B) a.e. vy on X. 'W is said to be trivial
in case 'W(x, B) = 0 a.e. v on X for every B in B. (‘W is trivial if
and only if W vanishes identically on 8B.) ’'W is said to be singular
if all of its AC parts are trivial and if there also exists a set B, in B
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such that B, = 0 and such that for each B in % one has 'W(x, B) = 0
a.e. v on CTB,. Assume that 'W, and 'W, are weighing functions
for T. The ordered pair ('W,,' W) is termed a Lebesgue-type decom-
position for 'W if 'W ='W, + 'Ws, if "W, is a maximal AC part of
'W, and if 'Wy is singular.

Note that if T is BVW then it follows from the above definitions
that 'W can have essentially at most one Lebesgue-type decomposition
in the following sense: If (W, Ws) and (W,,'W,) are Lebesgue-type
decompositions for 'W then 'W (., B) = 'W,(., B) and ' Wy(., B) = 'W,(., B)
a.e. v on X for every B in B.

THEOREM 11, Assume Al-A6 and assume that T s BVW. Then
"W has one (and essentially only one) Lebesgue-type decomposition.

Proof. By the Lebesgue Decomposition Theorem for measures [4,
p. 132] there exist nonnegative, real valued measures g, and y, defined
on B such that W= g, + p, such that g, is absolutely continuous
with respect to ¢£/B, and such that g, is p¢/B-singular. According to the
Radon-Nikodym Theorem there is a nonnegative, B-measurable function
f defined on S such that g,B = X f(s)d(u/B) = S f(s)dp for every B
in B. Let A, be an essential T-set l(gsee Definition 41)3. It follows from 2.4
that f(s) =0 a.e. ¢ on T'A,. By 7. there is a weighing function 'W,
for T for whose weights W, f is a g.L.Lb.f.W,. Hence W, = p, < W.
It follows from 3.3 that 'W,(x, B) < 'W(x, B) a.e. v on X for every B
in B, For each B there is a set X, in M such that vX, =0 and
such that 'W,(z, B) = 'W(x, B) < « whenever z is in CX, Define
nonnegative, extended real valued functions ‘W, and 'Ws on X x B as
follows: For each B in B set 'W,(x, B) ='W, (x, B) and 'W(zx, B) =
'"W(x,B) — 'Wx,B) if  is in CX, and put 'W,(z, B)=0 and
"Ws(x, By = "W(x,B) if « is in X,. It is easy to verify that both
"W, and 'Wy are weighing functions for 7.

It is now shown that (W,,'Wy) is a Lebesgue-type decomposition
for 'W. Clearly 'W ='W, + 'W,. Moreover 'W, is an AC part of
'W. Let 'W, be any AC part of 'W. Let f, be a g.lb.f.W, and
observe that f is a g.lL.b.f.W,. Define a function on S by setting
f+*=max{f, fo}. According to Corollary 7 there is a weighing function
"W x for whose weights W f* is a greatest lower bound function. Consider
the set Mx* of points s in § for which fi(s) > f(s). Mx is in M and
so there is a set Bx in B such that Mx & Bx and pu(Bx N CMx) = 0.
It is clear that for every B in B one has

WxB = WyB N Bx) + Wy(BnCBx) < WB.

Hence W, = W« = W. The function W, = Wx — W, is a measure on
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B and, in view of 2.8, W, is absolutely continuous with respect to
1/B. Note that W,, = Wy = ps and so W,, is also p/B-singular. Hence
Wx = W,. It follows that f(s) = fi(s) a.e. ¢z on S so that, in view of
3.4, ' Wy(z, B) ='W ,(z, B) a.e. v on X for every B in B. It follows from
Definition 10 that 'W, is a maximal AC part of 'W. Finally it is shown
that "Wy is singular. Since p is p/B-singular there is a set B, in B
such that #B, =0 and W(CB,) = ps(CB,) = 0. Given B in 3B, one obtains

S 'Wi(., Bydy — S 'Wi(., BN B)dv
OT By OT B,
+ S 'W(., BACB)Y = 0 + We(CB,) = 0 ;
0TB,

hence 'Wy(x, B) =0 a.e. v on CTB,. It is clear that 'W; can have
no nontrivial AC parts,

5. Connection with earlier work. The relationship between
the transformation theory of [6] and the theory just presented is
discussed briefly in this section. The results in [6] are obtained in
a setting which is established by imposing the standard hypotheses
H1-H8 (see 1 of [6]). Other hypotheses—denoted by H9-H15—are
imposed in certain situations in [6]. Still others have been introduced
in subsequent papers; one of these—HC1 (see [2])—is of particular
interest in the present discussion. For if it is assumed that H1-HS8
and HC1 are in effect then it is easy to verify that A1-A5 are also
satisfied; of course it is necessary to replace S’ by X, I by N, ¢/ by
y, and B’ by U throughout the statements of H1-H8 and HC1. Hence
if H1-H8 and HC1 are assumed to hold then both of the theories apply.
Thus within this context the concepts of weight function and weighing
function can be compared. Moreover it is clear that if H1-H8 are in
effect then A0-A3 hold, provided that one makes the replacements
indicated above and puts & = D.

The desired comparison of weighing functions and weight functions
requires a modification of H9 (and hence the comparison is rather
indirect). The modified statement is denoted by H9x.

H9x. W’ is a nonnegative, extended real valued function defined
on X X ® and satisfying the following conditions.

(i) If Dis in © then W/(x, D) =0 a.e. v on CTD.

(ii)yx If a set D in D contains a countable number of pairwise
disjoint sets D; in ® then >\W'(x, D;) = W’(x, D) a.e. v on X.

(iiiyx If a set D in © is the union of a sequence of sets D, in
® for which D; & D;,, for every j then lim W'(x, D;) = W'(x, D) a.e.
Yy on X,

(iv)x For each D in ® the function W’(., D) is 9t-measurable (on X).
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A funection having these properties is termed a quasiweight funetion
for T.

REMARKS 1. Assume H1-H8. Every weight function for T is a
quasi-weight function for 7. But a quasi-weight function may not be
a weight function. It is easy to verify that the results in 2, 3,4, 5,
and 6.1 of [6] remain valid if H9 is replaced by H9x throughout those
sections; the notational changes indicated above must be kept in mind,

REMARKS 2. Assume H1-H8 and HCl. It is easy to see that if
"W is a weighing function for T then the function W' ='W |X x D
satisfies H9*. Hence the function 'W | X x D is a quasi-weight function
for T and so, for example, it may play the role of W’ in the results
of 2,3,4,5, and 6.1 in [6]. Thus the arbitrary weighing function 'W
gives rise in a natural manner to the quasi-weight function "W | X x 9D,
The next theorem shows that, conversely, certain quasi-weight functions
are restrictions (to X x ®) of weighing functions,

THEOREM 3. Assume HI1-H8, H9%, and HCl and suppose that
there is a monnegative, real valued, p-integrable function f defined
on S for which S F(s)dp = SXW'(x, Dydy for every D in ®. Then
there exists a welz?ghing Junction 'W for T for which W'(x, D) =
"W(x, D) for every (x, D) in X X D. Moreover f is a greatest lower
bound function for the weights induced by 'W.

Proof. The lemma in 2.6 [6] applies here even though H9 has
been dropped in favor of H9x. Thus if A, is an essential T-set it
follows that f(s) =0 a.e. g on T7'4,. According to 4.7 there is a
weighing function ‘W, for T for whose weights f is a greatest lower
bound function. Fix D in ® and let N be in 3. The results in 4.8
of [6] (with H9 replaced by H9x) and in 3.1 lead to

SN W(., D)dv = SD(HNoT) Fdp = SN’WO(., Dydy .

Therefore W'(x, D) = 'Wy(x, D) a.e. v on X.

Hence for each D in © there is a set X, in N such that vX, =0
and such that W'(x, D) ='Wz, D) if 2 is not in X,. For a set B
which is in B but not in ® set X; = @. Then define a nonnegative,
extended real valued function 'W on X x B as follows: For each B in
B put 'W(x,B) ="Wyx,B) if « is in CX, and set 'W(x,B) = W'(z, B)
if ¢ is in X,;. Evidently 'W is the desired weighing function for 7.

COROLLARY 4. Assume H1-H9 and HCl and assume that T is
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ACW (see 3.4 of [6]). Then there exists a weighing function 'W
for T for which '"W(x, D) = W'(x, D) for every (x,D) in X X D.
Moreover the weights induced by 'W and W' have the same greatest
lower bound function.

REMARKS 5. Assume H1-H8. It is easy to see that if 'W is a
weighting function for 7 then the function 'W|X X © is a quasi-
weight function for 7' (cf. Remarks 2).

THEOREM 6. Assume H1-H8 and H9+ and suppose that there is
a nonnegative, real valued, p-integrable function f defined on S for

which Spfclu = SX W'(., D)dy for every D in . Then there exists
a weighting function 'W for T for which W’(x, D) ='W(x, D) for
every (x, D) in XX D, Moreover SMfdﬂ = §X’W(., M)dy for every M
wn WM and (¢f. 4.5) the transformation formula holds for 'W and f.

As one would expect, the proof of this theorem parallels that of
Theorem 3, with 4,5 now playing the roles of 4.7 and 3.1 in the earlier
argument.

COROLLARY 7. Assume H1-H9, Assume that T is ACW and let
fbe a glbf.W. Then there exists a weighting function 'W for T
for which 'W(x, D) = W'(x, D) for every (xz, D) in X x D. Moreover
SMfd;z = SX’W(.,M)dv for every M in M and (¢f. 4.5) the transfor-
mation formula holds for 'W and f.

REMARKS 8. Assume H1-H8, HC1, and H11-H12 (see [6]). Con-
sider the family & which was introduced in 7.6 in [6]. One can
verify that, in view of H12, the standard hypothesis HC1l remains
satisfied even if B is replaced by B N E. If this replacement is made
then 4.7 of [2] and 7.8 of [6] lead to the following conclusion:

Assume H1-HS8, H11-H13, HC1, and H15i and assume that 7T is
BVW. Then the function Wi(x, B, w), (z, B)e X X B, is a weighing
function for 7. (See [2] for a statement of H15i and see [6] for H13,
The expression Wi(x, B, w) is defined in 7.7 of [6].)

REMARKS 9. The preceding discussion has dealt only with the
relationship between the transformation theory presented in [6] and
the present study. For a discussion of the relationship between [6]
and earlier work in the subject the reader is advised to see 9 of [6].

Finally it should be noted that in a forthcoming paper the author
will discuss the problem of obtaining analogues for 4.7 and 4.8 within
the context set forth in [6].
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