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DIAGONABILITY OF IDEMPOTENT MATRICES

ARTHUR STEGER

A ring & (commutative with identity) with the property
that every idempotent matrix over έ% is diagonable (i.e.,
similar to a diagonal matrix) will be called an ID-ring. We
show that, in an ID-ring ^ , if the elements au α2, , an e έ%
generate the unit ideal then the vector [alf a2, , α»] can be
completed to an invertible matrix over &. We establish a
canonical form (unique with respect to similarity) for the
idempotent matrices over an ID-ring. We prove that if Λ^
is the ideal of nilpotents in & then & is an ID-ring if and
only if ^\^yί^ is an ID-ring. The following are then shown
to be ID-rings: elementary divisor rings, a restricted class of
Hermite rings, 7r-regular rings, quasi-semi-local rings, poly-
nomial rings in one variable over a principal ideal ring (zero
divisors permitted), and polynomial rings in two variables
over a π-regular ring with finitely many idempotents.

In this paper, & will denote a commutative ring with identity,
and &* will denote the set of ^x% matrices over ^ . If A, Be &n,
then A = B will mean that A is similar to B. We remark that if
& is an ID-ring then every finitely generated protective I?-module
is the finite direct sum of cyclic modules, and that & is a directly
indecomposable ID-ring if and only if every finitely generated
protective ^-module is free. Most of the literature on this subject
has been concerned with showing that a given ring & has the
property that every finitely generated projective ^-module is free.
This necessarily imposes the condition that & be indecomposable.
In this paper, no such restriction is made.

2* Properties of ID-rings*

DEFINITION 1. & is said to be an ID-ring provided that for
every A = A2 e &n, n = 1, 2, , there exists an invertible matrix
Pe&n such that PAP-1 is a diagonal matrix.

DEFINITION 2. The row vector [au α2, , αn] with components
in & is said to be a basal provided that it can be completed to an
invertible matrix over &.

DEFINITION 3. The row vector X is said to be a characteristic
vector of A e &n corresponding to r e J 5 provided (1) X is a basal
vector and (2) XA = r X
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The following lemma, due to A. L. Foster, is an important tool
in our development.

FOSTER'S LEMMA. & is an ID-ring if and only if every
ίdempotent matrix over & has a characteristic vector.

From this lemma, which appears essentially as Theorem 10 in
[2], one can quickly deduce that quasi-local rings and principal ideal
domains are ID-rings. Then, known structure theorems suffice to
show that principal ideal rings (see [7], p. 66), rings with descending
chain condition, and Boolean rings are ID. These results will be
extended in the next section.

THEOREM 1. Let A = A2 e &n. If there exist invertible matrices
P, Q e &n such that PAQ is a diagonal matrix then A is diagonable.

Proof. Let PAQ = B= diag (bl9 b2, , bn) and let U = Q-ψ-1 =
(utj). Then (BU)2 = BU and BUB = B. Hence bt = bfyii9 M « is
idempotent, and by Lemma 2.1 of [9] b{ ~ biUu for each i. Thus,
we may assume that Q has been adjusted so that b\ — bi? i — 1, 2, , n.
The equation BUB = B now yields

(1) biUu = bi9 i = 1, 2, , n, and
(2) bibjUi,- = 0, i Φ j , i, j = 1, 2, , n.

From (1),

BU =
b2u2ί b2

bnunl bnun2

b2u2n

If Xk = [bkukl, bkuk2, , bkukk_u 1, bkukk+u , bkukn] then XkBU =

bkXk, k = 1, 2, , n. Now let

c =
X,

iXnJ

From (2), it follows that | C \ = 1. Hence (CP)A(CPy1 = CBUC'1 -
diag(δ1, 62, . . . , bn).

THEOREM 2. Let & be an ID-ring. If au α2, , an e &
generate the unit ideal in & then the vector [au α2, , an] is basal.
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Proof. Let ΣL=i^A = 1 and let B = (x^) e . ^ . Then B2 = B
and trB=h Since JS? is ID, B = C = diag (cl9 c2, , cn). If X =
[ci, c2, , cnl then XC = X and, since Σ?=ic* = 1,

- 1 1 0 . . . 0

- 1 0 1 . . . 0

- 1 0 0 . . . 1

Hence, B has a characteristic vector F = [yl9 y2, « , 2/«] corresponding
to 1. From YB = F, we have Yi^1yixiaj = ?/,-, i = 1, 2, « «, w. Thus
(Σ?=il/i^i) K α2, , αΛ] = [^ y2, , #„]. Since F is basal, so also
is [al9 α2, -' ,α n ].

THEOREM 3. / /

is principal.
is an ID-ring then every invertible ideal in

Proof. Let 3ίΓ be an invertible ideal in <%. Then there exist
elements al9 a2, -, ane J>Γ and elements xl9 x»9 , xn in the full
ring of quotients of & such that xit3Γ <Sk & 9 i = 1, 2, « , n, and
ΣΓ=i^A = 1. It follows that J £ " = (α1? α2, , αn). Let i? = (a^α,) e &nm

Then, as in Theorem 2, there exists a basal vector F = [2/1, yi9 , 2/J
such that Vj = Σt^iXiα^, j = 1, 2, , w. Now let cĉ  — cjd9 ciy de &
and d not a zero divisor. If p = Σ?=i#ίcί then [pα ,̂ pα2, , p α j =
[%i, cfa/2, --,dyn]. Since F is basal, p j ^ " = (d). Hence there is an
a e SΓ such that pa = d. Thus, jt) is not a zero divisor. If 6 e 3Γ9

then for some r e ^ , pb — rd — pra. Hence, b — ra and J^" = (α).

Recall that if ^ is the set of idempotents of & then < ^ \ Π,
U, *> where α n 6 = ab, af)b = a + b — ab, and α* = 1 — α, is a
Boolean algebra (see [1]). It follows that if al9 α2, . . , α n e ^ and
α — U?=iΛi then al9 α2, , αΛ generate the principal ideal (a) in &.

THEOREM 4. (Canonical Form) Let & be an ID-ring and let
A — A2 G ,.^n. Γfeen A ^ diag (al9 α«, , αw) where ai \ ai+1, i =
1, 2, , n - 1. Moreover, if A = diag (δt, 6,, •••,&«) with 6* | 6i+1,
i = 1, 29 * - , w — 1, ^Aβ^ a,i = bi9 i = 19 29 - —, n .

Proof. Since ^ is /D, let A = C = diag (cx, c2, , cn) and let
αx = U?=i^ τ h e n there exist idempotents xx, x2, , α;Λ such that
xxax = c< for each i and Uί^Λ = !• Thus, (ίtΊ, a?2, -, a?n) = 1 and, by
Theorem 2, X = [xl9 x2, . . . , xn] is basal. Since x{ is idempotent,
i = 1, 2, , n, XC = α,X and, as in the proof of Foster's Lemma,
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A ~ diag (al9 d2, , dn). By induction, A = diag (au α2, , an) where
α, I αί+1, i = 2, 3, , n — 1. Since α2 divides each entry of C, αt | α2.
If also, A ^ diag (6^ δ2, , 6Λ) with b{ \ bi+1, i = 1, 2, , w — 1, then
it is a consequence of Theorem 9.3 of [6] that bι = ai for each i.
This can also be seen directly as follows: since ar divides each r-rowed
minor of d i a g ^ , α2, , αΛ), ar divides br = &A δr. Similarly, 6r

divides αr and, since both ar and δr are idempotent, ar — 6r, r =
1,2, . . . , n .

COROLLARY. 1/ ^ is ID cmd A — A2 e &n then A has a
characteristic vector corresponding to \A\.

Proof. We need merely observe that if A ~ diag (au α2, , an)
with a{ I ai+1, i — 1, 2, , n — 1, then αΛ = | A |.

THEOREM 5. Let ^ be the Jacobson radical of &, let ^Ϋ~ be
the ideal of nilpotents in &, and let 3>Γ be an arbitrary ideal in
&. If ^Γ ^ ^ and &\3ίΓ is an ID-ring then & is an ID-ring.
If 3f C ^ then & is an ID-ring if and only if &\3$Γ is an
ID-ring.

Proof. Let ^T g ^ and assume that &\3T is ID. Let A =
A: = {Ai3) G &p% and A* = (aί3 + 3T). Then (A*)2 = A* and if d =
\A\ then d + SZ~ — \ A* |. By the corollary to Theorem 4, we may
let X* = [χ± + jfΓ,- x2 + J%Γ, ...9χn + j%~\ be a characteristic vector
of A* corresponding to d + ^ . Then, if X = [^, x2, •••, a J , XA=
cίX + Y where the components of Y are in «_%̂. Since A2 — A
and d2 - d, XA = dXA + FA, ΓA = (1 - d)XA = (1 - d) Γ, and
(X+ (2d~ l)Y)A = dX+dY= d(X + (2cZ — 1)Γ). Since X g / ,
^ + ^ " is a unit of ^\S^ if and only if u is a unit of ^ . It
follows, therefore, that since X* is basal so also is X + (2ώ — 1) Y".
By Foster's Lemma, ^? is ID. Now let 3T £ ^ . Since ^r g ^ ,
we need only prove that if & is ID then &\5ίΓ is ID. Hence,
assume that & is ID and A* = (A*)2 = (aiβ + J T ) e (^/JΓ) , . It
will suffice to show that there exists an idempotent matrix F =
(/ϋ) e ^ such that fi3 + ^iΓ = αί5 + 3ίT, i, j = 1, 2, , n. If A =
{ai3) then A2 = A + B where the components of B are in 3ίΓ. Thus
B is nilpotent. Let k be the least natural number such that Bk ~
Z — zero matrix. If k = 1, there is nothing left to prove. Hence,
assume that k > 1 and let C = A + (I — 2A)J3. Then the components
of C — A are in IT and, since AB =

C2 = A2 + 2A(I - 2A)B + (I - 2A)2ΰ2 .

Therefore, C 2 - C = 5 + ( I - 2A)2(52 - 5). Since (I - 2Af = I +
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C2^C + B\iB - 31). If we let D = B2(AB - 31), we have C2 =
C + D where the components of D are in 3ίΓ and, for some natural
number I < k, Dι = Z. Repeating this process, we arrive in a finite
number of steps at the required matrix F.

COROLLARY. Let <yV* be the ideal of nίlpotents in & and let
xu x2i * , xk be indeterminates. Then έ%\xu x2, , xk] is ID if and
only if (&l^r)[%l9 x2, , xk] is ID.

Proof. The corollary follows by observing t h a t ^y~[xlf x2,
is the ideal of nilpotents in &[xu x2, •••, xk] and t h a t

ly x2, , xk] ™ (&l

3, Classes o£ ID-rings^ As an immediate consequence of
Theorem 1, we have:

THEOREM 6. An elementary divisor ring is an ID-ring.

THEOREM 7. Let & be a Hermite ring with Jaeobson radical
^". If & has the property that ab = 0 implies either (a) — (α2)
or ae^for be ^f then & is an ID-ring.

Proof. Let A — A2 — (ai3) e &n and let Q be an invertible matrix
such that QA = B ~ (bi3) is triangular; i.e., bi3- = 0 if i < j . Let
Q"1 = (Pij). Then X = [bnpn, bnp12y , bnpln] is the first row of
QAQ~L. If (6U) = (bn) then there is an idempotent e such t h a t bn ~ e.
By Theorem 3.9 of [6], there are vectors X2, Xs, •••, Xn such t h a t
I X ! i" X i

I . 2 ! = e. If C = I . : j then | C + (1 - β)/| = 1. Thus, the vector

Y= [δjiPn + 1 - e , δπί>i2, •• ,δnPi»] is basal and
βX = 6 F; i.e, Y is a characteristic vector of QAQ"1 corresponding to
e. If bn e J? then 1 — bnpn is a unit of & and

[1 - bnplu - bnp12, , - δn2?lwl

is a characteristic vector of QAQ~X corresponding to 0. Suppose now
that neither of these assumptions on bn is true. From the equation,
BA = QA2 = QA = B, we obtain 6n(l - an) = 0. By the hypothesis
on ^ ? , 1 — α n e ^ , α u is a unit of ^ , and [αn, α12, •• ,α l ί i] is a
characteristic vector of A corresponding to 1. In any event, A has
a characteristic vector and Foster's Lemma completes the proof.



540 ARTHUR STEGER

THEOREM 8. A π-regular ring is an ID-ring.

Proof. Let <% be π-regular with Jacobson radical ^ . Then
^ \ ^ is regular and, therefore an elementary divisor ring (see [3],
p. 365). The conclusion follows from Theorems 5 and 6.

THEOREM 9. A quasi-semi-local ring is an ID-ring.

Proof. Let & be quasi-semi-local with Jacobson radical ^ .
Since, by definition, & has only a finite number of maximal ideals,
&\^ is a finite direct sum of fields. Theorem 5 completes the
proof.

THEOREM 10. Let & he an ID-ring and let £f he a subring
of R[[x]] which contains &. If & has the property that u e y
and u is a unit of &[[x]] imply that u is a unit of 3^ then S/7

is an ID-ring.

Proof. Let A = A2 e £fn and let A be the matrix in &n obtained
from A by suppressing all positive powers of x. If A! = Z = zero
matrix and A Φ Z, let k be the highest power of x which divides (in
iϋ[[#]]) each entry in A. Then we may write A = xkB; and some
entry in B is not divisible by x. Since A is idempotent xkB = x2kB\
Thus, B — xkB2 and, since k > 0, we have arrived at a contradiction.
Again, let A = A2 e £Sn. Then {A')2 = A! and, since & is ID, it
follows from Theorem 4 that the entries of Ar generate in & a
principal ideal (e) where e is idempotent. Then (1 — e)A is idempotent
and ((1 - e)A)f = Z. Thus, (1 - e)A = Z. Let P be an invertible
matrix in &n such that PArP~ι = diag(αlf α2, •• ,α%) where a{ \ ai+ί,
i = 1, 2, . , n - 1. Therefore, αx = e and PAP- 1 = B = (6,,) with
bn = e + rxx + r2^

2 + . Then, if Y ^ [1 - e + bn, δ12, . , 6lw],
(1 — e)B — Z implies YB — eY. Since 1 — e + bn is a unit in iϋ[|>]],
by the hypothesis on S^, 7 is a characteristic vector corresponding
to e. The theorem follows from Foster's lemma.

Theorem 10 shows for example that the domain of complex valued
functions of a complex variable which are analytic at some point z0

in the complex plane is an TZλring, or that the domain of real valued
functions of a real variable analytic at some real number r0 is ID.
It is also true that the domain of entire functions is ID. This has,
however, nothing to with Theorem 10; but it is rather a consequence
of Theorem 7 in conjunction with a theorem proved in [4] to the
effect that in the domain of entire functions every finitely generated
ideal is principal.
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The problem of determining, given a ring ^? , whether or not
έ% [a] is ID is a difficult one. An important result in this area is due
to Seshadri who proved in [8] that if & is a principal ideal domain
then &[x] is ID. In particular, J%Γ[x, y], where J%Γ is a field, is J^D.
The character of 3ίΓ\x, y, z] is open. Horrocks showed ([5]), p. 718) that
if & is a regular local ring of dimension 2 with a field of coefficients
then &[x] is ID. Chase, on the other hand, has constructed an
example (unpublished) of a complete local domain & such that &[x\
is not ID. The ring in Chase's example has dimension 1, is not a
regular local ring, and in fact is not integrally closed.

THEOREM 11. Let & be a ring with <yy~ its ideal of nilpotents.
(1) If &\Λ" is a principal ideal ring then &[x] is ID; (2) if
^/^V* is a Boolean ring then &[x, y] is ID; and (3) if & is a
π-regular ring with finitely many idempotents then &[x, y] is ID.

Proof. The assertions of this theorem are a consequence of apply-
ing the Corollary to Theorem 5 to Seshadri's result. First, assume
that &/Λ" is a principal ideal ring. It is a consequence of the
result on page 66 of [7] that ^/^i^ is a finite direct sum of principal
ideal domains. Thus (1) has been established. Now assume that
&l^ is a Boolean ring and let A = A2 e ((&/^Γ)[x, y])n. Then the
set of coefficients of the entries in A together with 1 generate a
finite Boolean subring </> of ^j^i^ whose unit element is the unit
element of &\Λ^'. Since £f is the finite direct sum of fields, A is
diagonable and (2) has been proved. Finally, assume that & is a
π-regular ring with finitely many idempotents. Then &\^V~ is the
finite direct sum of fields. This completes the proof of (3).
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