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ON THE ZEROS OF A LINEAR COMBINATION
OF POLYNOMIALS

ROBERT VERMES

In this paper we consider the location of the zeros of a
complex polynomial f(z) expressed as f(z) = 2 J ^ 0 CLkPk(z) where
{pk{z)} is a given sequence of polynomials of degree k whose
zeros lie in a prescribed region E. The principal theorem
states that the zeros of f(z) are in the interior of a Jordan
curve S = {z; | Fiz) \ = Max (1, R)} where F maps the complement
of E onto I z I > 1 and R is the positive root of the equation
Σk=l h\ak\tk — λn\an\tn = 0, with λk > 0 depending on E

only. Several applications of this theorem are given. For
example; if {pk{z)} is a sequence of orthogonal polynomials on
a S z ^ b, then we give an ellipse containing all the zeros of

Previous results* An extensive mathematical literature deals
with the location of the zeros in the complex plane of a polynomial

{ 1) f(z) = α0 + a,z + + anz
n

with complex coefficients ajm Cauchy derived practical bounds for the
moduli of the zeros of (1) using the moduli of the coefficients ajm In
many investigations the polynomial (1) is not expressed as a linear
combination of the sequence {zk}f but as

{ 2) f(z) = b0 + b j φ ) + + bnPn(z)

where {pk(z)} i s a given sequence of polynomials. Cauchy's well known
result (Harden [2], Th. 27, 1) was generalized by Turan [4] in the case
where the expansion in (2) is the Hermite-expansion ez2 Σιl=o hk(e~zyk).
He obtained upper bounds for the moduli of the imaginary parts of
the zeros, i.e., a " s t r ip" where all the zeros of (2) are located. Specht
[3], making use of the Christoffel-Darboux formula, extended these
results to other sequences of orthogonal polynomials. In our Theorem
1, we replace the "s t r ip" with a bounded region, which will yield an
ellipse in the case where the {pk(z)} is a sequence of orthogonal poly-
nomials on a finite interval.

2* Cauchy type estimate* In the sequal we shall use the follow-
ing notations: Let E be a compact (infinite) set in the complex #~plane,
whose complement G is simply connected, w = F(z) the univalent
function which is defined on G and maps G conformally on D: | w | > 1
such that the point at infinity in the two planes correspond to each
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other and also preserves direction there. The function F(z) has the
expansion in the point at infinity

(3: w = F(z) = —z
τ

where τ is the transfinite diameter of E. If the boundary B of G is
a Jordan curve, then according to a well known theorem (see Cara-
theodory [1]) the function F(z) is continuous in the closure of G and
maps the boundary B one-to-one onto | w | = 1. We shall denote by
CR the inverse image of the circle | F(z) | = R (R > 1).

With these notations we are able to state the following:

THEOREM 1. Let G be the complement of a finite domain E
whose boundary B is a Jordan curve. If S^— {pr(z)m, E} is a sequence
of polynomials of exact degree r whose zeros are in E, then the
polynomial

f(z) = aopo + a^z) + + anpn{z)( 4 )

has its zeros in the closed interior of the Jordan curve S = {z; \ F(z) | —
Max (1, R)}f where R is the (only) positive root of the equation

( 5 ) + + tn~ι - λ J a n\ Γ = 0 .

The λr are positive and depend only on & and E.

Proof. The rational function (pr(z)fpr+1(z)) has the expansion
in the neighborhood of the point at infinity:

Define

( 7 ) gr(z) = F(z) .

Using (6) and (3) we obtain the following expansion for gr at z = oo

gr(z) = do + d^-1 + d2z-2 + (d0 Φ 0) .

Hence gr(z) is analytic in the domain G and continuous in G U B.
With the aid of the maximum modulus theorem we obtain:

( 8 ) gr(z) I ^ Max
ZβB

I F(z) I = Max
z€B
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since | F(z) | = 1 or B. From (7) and (8) we obtain the estimate

( 9 )

For r < n

(10)

pr(z) m r

I F(z) I
f o r zeG .

Denote λr = mrmr+1 « mn_lf then for zeG

(11)

Now, let ζ 6 G be a zero of the polynomial in (4), then

(12) \pn(Q \a1\\p1(ζ)

from which, after dividing by pn(ζ) Φ 0 and using (11), we obtain

( 1 3 ) I a%\ I F(ζ) \ n £ λ 0 1 aQ F(ζ) \ F(ζ) \^ .

But this inequality implies that | F(ζ) \ Φ R, for R is the root of (5).
From the definition of CR it follows that ζ is in the closed interior
of CE. If ζ e E then clearly ζ is in the interior of Cl9 hence all the
zeros of (4) lie in the closed interior of the Jordan curve

S = {z:\ F(z) I = Max (1, R)} ,

which proves the theorem.
As an application of this theorem, consider a sequence of poly-

nomials pr(z) with leading coefficient one and whose zeros (which we
assume lie in the interval [— 1, + 1]) separate each other. More
precisely: if zUr, z2yr, «- , zr,r are the zeros of pr(z) and z0>r = — 1, zr+Ur —
1, then each interval (zk,rf zk+ltr), k — 0, 1, , r, contains exactly one
zero of pr+i(z). The mapping function which maps the exterior of
[—1, + 1] onto the exterior of the unit circle is given by

(14) w = F(z) = z + (z2 - 1) 1/2

where we take that branch of z + (z2 — 1)1/2 which becomes infinite at
z = oo. The locus C^ = {2; | w | = i2} will be an ellipse with foci at
+ 1 , - 1 and with semi axes (l/2)(i2 + R'1), (1/2)(R - R"1). Now, if
-R = 2 + 31/2 then CR is the ellipse with major axis 4 and minor axis
2 31/2. The distance of any point u outside or on CR from the zeros
of pr(z) (r = 1, 2, •) is greater than 1. Let % be such a point; then
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(15)
pr+i(u)
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— ZUr)(u — Z2,r) - (u — Zr,r)

(U - ZUr+1) - (U - Zr+Ur+1)
< 1

for suppose that the minimum distance of u from zktr+1 is attained at
ZkQ,r+U L β . ,

(16) - zkQtr+11 = M i n I u - > 1 .

If we replace zktr by 2A+1,r+1 when k ^ k0 and «A,r by 3A,r+1 when k < k0

in (15), then the numerator is increased because the zeros are separated.
Using (16) we obtain

(17)
pr+1(u) u - z,

g 1 .
Ίco,r+1 I

If the interior of C2+3i/2 is our domain E in Theorem 1, then it follows
from (17) that all the λ r satisfy 0 < λ r < 1 r = 0, 1, 2, and we
obtain the following:

THEOREM 2. Let {pr(z)} be a sequence of polynomials with leading
coefficient 1. // all the zeros of pr(z) (r = 0, 1, 2, •) lie in [— 1, + 1]
and the zeros of pr(z) and pr+1(z) separate each other, then all the
zeros of the polynomial

(18)

are in the ellipse

(19) —- = 1/4 (z = x + iy)
(R + Rr1)* (R

where R — max (2 + 31/2, p) and p is the (only) positive root of

I α01 + I Λi 11 + I α21 e + + I an_x \ tn~ι - \ a n\ tn = 0 .

In particular, if the sequence {pr(z)} in Theorem 2 is a sequence
of orthogonal polynomials then the zeros of pr(z) and pr+1(z) separate
each other and we have, for example, the following:

COROLLARY. If f(z) — J^:=o arpr(z) is a polynomial expounded in
Legendre polynomials pr(z), then all the zeros of f(z) are in the ellipse
as given in Theorem 2.

We will use Theorem 1 to prove a result, Theorem 3, which is
analogous to Pellet's theorem (Marden [2], Th. 28, 1). Keeping the
notation of Theorem 1, define:
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(20) d(

r

k) = M a x
zβB

then, as in (9)

(21) d{

r

k)

f o r zeG .
F{z) \k~r

With the aid of inequality (21) we prove:

THEOREM 3. Let E, G, B and {pr(z)} be as in Theorem 1. If for
a polynomial

(22) f(z) = 2 , arVr(z) . akΦ 0 for some k, 0 < k ^ n
0

the equation:

(23) H(t) = \ar\tr ak\tk
ar \ V = 0

root of

(24)

r=0 r=k+l

positive roots p and R1 1 < p < R, and if the only positive

d{

r

k) I α r I t
r Γ\

is greater or equal to 1, ίΛew /(#) Λαs exactly k zeros in or on Cp

and no zeros in the open ring Ext. Cp Π Int. CR.

Proof. The region Ext. Cp n Int. C^, by assumption (p > 1) is
contained in G, hence we will show that if ζ e G is a zero of (22)
then ζ 0 Ext. Cp n Int. CR. Because pr(ζ) Φ 0 and Σ?=o ^rPr(ζ) = 0 we
have:

(25) ^ Σ
r=0
rφk

Using inequality (21) we obtain

(26)

and hence

(27)

r=0
ar

dii

k-l

r=0

dy\ak\\F(Q\* + Σ d?>\ar\\F(ζ)'\ ̂  0 .
l

1 If not all the ar(r < k) are zero, then the equation (23), according to the
Descartes rule of sign, has two positive roots or has no positive roots at all.
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This last inequality tells us that t = | F(ζ) \< p or t = | F(ζ) \ > R,
because the function H(t) is negative only for p < t < R. We have
shown that ζ g Ct when p <t < R i.e., ζ £ Ext. Cp Π Int. CR.

To complete the proof of Theorem 3 we have to show that the
closed interior of Cp contains exactly k zeros. We will do it by using
a continuity argument. Define

(28) f(Z; S) = Σ *rPM + Σ S*rPr(*) Φ £ 8 g 1)
r=0 r=k+l

and the function

(29) Jϊ(ί; 8) = Σ # f c > I «r I * r - 4 f e ) I α* I «* + Σ # f c ) * I ar \ t r .
r=0 r=/c+l

t; s), if s — 1, has two positive roots p(ΐ) = p, R(ί) = R. If s tends
to 0, the two roots p(s) and R(s) of (29) start to move; p(s) decreases
and R(s) increases, and according to the first part of this theorem,
Ext. Cp(s) Π Int. CR{s) is always zero free, hence the number of zeros
N(s) in the closed interior Cp(s) (0 ^ s ^ 1) is a constant call it N.
If s-+0 then R(s)-> oo and ρ(s)-+p* ^ 1 by (24). But Theorem 1
applies to f(z; 0) and ϋ(£; 0). Consequently the number of zeros
in C* is exactly fc, i.e., N~k which completes the proof of
Theorem 3.

In the preceding theorems we obtained bounds for all the zeros
of (2) as function of all the coefficients ar. However, if we restrict
ourselves to p + 1 fixed coefficients and n — p arbitrary ones, are we
able to find some bounds for p zeros? In the case f(z) — Y£^arz

r

Van Vleck [5] proved that essentially there is only one case in which
bounds for p zeros are derivable, i.e., if the fixed coefficients are the
first p consecutive ones and any other one from the remaining set.
In other words, he showed that if one of the coefficients a0, al9 , αp_1

is arbitrary, then at least n — p + 1 zeros of Σ?=o arzr mBΎ be made
arbitrarily large in modulus. Perhaps it is interesting to note that
this is the case in which the polynomial (2) is expressed with the aid
of the sequence pn(z) in Theorem 1. Suppose ak for some k(0^k^p—1)
in f(z) = Σ ? arVr{z) is arbitrary. Let jSf > 1 be such that the distance
of C& from the origin is greater than a fixed large number 3. Choose
ak so large in modulus that the equation in (24) has a root greater
than 1 and also

ί O\JJ CLk CLk I J^£^ "^ f j C^r I ̂ r I ^•^'

rφk

But (30) implies t h a t t h e equation H(t) = 0 in (23) has a root R> Sf.

According to Theorem 3 n — k^n — p -\- 1 zeros zu zif , zn_k of
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f(z) are in Ext. CB. Thus | z3- \ > δ for j = 1, 2, , n - k, because
Ext. Ox c Ext. Ca.
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