DIAGONABILITY OF IDEMPOTENT MATRICES

ARTHUR STEGER

A ring \mathscr{R} (commutative with identity) with the property that every idempotent matrix over \mathscr{R} is diagonable (i.e., similar to a diagonal matrix) will be called an *ID*-ring. We show that, in an *ID*-ring \mathscr{R} , if the elements $a_1, a_2, \dots, a_n \in \mathscr{R}$ generate the unit ideal then the vector $[a_1, a_2, \dots, a_n]$ can be completed to an invertible matrix over \mathscr{R} . We establish a canonical form (unique with respect to similarity) for the idempotent matrices over an *ID*-ring. We prove that if \mathscr{N} is the ideal of nilpotents in \mathscr{R} then \mathscr{R} is an *ID*-ring if and only if \mathscr{R}/\mathscr{N} is an *ID*-ring. The following are then shown to be *ID*-rings: elementary divisor rings, a restricted class of Hermite rings, π -regular rings, quasi-semi-local rings, polynomial rings in one variable over a principal ideal ring (zero divisors permitted), and polynomial rings in two variables over a π -regular ring with finitely many idempotents.

In this paper, \mathscr{R} will denote a commutative ring with identity, and \mathscr{R}_n will denote the set of $n \times n$ matrices over \mathscr{R} . If $A, B \in \mathscr{R}_n$, then $A \cong B$ will mean that A is similar to B. We remark that if \mathscr{R} is an *ID*-ring then every finitely generated projective *R*-module is the finite direct sum of cyclic modules, and that \mathscr{R} is a directly indecomposable *ID*-ring if and only if every finitely generated projective \mathscr{R} -module is free. Most of the literature on this subject has been concerned with showing that a given ring \mathscr{R} has the property that every finitely generated projective \mathscr{R} -module is free. This necessarily imposes the condition that \mathscr{R} be indecomposable. In this paper, no such restriction is made.

2. Properties of ID-rings.

DEFINITION 1. \mathscr{R} is said to be an *ID*-ring provided that for every $A = A^2 \in \mathscr{R}_n$, $n = 1, 2, \cdots$, there exists an invertible matrix $P \in \mathscr{R}_n$ such that PAP^{-1} is a diagonal matrix.

DEFINITION 2. The row vector $[a_1, a_2, \dots, a_n]$ with components in \mathscr{R} is said to be a basal provided that it can be completed to an invertible matrix over \mathscr{R} .

DEFINITION 3. The row vector X is said to be a characteristic vector of $A \in \mathscr{R}_n$ corresponding to $r \in \mathscr{R}$ provided (1) X is a basal vector and (2) XA = rX.

The following lemma, due to A. L. Foster, is an important tool in our development.

FOSTER'S LEMMA. \mathscr{R} is an ID-ring if and only if every idempotent matrix over \mathscr{R} has a characteristic vector.

From this lemma, which appears essentially as Theorem 10 in [2], one can quickly deduce that quasi-local rings and principal ideal domains are *ID*-rings. Then, known structure theorems suffice to show that principal ideal rings (see [7], p. 66), rings with descending chain condition, and Boolean rings are *ID*. These results will be extended in the next section.

THEOREM 1. Let $A = A^2 \in \mathscr{R}_n$. If there exist invertible matrices $P, Q \in \mathscr{R}_n$ such that PAQ is a diagonal matrix then A is diagonable.

Proof. Let $PAQ = B = \text{diag}(b_1, b_2, \dots, b_n)$ and let $U = Q^{-1}P^{-1} = (u_{ij})$. Then $(BU)^2 = BU$ and BUB = B. Hence $b_i = b_i^2 u_{ii}$, $b_i u_{ii}$ is idempotent, and by Lemma 2.1 of [9] $b_i \sim b_i u_{ii}$ for each *i*. Thus, we may assume that Q has been adjusted so that $b_i^2 = b_i$, $i = 1, 2, \dots, n$. The equation BUB = B now yields

(1) $b_i u_{ii} = b_i$, $i = 1, 2, \dots, n$, and

(2) $b_i b_j u_{ij} = 0, \ i \neq j, i, j = 1, 2, \dots, n.$ From (1),

$$BU = egin{bmatrix} b_1 & b_1 u_{12} & \cdots & b_1 u_{1n} \ b_2 u_{21} & b_2 & \cdots & b_2 u_{2n} \ dots & dots & dots & dots \ dots \$$

If $X_k = [b_k u_{k1}, b_k u_{k2}, \dots, b_k u_{kk-1}, 1, b_k u_{kk+1}, \dots, b_k u_{kn}]$ then $X_k BU = b_k X_k, k = 1, 2, \dots, n$. Now let

$$C = egin{bmatrix} X_1 \ X_2 \ dots \ X_n \end{bmatrix}$$

From (2), it follows that |C| = 1. Hence $(CP)A(CP)^{-1} = CBUC^{-1} =$ diag (b_1, b_2, \dots, b_n) .

THEOREM 2. Let \mathscr{R} be an ID-ring. If $a_1, a_2, \dots, a_n \in \mathscr{R}$ generate the unit ideal in \mathscr{R} then the vector $[a_1, a_2, \dots, a_n]$ is basal. *Proof.* Let $\sum_{i=1}^{n} x_i a_i = 1$ and let $B = (x_i a_j) \in \mathscr{R}_n$. Then $B^2 = B$ and tr B = 1. Since \mathscr{R} is *ID*, $B \cong C = \text{diag}(c_1, c_2, \dots, c_n)$. If $X = [c_1, c_2, \dots, c_n]$ then XC = X and, since $\sum_{i=1}^{n} c_i = 1$,

$$egin{array}{ccccccc} c_1 & c_2 & c_3 \cdots c_n \ -1 & 1 & 0 \cdots 0 \ -1 & 0 & 1 \cdots 0 \ dots & dots & dots & dots \ dot$$

Hence, *B* has a characteristic vector $Y = [y_1, y_2, \dots, y_n]$ corresponding to 1. From YB = Y, we have $\sum_{i=1}^n y_i x_i a_j = y_j$, $j = 1, 2, \dots, n$. Thus $(\sum_{i=1}^n y_i x_i) [a_1, a_2, \dots, a_n] = [y_1, y_2, \dots, y_n]$. Since *Y* is basal, so also is $[a_1, a_2, \dots, a_n]$.

THEOREM 3. If \mathscr{R} is an ID-ring then every invertible ideal in \mathscr{R} is principal.

Proof. Let \mathscr{K} be an invertible ideal in \mathscr{R} . Then there exist elements $a_1, a_2, \dots, a_n \in \mathscr{K}$ and elements x_1, x_2, \dots, x_n in the full ring of quotients of \mathscr{R} such that $x_i \mathscr{K} \subseteq \mathscr{R}$, $i = 1, 2, \dots, n$, and $\sum_{i=1}^{n} x_i a_i = 1$. It follows that $\mathscr{K} = (a_1, a_2, \dots, a_n)$. Let $B = (x_i a_j) \in \mathscr{R}_n$. Then, as in Theorem 2, there exists a basal vector $Y = [y_1, y_2, \dots, y_n]$ such that $y_j = \sum_{i=1}^{n} y_i x_i a_j$, $j = 1, 2, \dots, n$. Now let $x_i = c_i/d$, c_i , $d \in \mathscr{R}$ and d not a zero divisor. If $p = \sum_{i=1}^{n} y_i c_i$ then $[pa_1, pa_2, \dots, pa_n] =$ $[dy_1, dy_2, \dots, dy_n]$. Since Y is basal, $p\mathscr{K} = (d)$. Hence there is an $a \in \mathscr{K}$ such that pa = d. Thus, p is not a zero divisor. If $b \in \mathscr{K}$, then for some $r \in \mathscr{R}$, pb = rd = pra. Hence, b = ra and $\mathscr{K} = (a)$.

Recall that if \mathscr{S} is the set of idempotents of \mathscr{R} then $\langle \mathscr{S}, \cap, \cup, * \rangle$ where $a \cap b = ab$, $a \cap b = a + b - ab$, and $a^* = 1 - a$, is a Boolean algebra (see [1]). It follows that if $a_1, a_2, \dots, a_n \in \mathscr{S}$ and $a = \bigcup_{i=1}^n a_i$ then a_1, a_2, \dots, a_n generate the principal ideal (a) in \mathscr{R} .

THEOREM 4. (Canonical Form) Let \mathscr{R} be an *ID*-ring and let $A = A^2 \in \mathscr{R}_n$. Then $A \cong \text{diag}(a_1, a_2, \dots, a_n)$ where $a_i | a_{i+1}, i = 1, 2, \dots, n-1$. Moreover, if $A \cong \text{diag}(b_1, b_2, \dots, b_n)$ with $b_i | b_{i+1}, i = 1, 2, \dots, n-1$, then $a_i = b_i, i = 1, 2, \dots, n$.

Proof. Since \mathscr{R} is *ID*, let $A \cong C = \text{diag}(c_1, c_2, \dots, c_n)$ and let $a_1 = \bigcup_{i=1}^n c_i$. Then there exist idempotents x_1, x_2, \dots, x_n such that $x_i a_1 = c_i$ for each i and $\bigcup_{i=1}^n x_i = 1$. Thus, $(x_1, x_2, \dots, x_n) = 1$ and, by Theorem 2, $X = [x_1, x_2, \dots, x_n]$ is basal. Since x_i is idempotent, $i = 1, 2, \dots, n, XC = a_1X$ and, as in the proof of Foster's Lemma,

 $A \cong \operatorname{diag}(a_1, d_2, \dots, d_n)$. By induction, $A \cong \operatorname{diag}(a_1, a_2, \dots, a_n)$ where $a_i \mid a_{i+1}, i = 2, 3, \dots, n-1$. Since a_1 divides each entry of $C, a_1 \mid a_2$. If also, $A \cong \operatorname{diag}(b_1, b_2, \dots, b_n)$ with $b_i \mid b_{i+1}, i = 1, 2, \dots, n-1$, then it is a consequence of Theorem 9.3 of [6] that $b_i = a_i$ for each i. This can also be seen directly as follows: since a_r divides each r-rowed minor of diag (a_1, a_2, \dots, a_n) , a_r divides $b_r = b_i b_2 \cdots b_r$. Similarly, b_r divides a_r and, since both a_r and b_r are idempotent, $a_r = b_r$, $r = 1, 2, \dots, n$.

COROLLARY. If \mathscr{R} is ID and $A = A^2 \in \mathscr{R}_n$ then A has a characteristic vector corresponding to |A|.

Proof. We need merely observe that if $A \cong \text{diag}(a_1, a_2, \dots, a_n)$ with $a_i \mid a_{i+1}, i = 1, 2, \dots, n-1$, then $a_n = \mid A \mid$.

THEOREM 5. Let \mathcal{J} be the Jacobson radical of \mathscr{R} , let \mathscr{N} be the ideal of nilpotents in \mathscr{R} , and let \mathscr{K} be an arbitrary ideal in \mathscr{R} . If $\mathscr{K} \subseteq \mathcal{J}$ and \mathscr{R}/\mathscr{K} is an ID-ring then \mathscr{R} is an ID-ring. If $\mathscr{K} \subseteq \mathscr{N}$ then \mathscr{R} is an ID-ring if and only if \mathscr{R}/\mathscr{K} is an ID-ring.

Proof. Let $\mathscr{K} \subseteq \mathscr{J}$ and assume that \mathscr{R}/\mathscr{K} is *ID*. Let A = $A^2 = (A_{ij}) \in \mathscr{R}_n$ and $A^* = (a_{ij} + \mathscr{K})$. Then $(A^*)^2 = A^*$ and if d =|A| then $d + \mathscr{K} = |A^*|$. By the corollary to Theorem 4, we may let $X^* = [x_1 + \mathscr{K}, x_2 + \mathscr{K}, \cdots, x_n + \mathscr{K}]$ be a characteristic vector of A^* corresponding to $d + \mathscr{K}$. Then, if $X = [x_1, x_2, \dots, x_n]$, XA =dX + Y where the components of Y are in \mathscr{K} . Since $A^2 = A$ and $d^2 = d$, XA = dXA + YA, YA = (1 - d)XA = (1 - d)Y, and (X + (2d - 1)Y)A = dX + dY = d(X + (2d - 1)Y). Since $\mathscr{K} \subseteq \mathscr{J}$, $u + \mathcal{K}$ is a unit of \mathcal{R}/\mathcal{K} if and only if u is a unit of \mathcal{R} . It follows, therefore, that since X^* is basal so also is X + (2d - 1)Y. By Foster's Lemma, \mathscr{R} is *ID*. Now let $\mathscr{K} \subseteq \mathscr{N}$. Since $\mathscr{N} \subseteq \mathscr{J}$, we need only prove that if \mathscr{R} is ID then \mathscr{R}/\mathscr{K} is ID. Hence, assume that \mathscr{R} is ID and $A^* = (A^*)^2 = (a_{ij}^* + \mathscr{K}) \in (\mathscr{R}/\mathscr{K})_n$. It will suffice to show that there exists an idempotent matrix F = $(f_{ij}) \in \mathscr{R}_n$ such that $f_{ij} + \mathscr{K} = a_{ij} + \mathscr{K}, i, j = 1, 2, \dots, n$. If A = (a_{ij}) then $A^2 = A + B$ where the components of B are in \mathcal{K} . Thus B is nilpotent. Let k be the least natural number such that $B^{k} =$ Z = zero matrix. If k = 1, there is nothing left to prove. Hence, assume that k > 1 and let C = A + (I - 2A)B. Then the components of C - A are in K and, since AB = BA,

$$C^{\,\mathrm{z}} = A^{\mathrm{z}} + 2A(I-2A)B + (I-2A)^{\mathrm{z}}B^{\mathrm{z}}$$
 .

Therefore, $C^2 - C = B + (I - 2A)^2(B^2 - B)$. Since $(I - 2A)^2 = I + 4B$,

 $C^2 = C + B^2(4B - 3I)$. If we let $D = B^2(4B - 3I)$, we have $C^2 = C + D$ where the components of D are in \mathscr{K} and, for some natural number l < k, $D^1 = Z$. Repeating this process, we arrive in a finite number of steps at the required matrix F.

COROLLARY. Let \mathscr{N} be the ideal of nilpotents in \mathscr{R} and let x_1, x_2, \dots, x_k be indeterminates. Then $\mathscr{R}[x_1, x_2, \dots, x_k]$ is ID if and only if $(\mathscr{R}/\mathscr{N})[x_1, x_2, \dots, x_k]$ is ID.

Proof. The corollary follows by observing that $\mathcal{N}[x_1, x_2, \dots, x_k]$ is the ideal of nilpotents in $\mathscr{R}[x_1, x_2, \dots, x_k]$ and that

$$\mathscr{R}[x_1, x_2, \cdots, x_k]/\mathscr{N}[x_1, x_2, \cdots, x_k] \approx (\mathscr{R}/\mathscr{N})[x_1, x_2, \cdots, x_k].$$

3. Classes of *ID-rings*. As an immediate consequence of Theorem 1, we have:

THEOREM 6. An elementary divisor ring is an ID-ring.

THEOREM 7. Let \mathscr{R} be a Hermite ring with Jacobson radical \mathscr{J} . If \mathscr{R} has the property that ab = 0 implies either $(a) = (a^{\circ})$ or $a \in \mathscr{J}$ or $b \in \mathscr{J}$ then \mathscr{R} is an ID-ring.

Proof. Let $A = A^2 = (a_{ij}) \in \mathscr{R}_n$ and let Q be an invertible matrix such that $QA = B = (b_{ij})$ is triangular; i.e., $b_{ij} = 0$ if i < j. Let $Q^{-1} = (p_{ij})$. Then $X = [b_{11}p_{11}, b_{11}p_{12}, \dots, b_{11}p_{1n}]$ is the first row of QAQ^{-1} . If $(b_{11}) = (b_{11}^2)$ then there is an idempotent e such that $b_{11} \sim e$. By Theorem 3.9 of [6], there are vectors X_2, X_3, \dots, X_n such that $\begin{vmatrix} X \\ X_2 \\ \vdots \\ X_n \end{vmatrix} = e$. If $C = \begin{vmatrix} X \\ eX_1 \\ \vdots \\ eX_n \end{vmatrix}$ then |C + (1 - e)I| = 1. Thus, the vector

 $egin{array}{c|c} \cdot & \cdot & \cdot \\ X_n & & eX_2 \end{array} \end{pmatrix}$ $Y = [b_{11}p_{11} + 1 - e, \ b_{11}p_{12}, \cdots, \ b_{11}p_{1n}]$ is basal and $Y(QAQ^{-1}) = X = eX = eY$; i.e, Y is a characteristic vector of QAQ^{-1} corresponding to

e. If $b_{11} \in \mathcal{J}$ then $1 - b_{11}p_{11}$ is a unit of \mathscr{R} and

$$[1 - b_{{}_{11}}p_{{}_{11}}, - b_{{}_{11}}p_{{}_{12}}, \cdots, - b_{{}_{11}}p_{{}_{1n}}]$$

is a characteristic vector of QAQ^{-1} corresponding to 0. Suppose now that neither of these assumptions on b_{11} is true. From the equation, $BA = QA^2 = QA = B$, we obtain $b_{11}(1 - a_{11}) = 0$. By the hypothesis on \mathscr{R} , $1 - a_{11} \in \mathscr{J}$, a_{11} is a unit of \mathscr{R} , and $[a_{11}, a_{12}, \dots, a_{1n}]$ is a characteristic vector of A corresponding to 1. In any event, A has a characteristic vector and Foster's Lemma completes the proof.

THEOREM 8. A π -regular ring is an ID-ring.

Proof. Let \mathscr{R} be π -regular with Jacobson radical \mathscr{J} . Then \mathscr{R}/\mathscr{J} is regular and, therefore an elementary divisor ring (see [3], p. 365). The conclusion follows from Theorems 5 and 6.

THEOREM 9. A quasi-semi-local ring is an ID-ring.

Proof. Let \mathscr{R} be quasi-semi-local with Jacobson radical \mathscr{J} . Since, by definition, \mathscr{R} has only a finite number of maximal ideals, $\mathscr{R}|\mathscr{J}$ is a finite direct sum of fields. Theorem 5 completes the proof.

THEOREM 10. Let \mathscr{R} be an ID-ring and let \mathscr{S} be a subring of R[[x]] which contains \mathscr{R} . If \mathscr{S} has the property that $u \in \mathscr{S}$ and u is a unit of $\mathscr{R}[[x]]$ imply that u is a unit of \mathscr{S} then \mathscr{S} is an ID-ring.

Proof. Let $A = A^2 \in \mathcal{S}_n$ and let A' be the matrix in \mathcal{R}_n obtained from A by suppressing all positive powers of x. If A' = Z = zeromatrix and $A \neq Z$, let k be the highest power of x which divides (in R[[x]]) each entry in A. Then we may write $A = x^k B$; and some entry in B is not divisible by x. Since A is idempotent $x^{k}B = x^{2k}B^{2}$. Thus, $B = x^k B^2$ and, since k > 0, we have arrived at a contradiction. Again, let $A = A^2 \in \mathscr{S}_n$. Then $(A')^2 = A'$ and, since \mathscr{R} is ID, it follows from Theorem 4 that the entries of A' generate in \mathcal{R} a principal ideal (e) where e is idempotent. Then (1 - e)A is idempotent and ((1-e)A)' = Z. Thus, (1-e)A = Z. Let P be an invertible matrix in \mathscr{R}_n such that $PA'P^{-1} = \operatorname{diag}(a_1, a_2, \cdots, a_n)$ where $a_i \mid a_{i+1}$, $i=1,\,2,\,\cdots,\,n-1.$ Therefore, $a_{\scriptscriptstyle 1}=e$ and $PAP^{\scriptscriptstyle -1}=B=(b_{ij})$ with $b_{11} = e + r_1 x + r_2 x^2 + \cdots$ Then, if $Y = [1 - e + b_{11}, b_{12}, \cdots, b_{1n}],$ (1-e)B = Z implies YB = eY. Since $1-e+b_{11}$ is a unit in R[[x]], by the hypothesis on \mathcal{S} , Y is a characteristic vector corresponding to e. The theorem follows from Foster's lemma.

Theorem 10 shows for example that the domain of complex valued functions of a complex variable which are analytic at some point z_0 in the complex plane is an *ID*-ring, or that the domain of real valued functions of a real variable analytic at some real number r_0 is *ID*. It is also true that the domain of entire functions is *ID*. This has, however, nothing to with Theorem 10; but it is rather a consequence of Theorem 7 in conjunction with a theorem proved in [4] to the effect that in the domain of entire functions every finitely generated ideal is principal. The problem of determining, given a ring \mathscr{R} , whether or not $\mathscr{R}[x]$ is *ID* is a difficult one. An important result in this area is due to Seshadri who proved in [8] that if \mathscr{R} is a principal ideal domain then $\mathscr{R}[x]$ is *ID*. In particular, $\mathscr{K}[x, y]$, where \mathscr{K} is a field, is \mathscr{FD} . The character of $\mathscr{K}[x, y, z]$ is open. Horrocks showed ([5]), p. 718) that if \mathscr{R} is a regular local ring of dimension 2 with a field of coefficients then $\mathscr{R}[x]$ is *ID*. Chase, on the other hand, has constructed an example (unpublished) of a complete local domain \mathscr{R} such that $\mathscr{R}[x]$ is not *ID*. The ring in Chase's example has dimension 1, is not a regular local ring, and in fact is not integrally closed.

THEOREM 11. Let \mathscr{R} be a ring with \mathscr{N} its ideal of nilpotents. (1) If \mathscr{R}/\mathscr{N} is a principal ideal ring then $\mathscr{R}[x]$ is ID; (2) if \mathscr{R}/\mathscr{N} is a Boolean ring then $\mathscr{R}[x, y]$ is ID; and (3) if \mathscr{R} is a π -regular ring with finitely many idempotents then $\mathscr{R}[x, y]$ is ID.

Proof. The assertions of this theorem are a consequence of applying the Corollary to Theorem 5 to Seshadri's result. First, assume that \mathscr{R}/\mathscr{N} is a principal ideal ring. It is a consequence of the result on page 66 of [7] that \mathscr{R}/\mathscr{N} is a finite direct sum of principal ideal domains. Thus (1) has been established. Now assume that \mathscr{R}/\mathscr{N} is a Boolean ring and let $A = A^2 \in ((\mathscr{R}/\mathscr{N})[x, y])_{\pi}$. Then the set of coefficients of the entries in A together with 1 generate a finite Boolean subring \mathscr{S} of \mathscr{R}/\mathscr{N} whose unit element is the unit element of \mathscr{R}/\mathscr{N} . Since \mathscr{S} is the finite direct sum of fields, A is diagonable and (2) has been proved. Finally, assume that \mathscr{R} is a π -regular ring with finitely many idempotents. Then \mathscr{R}/\mathscr{N} is the finite direct sum of fields. This completes the proof of (3).

References

^{1.} A. L. Foster, The idempotents elements of a commutative ring form a Boolean algebra, Duke Math. J. 12 (1945), 143-152.

^{2.} ____, Maximal idempotent sets in a ring with unit, Duke Math J. 13 (1946), 247-58.

^{3.} L. Gilman and M. Henriksen, Some remarks about elementary divisor rings, Trans. Amer. Math. Soc. 82 (1956), 362-365.

^{4.} O. Helmer, Divisibility properties of integral functions, Duke Math. J. 6 (1940), 345-356.

^{5.} G. Horrocks, Projective modules over an extension of a local ring, London Math. Soc. (3) 14 (1964), 714-718.

^{6.} I. Kaplansky, Elementary divisors and modules, Trans. Amer. Math. Soc. 66 (1949), 464-491.

^{7.} G. Pollak, Über die Structur Kommutative Hauptideatringe, Acta. Sci. Math. 22 (1961), 62-74.

8. C. S. Seshadri, Triviality of vector bundles over a fine space K^2 , Proc. Nat. Acad. of Sci. USA 44 (1958), 456-458.

9. A. Steger, Elementary factorization in π -regular rings (to appear in the Canad. J. Math.)

Received July 8, 1965.

UNIVERSITY OF NEW MEXICO

542