DIAGONABILITY OF IDEMPOTENT MATRICES

Arthur Steger

Abstract

A ring \mathscr{R} (commutative with identity) with the property that every idempotent matrix over \mathscr{R} is diagonable (i.e., similar to a diagonal matrix) will be called an $I D$-ring. We show that, in an $I D$-ring \mathscr{R}, if the elements $a_{1}, a_{2}, \cdots, a_{n} \in \mathscr{R}$ generate the unit ideal then the vector $\left[a_{1}, a_{2}, \cdots, a_{n}\right.$] can be completed to an invertible matrix over \mathscr{R}. We establish a canonical form (unique with respect to similarity) for the idempotent matrices over an $I D$-ring. We prove that if \mathscr{N} is the ideal of nilpotents in \mathscr{R}_{8} then \mathscr{R} is an $I D$-ring if and only if $\mathscr{R} / \mathscr{N}$ is an $I D$-ring. The following are then shown to be $I D$-rings: elementary divisor rings, a restricted class of Hermite rings, π-regular rings, quasi-semi-local rings, polynomial rings in one variable over a principal ideal ring (zero divisors permitted), and polynomial rings in two variables over a π-regular ring with finitely many idempotents.

In this paper, \mathscr{R} will denote a commutative ring with identity, and \mathscr{R}_{n} will denote the set of $n \times n$ matrices over \mathscr{R}. If $A, B \in \mathscr{R}_{n}$, then $A \cong B$ will mean that A is similar to B. We remark that if \mathscr{R} is an $I D$-ring then every finitely generated projective R-module is the finite direct sum of cyclic modules, and that \mathscr{R} is a directly indecomposable $I D$-ring if and only if every finitely generated projective \mathscr{R}-module is free. Most of the literature on this subject has been concerned with showing that a given ring \mathscr{B} has the property that every finitely generated projective \mathscr{R}-module is free. This necessarily imposes the condition that \mathscr{R} be indecomposable. In this paper, no such restriction is made.

2. Properties of ID-rings.

Definition 1. \mathscr{R} is said to be an $I D$-ring provided that for every $A=A^{2} \in \mathscr{R}_{n}, n=1,2, \cdots$, there exists an invertible matrix $P \in \mathscr{R}_{n}$ such that $P A P^{-1}$ is a diagonal matrix.

Definition 2. The row vector $\left[a_{1}, a_{2}, \cdots, a_{n}\right]$ with components in \mathscr{R} is said to be a basal provided that it can be completed to an invertible matrix over \mathscr{R}.

Definition 3. The row vector X is said to be a characteristic vector of $A \in \mathscr{R}_{n}$ corresponding to $r \in \mathscr{R}$ provided (1) X is a basal vector and (2) $X A=r X$.

The following lemma, due to A. L. Foster, is an important tool in our development.

Foster's Lemma. \mathscr{R} is an ID-ring if and only if every idempotent matrix over \mathscr{R} has a characteristic vector.

From this lemma, which appears essentially as Theorem 10 in [2], one can quickly deduce that quasi-local rings and principal ideal domains are $I D$-rings. Then, known structure theorems suffice to show that principal ideal rings (see [7], p. 66), rings with descending chain condition, and Boolean rings are $I D$. These results will be extended in the next section.

Theorem 1. Let $A=A^{2} \in \mathscr{R}_{n}$. If there exist invertible matrices $P, Q \in \mathscr{R}_{n}$ such that $P A Q$ is a diagonal matrix then A is diagonable.

Proof. Let $P A Q=B=\operatorname{diag}\left(b_{1}, b_{2}, \cdots, b_{n}\right)$ and let $U=Q^{-1} P^{-1}=$ $\left(u_{i j}\right)$. Then $(B U)^{2}=B U$ and $B U B=B$. Hence $b_{i}=b_{i}^{2} u_{i i}, b_{i} u_{i i}$ is idempotent, and by Lemma 2.1 of [9] $b_{i} \sim b_{i} u_{i i}$ for each i. Thus, we may assume that Q has been adjusted so that $b_{i}^{2}=b_{i}, i=1,2, \cdots, n$. The equation $B U B=B$ now yields
(1) $b_{i} u_{i i}=b_{i}, i=1,2, \cdots, n$, and
(2) $b_{i} b_{j} u_{i j}=0, i \neq j, i, j=1,2, \cdots, n$.

From (1),

$$
B U=\left[\begin{array}{cccc}
b_{1} & b_{1} u_{12} & \cdots & b_{1} u_{1 n} \\
b_{2} u_{21} & b_{2} & \cdots & b_{2} u_{2 n} \\
\vdots & \vdots & & \vdots \\
b_{n} u_{n 1} & b_{n} u_{n 2} & \cdots & b_{n}
\end{array}\right]
$$

If $X_{k}=\left[b_{k} u_{k 1}, b_{k} u_{k 2}, \cdots, b_{k} u_{k k-1}, 1, b_{k} u_{k k+1}, \cdots, b_{k} u_{k n}\right]$ then $X_{k} B U=$ $b_{k} X_{k}, k=1,2, \cdots, n$. Now let

$$
C=\left[\begin{array}{c}
X_{1} \\
X_{2} \\
\vdots \\
X_{n}
\end{array}\right.
$$

From (2), it follows that $|C|=1$. Hence $(C P) A(C P)^{-1}=C B U C^{-1}=$ $\operatorname{diag}\left(b_{1}, b_{2}, \cdots, b_{n}\right)$.

Theorem 2. Let \mathscr{R} be an ID-ring. If $a_{1}, a_{2}, \cdots, a_{n} \in \mathscr{R}$ generate the unit ideal in \mathscr{R} then the vector $\left[a_{1}, a_{2}, \cdots, a_{n}\right]$ is basal.

Proof. Let $\sum_{i=1}^{n} x_{i} a_{i}=1$ and let $B=\left(x_{i} a_{j}\right) \in . \mathscr{R}_{n}$. Then $B^{2}=B$ and $\operatorname{tr} B=1$. Since \mathscr{R} is $I D, B \cong C=\operatorname{diag}\left(c_{1}, c_{2}, \cdots, c_{n}\right)$. If $X=$ $\left[c_{1}, c_{2}, \cdots, c_{n}\right]$ then $X C=X$ and, since $\sum_{i=1}^{n} c_{i}=1$,

$$
\left|\begin{array}{lllll}
c_{1} & c_{2} & c_{3} & \cdots & c_{n} \\
-1 & 1 & 0 & \cdots & 0 \\
-1 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
-1 & 0 & 0 & \cdots & 1
\end{array}\right|=1 .
$$

Hence, B has a characteristic vector $Y=\left[y_{1}, y_{2}, \cdots, y_{n}\right]$ corresponding to 1. From $Y B=Y$, we have $\sum_{i=1}^{n} y_{i} x_{i} a_{j}=y_{j}, j=1,2, \cdots, n$. Thus $\left(\sum_{i=1}^{n} y_{i} x_{i}\right)\left[a_{1}, a_{2}, \cdots, a_{n}\right]=\left[y_{1}, y_{2}, \cdots, y_{n}\right]$. Since Y is basal, so also is $\left[a_{1}, a_{2}, \cdots, a_{n}\right]$.

Theorem 3. If \mathscr{R} is an ID-ring then every invertible ideal in \mathscr{R} is principal.

Proof. Let \mathscr{K} be an invertible ideal in \mathscr{R}. Then there exist elements $a_{1}, a_{2}, \cdots, a_{n} \in \mathscr{\mathscr { C }}$ and elements $x_{1}, x_{2}, \cdots, x_{n}$ in the full ring of quotients of \mathscr{R} such that $x_{i} \mathscr{K} \subseteq \mathscr{R}, i=1,2, \cdots, n$, and $\sum_{i=1}^{n} x_{i} a_{i}=1$. It follows that $\mathscr{K}=\left(\alpha_{1}, a_{2}, \cdots, a_{n}\right)$. Let $B=\left(x_{i} a_{j}\right) \in \mathscr{R}_{n}$. Then, as in Theorem 2, there exists a basal vector $Y=\left[y_{1}, y_{2}, \cdots, y_{n}\right]$ such that $y_{j}=\sum_{i=1}^{n} y_{i} x_{i} a_{\jmath}, j=1,2, \cdots, n$. Now let $x_{i}=c_{2} / d, c_{i}, d \in \mathscr{R}$ and d not a zero divisor. If $p=\sum_{i=1}^{n} y_{i} c_{i}$ then $\left[p a_{1}, p a_{2}, \cdots, p a_{n}\right]=$ $\left[d y_{1}, d y_{2}, \cdots, d y_{n}\right]$. Since Y is basal, $p \mathscr{K}=(d)$. Hence there is an $a \in \mathscr{K}^{\mathcal{K}}$ such that $p a=d$. Thus, p is not a zero divisor. If $b \in \mathscr{K}^{\prime}$, then for some $r \in \mathscr{R}, p b=r d=p r a$. Hence, $b=r a$ and $\mathscr{K}=(a)$.

Recall that if \mathscr{S} is the set of idempotents of \mathscr{R} then $\langle\mathscr{S}, \cap$, $\left.\cup,{ }^{*}\right\rangle$ where $a \cap b=a b, a \cap b=a+b-a b$, and $a^{*}=1-a$, is a Boolean algebra (see [1]). It follows that if $a_{1}, a_{2}, \cdots, a_{n} \in \mathscr{S}$ and $a=\bigcup_{i=1}^{n} \boldsymbol{\alpha}_{1}$ then $a_{1}, a_{2}, \cdots, a_{n}$ generate the principal ideal (a) in \mathscr{R}.

Theorem 4. (Canonical Form) Let \mathscr{R} be an ID-ring and let $A=A^{2} \in \mathscr{R}_{n}$. Then $A \cong \operatorname{diag}\left(a_{1}, a_{2}, \cdots, a_{n}\right) \quad$ where $\quad a_{i} \mid a_{i+1}, i=$ $1,2, \cdots, \imath-1$. Moresver, if $A \cong \operatorname{diag}\left(b_{1}, b_{2}, \cdots, b_{n}\right)$ with $b_{i} \mid b_{i+1}$, $i=1,2, \cdots, n-1$, then $a_{i}=b_{i}, i=1,2, \cdots, n$.

Proof. Since \mathscr{R} is $I D$, let $A \cong C=\operatorname{diag}\left(c_{1}, c_{2}, \cdots, c_{n}\right)$ and let $a_{1}=\bigcup_{i=1}^{n} c_{i}$. Then there exist idempotents $x_{1}, x_{2}, \cdots, x_{n}$ such that $x_{\imath} a_{1}=c_{i}$ for each i and $\bigcup_{i=1}^{n} x_{i}=1$. Thus, $\left(x_{1}, x_{2}, \cdots, x_{n}\right)=1$ and, by Theorem 2, $X=\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ is basal. Since x_{i} is idempotent, $i=1,2, \cdots, n, X C=a_{1} X$ and, as in the proof of Foster's Lemma,
$A \cong \operatorname{diag}\left(a_{1}, d_{2}, \cdots, d_{n}\right) . \quad$ By induction, $A \cong \operatorname{diag}\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ where $a_{i} \mid a_{i+1}, i=2,3, \cdots, n-1$. Since a_{1} divides each entry of $C, a_{1} \mid a_{2}$. If also, $A \cong \operatorname{diag}\left(b_{1}, b_{2}, \cdots, b_{n}\right)$ with $b_{i} \mid b_{i+1}, i=1,2, \cdots, n-1$, then it is a consequence of Theorem 9.3 of [6] that $b_{i}=a_{i}$ for each i. This can also be seen directly as follows: since a_{r} divides each r-rowed minor of $\operatorname{diag}\left(a_{1}, a_{2}, \cdots, a_{n}\right)$, a_{r} divides $b_{r}=b_{i} b_{2} \cdots b_{r}$. Similarly, b_{r} divides a_{r} and, since both a_{r} and b_{r} are idempotent, $a_{r}=b_{r}, r=$ $1,2, \cdots, n$.

Corollary. If \mathscr{R} is $I D$ and $A=A^{2} \in \mathscr{R}_{n}$ then A has a characteristic vector corresponding to $|A|$.

Proof. We need merely observe that if $A \cong \operatorname{diag}\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ with $a_{i} \mid a_{i+1}, i=1,2, \cdots, n-1$, then $a_{n}=|A|$.

Theorem 5. Let \mathcal{F} be the Jacobson radical of \mathscr{R}, let \mathscr{N} be the ideal of nilpotents in \mathscr{R}, and let \mathscr{K} be an arbitrary ideal in \mathscr{R}. If $\mathscr{K} \cong \mathscr{J}$ and $\mathscr{R} / \mathscr{K}$ is an ID-ring then \mathscr{R} is an ID-ring. If $\mathscr{K} \subseteq \mathscr{N}$ then \mathscr{R} is an ID-ring if and only if $\mathscr{R} / \mathscr{K}$ is an ID-ring.

Proof. Let $\mathscr{K} \cong \mathscr{J}$ and assume that $\mathscr{R} / \mathscr{K}$ is $I D$. Let $A=$ $A^{2}=\left(A_{i j}\right) \in \mathscr{R}_{n}$ and $A^{*}=\left(a_{i j}+\mathscr{K}\right)$. Then $\left(A^{*}\right)^{2}=A^{*}$ and if $d=$ $|A|$ then $d+\mathscr{K}=\left|A^{*}\right|$. By the corollary to Theorem 4, we may let $X^{*}=\left[x_{1}+\mathscr{K}^{*}, x_{2}+\mathscr{K}^{\prime}, \cdots, x_{n}+\mathscr{K}^{\prime}\right]$ be a characteristic vector of A^{*} corresponding to $d+\mathscr{K}$. Then, if $X=\left[x_{1}, x_{2}, \cdots, x_{n}\right], X A=$ $d X+Y$ where the components of Y are in \mathscr{K}. Since $A^{2}=A$ and $\quad d^{2}=d, X A=d X A+Y A, \quad Y A=(1-d) X A=(1-d) Y, \quad$ and $(X+(2 d-1) Y) A=d X+d Y=d(X+(2 d-1) Y)$. Since $\mathscr{K} \subseteq \mathscr{J}$, $u+\mathscr{K}$ is a unit of $\mathscr{R} / \mathscr{K}$ if and only if u is a unit of \mathscr{R}. It follows, therefore, that since X^{*} is basal so also is $X+(2 d-1) Y$. By Foster's Lemma, \mathscr{R} is $I D$. Now let $\mathscr{K} \subseteq \mathscr{N}$. Since $\mathscr{N} \subseteq \mathscr{J}$, we need only prove that if \mathscr{R} is $I D$ then $\mathscr{R} \mid \mathscr{K}$ is $I D$. Hence, assume that \mathscr{R} is $I D$ and $A^{*}=\left(A^{*}\right)^{2}=\left(a_{i j}+\mathscr{K}\right) \in(\mathscr{R} / \mathscr{K})_{n}$. It will suffice to show that there exists an idempotent matrix $F=$ $\left(f_{i j}\right) \in \mathscr{R}_{n}$ such that $f_{i j}+\mathscr{\mathscr { K }}=a_{i j}+\mathscr{K}, i, j=1,2, \cdots, n$. If $A=$ $\left(a_{i j}\right)$ then $A^{2}=A+B$ where the components of B are in \mathscr{K}. Thus B is nilpotent. Let k be the least natural number such that $B^{k}=$ $Z=$ zero matrix. If $k=1$, there is nothing left to prove. Hence, assume that $k>1$ and let $C=A+(I-2 A) B$. Then the components of $C-A$ are in K and, since $A B=B A$,

$$
C^{2}=A^{2}+2 A(I-2 A) B+(I-2 A)^{2} B^{2}
$$

Therefore, $C^{2}-C=B+(I-2 A)^{2}\left(B^{2}-B\right)$. Since $(I-2 A)^{2}=I+4 B$,
$C^{2}=C+B^{2}(4 B-3 I)$. If we let $D=B^{2}(4 B-3 I)$, we have $C^{2}=$ $C+D$ where the components of D are in $\mathscr{\mathscr { C }}$ and, for some natural number $l<k, D^{l}=Z$. Repeating this process, we arrive in a finite number of steps at the required matrix F.

Corollary. Let \mathscr{N} be the ideal of nilpotents in \mathscr{R} and let $x_{1}, x_{2}, \cdots, x_{k}$ be indeterminates. Then $\mathscr{R}\left[x_{1}, x_{2}, \cdots, x_{k}\right]$ is ID if and only if $(\mathscr{R} \mid \mathscr{N})\left[x_{1}, x_{2}, \cdots, x_{k}\right]$ is $I D$.

Proof. The corollary follows by observing that $\mathscr{N}\left[x_{1}, x_{2}, \cdots, x_{k}\right]$ is the ideal of nilpotents in $\mathscr{R}\left[x_{1}, x_{2}, \cdots, x_{k}\right]$ and that

$$
\mathscr{R}\left[x_{1}, x_{2}, \cdots, x_{k}\right] / \mathscr{N}\left[x_{1}, x_{2}, \cdots, x_{k}\right] \approx(\mathscr{R} / \mathscr{N})\left[x_{1}, x_{2}, \cdots, x_{k}\right]
$$

3. Classes of ID-rings. As an immediate consequence of Theorem 1, we have:

Theorem 6. An elementary divisor ring is an ID-ring.
Theorem 7. Let \mathscr{R} be a Hermite ring with Jacobson radical \mathscr{J}. If \mathscr{R} has the property that $a b=0$ implies either $(a)=\left(a^{2}\right)$ or $a \in \mathscr{J}$ or $b \in \mathscr{J}$ then \mathscr{R} is an ID-ring.

Proof. Let $A=A^{2}=\left(a_{i j}\right) \in \mathscr{R}_{n}$ and let Q be an invertible matrix such that $Q A=B=\left(b_{i j}\right)$ is triangular; i.e., $b_{i j}=0$ if $i<j$. Let $Q^{-1}=\left(p_{i j}\right)$. Then $X=\left[b_{11} p_{11}, b_{11} p_{12}, \cdots, b_{11} p_{1 n}\right]$ is the first row of $Q A Q^{-1}$. If $\left(b_{11}\right)=\left(b_{11}^{2}\right)$ then there is an idempotent e such that $b_{11} \sim e$. By Theorem 3.9 of [6], there are vectors $X_{2}, X_{3}, \cdots, X_{n}$ such that
$\left|\begin{array}{c}X \\ X_{2} \\ \vdots \\ X_{n}\end{array}\right|=e$. If $C=\left[\begin{array}{c}X \\ e X_{1} \\ \vdots \\ e X_{2}\end{array}\right]$ then $|C+(1-e) I|=1$. Thus, the vector
$Y=\left[b_{11} p_{11}+1-e, b_{11} p_{12}, \cdots, b_{11} p_{1 n}\right]$ is basal and $Y\left(Q A Q^{-1}\right)=X=$ $e X=e Y$; i.e, Y is a characteristic vector of $Q A Q^{-1}$ corresponding to e. If $b_{11} \in \mathscr{F}$ then $1-b_{11} p_{11}$ is a unit of \mathscr{R} and

$$
\left[1-b_{11} p_{11},-b_{11} p_{12}, \cdots,-b_{11} p_{1 n}\right]
$$

is a characteristic vector of $Q A Q^{-1}$ corresponding to 0 . Suppose now that neither of these assumptions on b_{11} is true. From the equation, $B A=Q A^{2}=Q A=B$, we obtain $b_{11}\left(1-a_{11}\right)=0$. By the hypothesis on $\mathscr{R}, 1-a_{11} \in \mathscr{J}, a_{11}$ is a unit of \mathscr{R}, and $\left[a_{11}, a_{12}, \cdots, a_{1 n}\right]$ is a characteristic vector of A corresponding to 1 . In any event, A has a characteristic vector and Foster's Lemma completes the proof.

Theorem 8. A π-regular ring is an $I D$-ring.
Proof. Let \mathscr{R} be π-regular with Jacobson radical \mathscr{J}. Then $\mathscr{R} \mid \mathscr{J}$ is regular and, therefore an elementary divisor ring (see [3], p. 365). The conclusion follows from Theorems 5 and 6.

Theorem 9. A quasi-semi-local ring is an ID-ring.
Proof. Let \mathscr{R} be quasi-semi-local with Jacobson radical \mathscr{J}. Since, by definition, \mathscr{R} has only a finite number of maximal ideals, $\mathscr{R} \mid \mathscr{J}$ is a finite direct sum of fields. Theorem 5 completes the proof.

Theorem 10. Let \mathscr{R} be an ID-ring and let \mathscr{S} be a subring of $R[[x]]$ which contains \mathscr{R}. If \mathscr{S} has the property that $u \in \mathscr{S}$ and u is a unit of $\mathscr{R}[[x]]$ imply that u is a unit of \mathscr{S} then \mathscr{S} is an ID-ring.

Proof. Let $A=A^{2} \in \mathscr{S}_{n}$ and let A^{\prime} be the matrix in \mathscr{R}_{n} obtained from A by suppressing all positive powers of x. If $A^{\prime}=Z=$ zero matrix and $A \neq Z$, let k be the highest power of x which divides (in $R[[x]])$ each entry in A. Then we may write $A=x^{k} B$; and some entry in B is not divisible by x. Since A is idempotent $x^{k} B=x^{2 k} B^{2}$. Thus, $B=x^{k} B^{2}$ and, since $k>0$, we have arrived at a contradiction. Again, let $A=A^{2} \in \mathscr{S}_{n}$. Then $\left(A^{\prime}\right)^{2}=A^{\prime}$ and, since \mathscr{R} is $I D$, it follows from Theorem 4 that the entries of A^{\prime} generate in \mathscr{R} a principal ideal (e) where e is idempotent. Then $(1-e) A$ is idempotent and $((1-e) A)^{\prime}=Z$. Thus, $(1-e) A=Z$. Let P be an invertible matrix in \mathscr{E}_{n} such that $P A^{\prime} P^{-1}=\operatorname{diag}\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ where $a_{i} \mid a_{i+1}$, $i=1,2, \cdots, n-1$. Therefore, $a_{1}=e$ and $P A P^{-1}=B=\left(b_{i j}\right)$ with $b_{11}=e+r_{1} x+r_{2} x^{2}+\cdots$. Then, if $\quad Y=\left[1-e+b_{11}, b_{12}, \cdots, b_{1 n}\right]$, $(1-e) B=Z$ implies $Y B=e Y$. Since $1-e+b_{11}$ is a unit in $R[[x]]$, by the hypothesis on \mathscr{S}, Y is a characteristic vector corresponding to e. The theorem follows from Foster's lemma.

Theorem 10 shows for example that the domain of complex valued functions of a complex variable which are analytic at some point z_{0} in the complex plane is an $I D$-ring, or that the domain of real valued functions of a real variable analytic at some real number r_{0} is $I D$. It is also true that the domain of entire functions is $I D$. This has, however, nothing to with Theorem 10; but it is rather a consequence of Theorem 7 in conjunction with a theorem proved in [4] to the effect that in the domain of entire functions every finitely generated ideal is principal.

The problem of determining, given a ring \mathscr{R}, whether or not $\mathscr{E}[x]$ is $I D$ is a difficult one. An important result in this area is due to Seshadri who proved in [8] that if \mathscr{R} is a principal ideal domain then $\mathscr{R}[x]$ is $I D$. In particular, $\mathscr{K}[x, y]$, where \mathscr{K} is a field, is $\mathscr{J} D$. The character of $\mathscr{K}[x, y, z]$ is open. Horrocks showed ([5]), p. 718) that if \mathscr{R} is a regular local ring of dimension 2 with a field of coefficients then $\mathscr{R}[x]$ is $I D$. Chase, on the other hand, has constructed an example (unpublished) of a complete local domain \mathscr{R} such that $\mathscr{R}[x]$ is not $I D$. The ring in Chase's example has dimension 1 , is not a regular local ring, and in fact is not integrally closed.

Theorem 11. Let \mathscr{R} be a ring with \mathscr{N} its ideal of nilpotents. (1) If $\mathscr{R} \mid \mathscr{N}$ is a principal ideal ring then $\mathscr{R}[x]$ is ID; (2) if $\mathscr{R} / \mathscr{N}$ is a Boolean ring then $\mathscr{R}[x, y]$ is $I D$; and (3) if \mathscr{R} is a π-regular ring with finitely many idempotents then $\mathscr{R}[x, y]$ is $I D$.

Proof. The assertions of this theorem are a consequence of applying the Corollary to Theorem 5 to Seshadri's result. First, assume that $\mathscr{R} / \mathscr{N}$ is a principal ideal ring. It is a consequence of the result on page 66 of [7] that $\mathscr{R} / \mathscr{N}$ is a finite direct sum of principal ideal domains. Thus (1) has been established. Now assume that $\mathscr{R} / \mathscr{N}$ is a Boolean ring and let $A=A^{2} \in((\mathscr{R} / \mathscr{N})[x, y])_{n}$. Then the set of coefficients of the entries in A together with 1 generate a finite Boolean subring \mathscr{S} of $\mathscr{R} / \mathscr{N}$ whose unit element is the unit element of $\mathscr{R} / \mathscr{N}$. Since \mathscr{S} is the finite direct sum of fields, A is diagonable and (2) has been proved. Finally, assume that \mathscr{R} is a π-regular ring with finitely many idempotents. Then $\mathscr{R} / \mathscr{N}$ is the finite direct sum of fields. This completes the proof of (3).

References

1. A. L. Foster, The idempotents elements of a commutative ring form a Boolean algebr゙a, Duke Math. J. 12 (1945), 143-152.
2. -, Maximal idempotent sets in a ring with unit, Duke Math J. 13 (1946), 247-58.
3. L. Gilman and M. Henriksen, Some remarks about elementary divisor rings, Trans. Amer. Math. Soc. 82 (1956), 362-365.
4. O. Helmer, Divisibility properties of integral functions, Duke Math. J. 6 (1940), 345-356.
5. G. Horrocks, Projective modules over an extension of a local ring, London Math. Soc. (3) 14 (1964), 714-718.
6. I. Kaplansky, Elementary divisors and modules, Trans. Amer. Math. Soc. 66 (1949), 464-491.
7. G. Pollak, Über die Structur Kommutative Hauptideatringe, Acta. Sci. Math. 22 (1961), 62-74.
8. C. S. Seshadri, Triviality of vector bundles over affine space K^{2}, Proc. Nat. Acad. of Sci. USA 44 (1958), 456-458.
9. A. Steger, Elementary factorization in π-regular rings (to appear in the Canad. J. Math.)

Received July 8, 1965.
University of New Mexico

