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ON THE TRANSFORMATION OF INTEGRALS
IN MEASURE SPACE

ROBIN W. CHANEY

One objective of this paper is to prove a formula for the
transformation of integrals by means of a change of variable
in purely measure—theoretic setting. The classical prototype
of such formulas is the one in which the change of variable
is effected by an (appropriately differentiable) one-to-one trans-
formation from some subset of Euclidean %-space Rn onto some
other subset of Rn; the jacobian of the transformation plays
a key role here. For the present study the transformation
which gives the change of variable is no longer assumed to
be one-to-one but it is required to satisfy certain standard
conditions relative to the measure spaces at hand.

Some of the results presented in this paper can be sum-
marized informally as follows. Let T be a function from a
nonempty set S onto a set X, let {S, ffll, μ] and {X, 91, v} be
measure spaces, and let 53 be a sub-tr-field of 3fl. These entities
are subjected to certain standard requirements. Within this
basic setting is proved a formula which takes the form

(1) f (Ho T)f dβ = f H'W(., B) dv
JB )TB

in (1), H is some 9l-measurable function, B is a set in 93, / is
analogous to the jacobian, and ' W is a function having certain
measure-theoretic properties. Indeed fW(x,B) is intended to
"count or weigh" the number of points in B mapped into x
by T. In this paper certain theorems are proved which reveal
in detail the relationship between / and 'W.

Rado and Reichelderfer have developed in [5] a "general transfor-
mation formula" from which the classical formulas for the transfor-
mation of integrals can be derived. In [3] Craft extended this formula
and Reichelderfer proved a transformation formula in 4.10 in [6] which
extends Craft's result. Reichelderfer's formula applies not merely to
Lebesgue integration in Rn (as the earlier formulas did) but rather is
proved in a measure-theoretic (quasi-topological) setting. Formula (1)
is also an extension of Craft's result. The theorem (see 3.1 below) in
which (1) is proved neither implies nor is implied by the theorem in
4.10 in [6].

Thus the present paper is somewhat similar to [6] in purpose and
spirit. For example, in this paper the concept of "weighing function"
(the function 'W in (1) is a weighing function) is a generalization of
the concept of multiplicity function discussed in [5]. The corresponding
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role in [6] is played by the "weight function." In § 5, we explore
certain relationships between weight functions and weighing
functions.

Moreover, in 4.5, we establish a fundamental connection between
the functions 'W and / appearing in (1); this theorem has as yet no
analogue in the theory developed in [6].

1* Standard hypotheses* The standard hypotheses for the present
theory are denoted by A1-A6. These hypotheses are stated below.

Al. {S, SDΐ, μ) is a σ-finite, complete, positive measure space.

A2. {X, $1, v) is a σ-finite, complete, positive measure space.

A3. T is a function (transformation) from S onto X.
Al, A2, and A3 are respectively HI, H2, and H3 in 1 of [6] except

for the notational change made in passing from H2 to A2.

A4. 33 is a σ-field of subsets B of S having the following
properties. 33 is a subfamily of 2Ji and T33 = {TB: £e33} is a sub-
family of 9ΐ. For each set M in 2JΪ there is a set B in 33 such that
M^B and μB = μM.

It follows at once from Al and A4 that for each set M in 2JΪ
there are sets Bt and J52 in 33 such that B1^M^B2 and μB1 — μB2.

A5. 21 is a σ-field of subsets A of X having the following
properties. 51 is a subfamily of 9ί and T"1^ = {T~ιA: A e 21} is a
subfamily of 33. For each set N in 9Ϊ there is a set A in 2ί such
that N S A and vN = yA.

It follows at once from A2 and A5 that for each set N in 5ft
there are sets Ax and A2 in 21 such that At g iSΓ £ Λ and vAt = vA>.

DEFINITION. Assume A1-A5. Let ' W be a nonnegative, extended
real valued function defined on X x 33. ' W is said to be a weighing
function for Γ if the following conditions are satisfied:

( i ) If B is in 33 then 'W(x, B) = 0 a.e. v on CTB (CTB denotes
the complement of TB relative to X).

(ii) If a set B in 33 is the union of a countable number of pair-
wise disjoint sets Bi in 33 then 'W(x, B) = ^fW{x, B{) a.e. v on X

(iii) For each B in 33 the function ' W(., B) is 9^-measurable (on X).

A6. ' W is a weighing function for T.
There will be several weighing functions in certain discussions in

the sequel. Every weighing function will be denoted by the basic
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symbol 'W together with some subscript or possibly even a superscript.
Thus 'W, 'Wo, and 'W* will denote weighing functions for T.

2. Bounded variation and absolute continuity* Throughout
this section the standard hypotheses A1-A6 are assumed to hold.

DEFINITION 1. For each B in 33 the function 'W(., B) is im-

measurable; set WB = I 'W(x, B) dv. The nonnegative, extended real
j -A

valued number WB is called the weight attached to B by fW. W
denotes the function which associates with each B in 33 the attached
weight WB.

It follows from A4 and A6 that WB = [ 'W(x, B) dv for each B
JTB

in S3. Observe that W is a nonnegative, extended real valued measure
on 33.

For each weighing function there is the corresponding function
which associates with each B in S3 its attached weight. This function
will henceforth be denoted by the symbol for the corresponding weighing
function with the "prime" removed. Thus W, Wo, and W* denote the
weights induced by the weighing functions rW,f Wo, and' W* respectively.

DEFINITION 2. The transformation Γ is said to be of bounded
variation with respect to the weights W— briefly, T is BVW— if WS
is finite.

Hence T is BVW if and only if each function 'W(., B) is v-
integrable over X.

DEFINITION 3. Let / be a nonnegative, extended real valued, 2K-
measurable function defined on S and assume that for each B in 33 it

is true that ί f(s)dμ ^ WB = [ 'W{x, B)dv. Such a function / is said
JB JX

to be a lower bound function for the weights W—briefly, a l.b.f.TΓ.

LEMMA 4. Assume that T is BVW and that f is a l.b.f.TΓ.
Assume that N is a set in 9? for which vN — 0. Then f(s) — 0 a.e.
μ on T-'N.

Proof. By A5 there is a set A in SI such that N £ A and
vA = 0. Then T~ιA is in S3 and so

( f(s)dμ ^ WT-'A = ( 'W(x, T-"A)dv = 0 .

THEOREM 5. Assume that T is BVW and that f is a l.b.f.TΓ.
Suppose that H is a real valued, ^-measurable function defined on
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X. Then, for each B in 33, the function H{x)'W{x,B), xeX, is 5K-
measurable and the function HT(s)f(s), se B, is ^-measurable.

The proof is omitted. It resembles the proof of 2.13 in [6].
The following lemma is easy to check.

LEMMA 6. Assume that T is BVW and that f is a l.b.f. W. such

that \ f(s)dμ = WS. Then \ f(s)dμ = WB for every B in 33.

DEFINITION 7. Assume that T is BVW and that there exists a
nonnegative, extended real valued function / defined on S which is a

l.b.f. W such that I f(s)dμ = WS. Then the transformation T is said
Js

to be absolutely continuous with respect to the weights W— briefly, T
is ACW—and / i s termed a greatest lower bound function for the
weights W— briefly, a g.l.b.f.W.

Observe that if / is a g.l.b.f. W then it follows from Lemma 6 that

\ f(s)dμ = WB for every B in S3. It follows from A4 that / is unique
JB

in the sense that any other g.l.b.f. W must be equal to / a.e. μ on S.

THEOREM 8. Assume that T is BVW. The following statements
are equivalent.

(1) T is ACW.
(2) The measure W is absolutely continuous with respect to the

measure μ \ 93.
(3) If B is a set in 33 for which μB = 0 then WB = 0.
(4) If B is a set in 33 for which μB = 0 then rW{x, B) = 0

a.e. v on X.

Proof. That (2) implies (1) follows at once from the Radon-Nikodym
Theorem. The other implications are obvious.

REMARK. NOW assume in addition that v TB = 0 whenever B is
any set in 33 for which μB = 0. Then T is ACW if and only if T
is BVW (Use (4) above.).

3* The transformation formula* A basic formula for the trans-
formation of integrals is established in this section. The standard
hypotheses A1-A6 are assumed throughout the section.

THEOREM 1. Assume that T is ACW and assume that f is a
g.l.b.f. W. Assume that B is in 33 and that H is a real valued,
W-measurable function defined on X. Suppose that either H'W{.,B)
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is v-integrable over X or that (Ho T)f is μ-integrable over B. Then

\ H'W(.,B)dv = \ (HoT)fdμ.
JX Jϋ

Proof. The proof is quite similar to the proof of 4.10 in [6]. In
fact, a careful study of the details of 4.7-4.10 of [6] reveals that,
for the present discussion, it suffices to consider the case in which H
is the characteristic function of some set N in 9̂ . Indeed it follows
from A5 and 2.4 that we need only consider the case in which H is
the characteristic function of a set in 31.

Thus assume that H is the characteristic function HΛ of the set
A in 3ί. It follows from 2.5 that (Ho T)f is μ-integrable and that
H'W(.,B) is v-integrable. Evidently (CT^A denotes S- T~ιA)

\ H'W(., B)dμ = \ H'W(., B n T~ίA)dv + ( H'W(., B Π CT~1A)dv
J X J X j X

= ί H'W(., B Π T-^dv + f H'W(., B n CT-'Ajdv

= [ 'W(.,BΠ T-1A)dv + 0
J TBf] A

= \ fdμ=\ (HoT)fdμ

COROLLARY 2. Assume that T is ACW and that f is a g.l.b.f. W.
Fix B in 35. Suppose that H is a real valued, ̂ -measurable function
defined on X and assume that H is bounded a.e. v on TB. Then
H'W(.,B) is v-integrable over X and (HoT)f is μ-integrable over B.
Moreover \ HrW(.,B)dv= \ (HoT)fdμ.

J X J B

LEMMA 3. Let fWλ be a weighing function for T and assume
that T is ACW1 and that Wx ^ W. Then for each B in 35 it is
true that 'W^x^B) ^ 'W(x, B) a.e. v on X.

Proof. Let f± be a g.l.b.f. Wx. Fix B in 35 and let A be any set
in 2ί. Then Theorem 1 and the properties of rWx and 'W lead to

- ( fdμ = W,(B Π T-'A)

:g W(B Π T-'A) = ( 'W(., B n T-'A)dv
JΓ.BΓU

^ ί 'W(.,B)dv.
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THEOREM 4. Assume that T is ACW and that f is a g.l.b.f.W.
Assume that rWλ is a weighing function for T and that T is ACWλ.
Suppose that fx is a gΛ.b.ΐ.W^ Then f^s) g/(s) a.e. μ on S if and
only if fWx{x, B) S 'W(x, B) a.e. v on X for every B in 23.

Proof. Assume first that 'W^x, B) ^ 'W(x, B) a.e. v on X for

every B in 33. Then W1 S W and so ( Us)dμ ^ ( f(s)dμ for every B
J B J B

in S3. It follows from A4 that /i(s) ^ f(s) a.e. μ on S. The opposite
implication follows from .3.

COROLLARY 5. Assume that T is ACW and let f be a g.Lb.f.W.
Assume that fWx is a weighing function for T, that T is ACWU

and that f is also a g.l.b.f Ψi. Then 'W^x, B) = 'W(x, B) a.e. v on
X for every B in 33.

This corollary implies that if two weighing functions 'W and
'Wx have the same weights W = W1 and if T is ACW (and hence
ACWJ then the functions rW and fW^ are essentially the same.

4* A fundamental theorem* In this section a fundamental
theorem is proved which gives a necessary and sufficient condition for
an arbitrary nonnegative, real valued, μ-integrable function / to be a
g.l.b.f.W for some weighing function 'W. This result is presented
in Theorem 8.

1. We introduce a new standard hypothesis.
AO. §X is a σ-field of subsets A of X having the following properties.

21 is a subfamily of $β and T~x% is a subfamily of 2ft. For each set
N in K there is a set A in 2ί such that N £Ξ A and vN = vA. Also,
© is a subfamily of 2K with the property that Γ© S 9i.

DEFINITION 2. Assume A0-A3. Let' W be a nonnegative, extended
real valued function defined on JJΓxSUΪ. 'W is said to be a weighting
function for T if the following conditions are satisfied:

( i ) If G is in © then 'W(., G) - 0 a.e. v on CTG.
(ii) If a set M in 2JΪ is the union of a countable number of pair-

wise disjoint sets Λf< in 3JΪ then 'T7(., M) = Σ'WX , Mt) a.e. y on X
(iii) For each M in 2Ji the function '^(. jM) is ίft-measurable (on

REMARK. Assume A1-A5. Then A0-A3 hold with © taken as 93.
If ' W is a weighting function for T then ' W \ X x 33 is a weighing
function for T.



TRANSFORMATION OF INTEGRALS IN MEASURE SPACE 235

LEMMA 3. Assume A0-A3. There exists a set A? in SI such that
vAτ = 0 and such that for every N in 31 for which vN = 0 it is
true that T"j(iVn CAT) is in 2ft and μT~\N Π C4*) = 0.

Proof. Define &' to be the family of all sets A in SI for which
vA = 0. By Al the set S can be expressed as the union of a countable
number of sets Mn, n^l, in 2Jϊ for which μMn < <χ>, n ^ 1. For
each positive integer n let (£„ be the family of all sets of the form
T~ιA n Mn where A is in &'. Each family gn is a subfamily of 2K.
For each n^l set Pn = sup{μikf: Me (£J and observe that Pw g
μΛTn < oo. For each n ^ 1 there is a sequence of sets Anm, m ^ 1, in
<£' such that limm ^ ( T - ^ r W J = Pn. Set 4* - \Jn,mAnm. Then 4 ,
is in (£' and //(Γ- 1 ^ n Λfn) = PΛ, w ̂  1.

To see that ^4Γ has the desired properties let iV be a set in 31 for
which vN = 0. By A0 there is a set 4̂ in SI such that N ^ A and
v̂ 4 = 0. For each n it is true that

Pn = ju(Γ-ι4* n M-) - μ{T-ιAv Π M.)

Consequently μT~\A n C4f) = 0. According to Al, T~\N Γ) CA?) is
in 972: and μT^NΠ CAt) = 0.

DEFINITION 4. Assume A0-A3. A set 4 Γ having the properties
listed in the lemma is termed an essential T-set. (Hence, according
to the lemma, there exists an essential T-set.)

If Aτ is an essential T-set and if A is any set in SI for which
vA = 0 then AT\J A is an essential T-set; hence, essential T-sets are
by no means unique. However, if λAτ and 2AT are essential T-sets
then μ(T-\AτAT~\Aτ) = 0 (where EΔF is the symmetric difference
of the sets E and F). Hence a function / with domain S vanishes
a.e. μ on T~\AT if and only if it vanishes a.e. μ on T-1

2AΓ.

THEOREM 5. Assume A0-A3. Let Aτ be an essential T-set. Let
f be a nonnegative, real valued, μ-integrable function defined on S.
If f(s) — 0 a.e. μ on T~XAT then there exists a weighting function
fWf for T which has the property that \ fdμ = \ rWf(.,M)dv for

J M J X

every M in 2Ji.

Moreover the transformation formula holds for ' Wf and f. More
precisely, let M be a set in 9Ji and assume that H is a real valued,
^-measurable function defined on X. Suppose that either H'Wf{., M)
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is v-integrable over X or that (Ho T)f is μ-integrable over M. Then

\ H'Wf(.,M)dv=\ (HoT)fdμ.
JX JM

Proof. Assume f(s) — 0 a.e. μ on T^Aj,. Define a function F

on 3Jϊ by F(M) = I fdμ,MeWl. F is a nonnegative, real valued

measure on 2JΪ. Now define for each M in 2Ji a nonnegative, real valued
set function vfM on 31 by setting vfMA = F(M Π T~XA) for every 4 in 31.
Each of the functions vfM is clearly a measure on 31. Next it is shown
that each of the measures vfM is absolutely continuous with respect to
the measure v | 31. Thus fix a set M in 2Ji and let A be a set in SI
for which vA = 0. Since Aτ is an essential T-set one finds that

vfMA - F(M n Γ-1^) = F(M n T-'A n
i n CiiΓ) = o .

Hence for each M in 2JΪ there is by the Radon-Nikodym Theorem
a nonnegative, real valued, Si-measurable function 'Wf(.,M) defined on
X such that vfMA = ί 'TΓ/., ikf)d(^ | SI) = f ' W>(., M)dy for every ^
in SI. Assert that 'Wf is the desired weighting function for T. Clearly
each function fWf(.,M) is 9ΐ-measurable (on X). Now fix G in ©.
By A0 there is a set A in 31 such that CTGQ A and v(A Π TG) = 0.
Hence

'Wf(., G)dv = \ >WA , G)dv = vfβA

= F(G Π T-'A) = F(G n T-'A n r ^ C ^ ) - 0 ,

since G Π T-1^ n T~XCAT s T~\TG Π ̂ 4 Π C^Γ) and since ^4Γ is an es-
sential T-set. Therefore 'TFX , G) = 0 a.e. v on CΓG. Next assume
that the set ikf in 93ΐ is the union of a countable number of pairwise
disjoint sets Mi in 2JΪ. For every A in 31 it is clear that

\ 'WA.,M)dv=\ Σ'WA Mύdv.
J A. J A.

Thus 'Wf is a weighting function for Γ. Moreover if M is in 2ft then

ί fdμ - i p r n Γ-1^) = vfκZ = \ 'Wf(., M)dv .
J M jX

Finally we prove that the transformation formula holds for fWf

and /. We first appeal to Definition 4 to deduce that f(s) = 0 a.e. μ on
Γ"W whenever N is a set in 91 such that VJV — 0. Then observe that
if we employ arguments entirely similar to those required in 3.1 it
becomes clear that we need only consider the case in which H is the
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characteristic function of a set A in SI. Thus fix M in 501 and let
H be the characteristic function of the set A in 21. We have

ί H'Wf(., M)dv = \ 'Wf(., M)dv = FiMΓίT^A) = ( (HoT)fdμ .

(It must be emphasized that this transformation formula has been
proved only for those particular weighting functions fWf which arise
in this proof. We have not proved a full analogue of 3.1.)

COROLLARY 6. Assume A0-A3. Let f be a nonnegative, real

valued, μ-integrable function defined on S. Assume f(s) — 0 a.e. μ

on Γ""W whenever N is any set in Sft for which vN — 0. Then

there exists a weighting function rWf for T which has the property

that \ fdμ = 1 'WΛ.,M)dv for every M in 2Ji. Moreover the trans-

formation formula holds for fWf and /(cf. Theorem 5).

COROLLARY 7. Assume A1-A5. Let Aτ be an essential T-set.
Let f be a nonnegative, real valued, μ-integrable function defined
on S. Then there exists a weighing function rWf for T for whose
weights f is a greatest lower bound function if and only if f(s) — 0
a.e. μ on T"XAT.

THEOREM 8. Assume A1-A5. Let fbe a nonnegative, real valued,
μ-integrable function defined on S. Then there exists a weighing
function 'Wf for T for whose weights f is a greatest lower bound
function if and only iff=Q a.e. μ on Γ~W whenever N is any
set in 5Ji for which vN — 0.

The rest of the section is concerned with a "Lebesgue decompo-
sition" theorem for weighing functions. Rather similar theorems for
weight functions appear in [1],

DEFINITION 9. Assume A1-A6 and assume that rWQ is a weighing
function for T having the properties that 'Wo ^ 'W and that T is
ACW0. Then rW0 is termed an AC part of 'W.

DEFINITION 10. Assume A1-A6. Assume that 'Wo is an AC part
of 'W. Then 'Wo is said to be a maximal AC part of fW in case it
is true that whenever fWx is any AC part of 'W then, for each B in
S3, one has rWλ{x,B) ^ fW0(x,B) a.e. v on X. fW is said to be trivial
in case 'W(x, B) = 0 a.e. y o n l for every B in S3. (fW is trivial if
and only if W vanishes identically on S3.) 'W is said to be singular
if all of its AC parts are trivial and if there also exists a set Bo in 33
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such that μB0 = 0 and such that for each B in 33 one has 'W(x, B) = 0
a.e. v on CTB0. Assume that 'WA and 'Ws are weighing functions
for T. The ordered pair (' WΛ,' TΓ̂ ) is termed a Lebesgue-type decom-
position for 'W if 'TF = 'TF4 + 'Wa, if 'TF^ is a maximal AC part of
'W, and if 'TF^ is singular.

Note that if T is BVW then it follows from the above definitions
that 'W can have essentially at most one Lebesgue-type decomposition
in the following sense: If ('WΛ,

 fWs) and ('Wα,
 rW8) are Lebesgue-type

decompositions for' W then ' WΛ(., B) = ' Wα(., 5) and' Ws(.,B) = 'Wβ(.,B)
a.e. v on X for every I? in 33.

THEOREM 11. Assume A1-A6 and assume that T is BVW. Then
fW has one (and essentially only one) Lebesgue-type decomposition.

Proof. By the Lebesgue Decomposition Theorem for measures [4,
p. 132] there exist nonnegative, real valued measures μΛ and μg defined
on 33 such that W = μΛ + μs, such that μΛ is absolutely continuous
with respect to ///SB, and such that μs is μ/23-singular. According to the
Radon-Nikodym Theorem there is a nonnegative, 33-measurable function
/ defined on S such that μΛB = ί f(s)d(a/^8) = ί f(s)dμ for every B

JB JB

in 33. Let Aτ be an essential T-set (see Definition 4). It follows from 2.4
that f(s) — 0 a.e. μ on T~XAT. By 7. there is a weighing function 'Wa

for T for whose weights Wa f is a g.l.b.f. T7α. Hence PΓα = μΛ S W.
It follows from 3.3 that fWa(x, B) S 'W(x, B) a.e. v on X for every B
in 33. For each B there is a set X£ in SSI such that vJ B = 0 and
such that 'Wa(x, B) ̂  'W(x, B) < oo whenever x is in CXB. Define
nonnegative, extended real valued functions fWΛ and 'W5 on X x 33 as
follows: For each B in 33 set 'WJx, B) - '^(a?, B) and 'TΓ*(α, 5) -
fW(x,B)-'Wa(x,B) if a? is in CXB and put /W^(a?,5) = 0 and
'Wg{x,B) = 'TΓ(a?,B) if a? is in X5. It is easy to verify that both
'WA and fWs are weighing functions for T.

It is now shown that ('WΛ,
 fWs) is a Lebesgue-type decomposition

for 'W. Clearly 'T7= 'TΓ4 +
 fW8. Moreover 'TF4 is an AC part of

'TF. Let 'W, be any -AC part of 'W. Let /0 be a g.l.b.f.W0 and
observe that / is a g.l.b.f. WΛ. Define a function on S by setting
/* — max {/, /o}. According to Corollary 7 there is a weighing function
' W* for whose weights TF*/* is a greatest lower bound function. Consider
the set ikf* of points s in S for which fo(s) > f(s). M* is in 2JΪ and
so there is a set B* in 33 such that ikί* £Ξ J3* and μ(I?* fϊ CM*) =• 0.
It is clear that for every B in 33 one has

W*B = TΓ0(J5 Π J5*) + WΛ(B Π CB*) ^ WB .

Hence WΛ ^ W* ̂  TΓ. The function Wm = W* — TF4 is a measure on
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33 and, in view of 2.8, Wm is absolutely continuous with respect to
μ/$b. Note that Wm ^ Ws = μa and so Wm is also ///S-singular. Hence
W* = W .̂ It follows that f(s) ^ /0(s) a.e. μ on S so that, in view of
3.4, 'WQ(x, B) ^ 'WΛ(x, B) a.e. v on Xfor every 5 in 33. It follows from
Definition 10 that ' WΛ is a maximal AC part of ' W. Finally it is shown
that 'Ws is singular. Since μs is μ/33-singular there is a set Bo in S3
such that /iB0 = 0 and WS(CBO) = μs(CB0) = 0. Given £ in 95, one obtains

OTBQ

hence ' W ^ , B) = 0 a.e. y on CTB0. It is clear that Ί7F5 can have
no nontrivial AC parts.

5* Connection with earlier work* The relationship between
the transformation theory of [6] and the theory just presented is
discussed briefly in this section. The results in [6] are obtained in
a setting which is established by imposing the standard hypotheses
H1-H8 (see 1 of [6]). Other hypotheses—denoted by H9-H15—are
imposed in certain situations in [6], Still others have been introduced
in subsequent papers; one of these—HCl (see [2])—is of particular
interest in the present discussion. For if it is assumed that H1-H8
and HCl are in effect then it is easy to verify that A1-A5 are also
satisfied; of course it is necessary to replace S' by X, W by 91, μ' by
v, and 33' by 31 throughout the statements of H1-H8 and HCl. Hence
if H1-H8 and HCl are assumed to hold then both of the theories apply.
Thus within this context the concepts of weight function and weighing
function can be compared. Moreover it is clear that if H1-H8 are in
effect then A0-A3 hold, provided that one makes the replacements
indicated above and puts © = SD.

The desired comparison of weighing functions and weight functions
requires a modification of H9 (and hence the comparison is rather
indirect). The modified statement is denoted by H9*.

H9*. W is a nonnegative, extended real valued function defined
o n l x S and satisfying the following conditions.

(i )* If D is in ® then W'(x, D) = 0 a.e. v on CTD.
(ii)* If a set D in 35 contains a countable number of pair wise

disjoint sets D{ in © then ^W'(x, A) ^ W'(x, D) a.e. v on X.
(iii)* If a set D in 5) is the union of a sequence of sets Di in

2) for which Όά S Dj+1 for every j then lim W'(x, D3) = W'(x, D) a.e.
v on X.

(iv)* For each D in 3D the function W'(.,D) is Sft-measurable (on X).
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A function having these properties is termed a quasiweight function
for T.

REMARKS 1. Assume H1-H8. Every weight function for T is a
quasi-weight function for T. But a quasi-weight function may not be
a weight function. It is easy to verify that the results in 2, 3, 4, 5,
and 6.1 of [6] remain valid if H9 is replaced by H9* throughout those
sections; the notational changes indicated above must be kept in mind.

REMARKS 2. Assume H1-H8 and HC1. It is easy to see that if
' W is a weighing function for T then the function W = ' W \ X x 2)
satisfies H9*. Hence the function 'W \ X x © is a quasi-weight function
for T and so, for example, it may play the role of W in the results
of 2, 3, 4, 5, and 6.1 in [6]. Thus the arbitrary weighing function rW
gives rise in a natural manner to the quasi-weight function fW\Xx ©.
The next theorem shows that, conversely, certain quasi-weight functions
are restrictions (to X x SB) of weighing functions.

THEOREM 3. Assume H1-H8, H9*, and HC1 and suppose that
there is a nonnegatίve, real valued, μ-integrable function f defined
on S for which I f(s)dμ = I W'(x, D)dv for every D in 5). Then

there exists a weighing function rW for T for which W'(x, D) =
'W(x, D) for every (x, D) in X x ®. Moreover f is a greatest lower
bound function for the weights induced by fW.

Proof. The lemma in 2.6 [6] applies here even though H9 has
been dropped in favor of H9*. Thus if Aτ is an essential Γ-set it
follows that f(s) = 0 a.e. μ on T~XAT% According to 4.7 there is a
weighing function 'Wo for T for whose weights / is a greatest lower
bound function. Fix D in ® and let N be in ϋft. The results in 4.8
of [6] (with H9 replaced by H9*) and in 3.1 lead to

( W'(., D)dv = \ {HNoT)fdμ = [ 'Wo(.f D)dv .
Jisr J p JJSΓ

Therefore W'{x, D) = 'W0(x, D) a.e. v on X.
Hence for each D in © there is a set XD in 5Ji such that vXD — 0

and such that W'(x, D) = 'WQ{x, D) if x is not in XΏ. For a set B
which is in 35 but not in © set XB — 0. Then define a nonnegative,
extended real valued function 'W on X x 25 as follows: For each B in
35 put fW(x,B) = fW,{x,B) if x is in CXB and set 9W(x,B) = TF'(α?,B)
if a? is in Xg. Evidently 'TΓ is the desired weighing function for T.

COROLLARY 4. Assume H1-H9 and HC1 and assume that T is
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ACW (see 3.4 of [6]). Then there exists a weighing function rW
for T for which fW(x, D) = W'(x, D) for every (x, D) in I x S ,
Moreover the weights induced by 'W and W have the same greatest
lower bound function.

REMARKS 5. Assume H1-H8. It is easy to see that if 'W is a
weighting function for T then the function ' W \ X x © is a quasi-
weight function for T (cf. Remarks 2).

THEOREM 6. Assume H1-H8 and H9* and suppose that there is
a nonnegative, real valued, μ-integrable function f defined on S for

which \ fdμ = \ Wf(., D)dv for every D in ®. Then there exists
JD JX

a weighting function fW for T for which W'(x, D) = 'W(x, D) for
every (x, D) in Xx ®. Moreover \ fdμ — \ fWL, M)dv for every M

)M }χ

in 2Ji and (cf. 4.5) the transformation formula holds for fW and f.

As one would expect, the proof of this theorem parallels that of
Theorem 3, with 4.5 now playing the roles of 4.7 and 3.1 in the earlier
argument.

COROLLARY 7. Assume H1-H9. Assume that T is ACW and let
f be a g.l.b.f. W. Then there exists a weighting function 'W for T
for which 'W(x, D) = W'(x, D) for every (x, D) in Xx ®. Moreover
\ fdμ = \ 'W(.,M)dv for every M in 2DΪ and (cf. 4.5) the transfor-
JM JX

mation formula holds for rW and f.

REMARKS 8. Assume H1-H8, HC1, and H11-H12 (see [6]). Con-
sider the family © which was introduced in 7.6 in [6]. One can
verify that, in view of H12, the standard hypothesis HC1 remains
satisfied even if 33 is replaced by S3 Π @. If this replacement is made
then 4.7 of [2] and 7.8 of [6] lead to the following conclusion:

Assume H1-H8, H11-H13, HC1, and H15i and assume that T is
BVW. Then the function Wϊ(x, B, w), (x, B) e X x S3, is a weighing
function for T. (See [2] for a statement of H15i and see [6] for H13.
The expression W*(x, B, w) is defined in 7.7 of [6].)

REMARKS 9. The preceding discussion has dealt only with the
relationship between the transformation theory presented in [6] and
the present study. For a discussion of the relationship between [6]
and earlier work in the subject the reader is advised to see 9 of [6].

Finally it should be noted that in a forthcoming paper the author
will discuss the problem of obtaining analogues for 4.7 and 4.8 within
the context set forth in [6].
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