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TAME SUBSETS OF SPHERES IN £ 3

L. D. LOVELAND

Let F be a closed subset of a 2-sphere <S in J^3. We
define F to be tame if F lies on some tame 2-sphere in Es.
The sets F and S satisfy Property (*, F, S) provided Bing's
Side Approximation Theorem can be applied in such a way
that the approximating 2-sphere S' misses F (that is, S n S'
lies in a finite collection of disjoint small disks in S — F).
In this paper we show that Property (*, F, S) implies that F
is tame by establishing a conjecture made by Gillman. Other
properties which are equivalent to Property (*, F, S) are also
given.

If Fi, F2, , Fn is a finite collection of closed subsets of
S such that Property (*, Fif S) holds for each i, then Property
(*, ΣFif S) also holds. We use this result to show that if S
is locally tame modulo ^Fif then S is tame.

King's Side Approximation Theorem [8, Theorem 16] can be stated
as follows:

THEOREM 0. If S is a 2-sphere in E3, V is a component of
E3 — S, and e > 0, then there is a polyhedral 2-sphere S' containing
a finite collection Dίy D2i , Dn of disjoint disks each of diameter
less than ε, and there is a finite collection El9 E2, , Er of disjoint
disks on S, each of diameter less than ε, such that

1Φ there is a homeomorphism of S onto Sr that moves no point
us much as e,

2. S' - ΣtiA c F, and

If F is a closed subset of the 2-sphere S and 7 is a component
of E3 — S, we define Property (*, F, V) to mean that Theorem 0 can
be applied relative to S and V with the additional requirement that

4. (Σ^)nf=0,
Property (*, F, S) is satisfied if Property (*, F, V) holds for each
component V of E3 — S.

Gillman has already established that an arc A is tame if A lies
on a 2-sphere S and Property (*, A, S) is satisfied; however, he com-
ments that the "natural approach" to the problem requires a certain
conjecture which he states and does not prove [13, p. 467], Theorem
3 establishes this conjecture, and Theorem 6 shows that an arbitrary
closed set F on S is tame if Property (*, F, S) holds.

Hosay has announced two sufficient conditions for a closed subset
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F of a 2-sphere S to be tame [14]. In the statement of his results
he requires that the set of diameters of the components of F be
bounded below by a positive number. Under this restriction on the
size of the components of F we show that each of Hosay's sufficient
conditions is equivalent to Property (*, F, S); hence, Hosay's result
follows from Theorem 6. For these results, see §3.

If (*, F, S) is satisfied it follows from Theorem 1 that there is a
nondegenerate continuum M on S such that F a M and (*, M, S)
holds. Using Theorem 1, Theorem 8, and Hosay's result [14], we
see that (*, F, S) implies that F is tame. Working independently,
Ernest Milton also made this observation and established a theorem
similar to Theorem 1. His work has not yet been published. As
mentioned above, we do not depend on Hosay's result in this paper.

Theorems 17 and 18 are generalizations of Theorems 8.4 and 8.5
of [9]. We use these generalizations to show that the union F of a
finite collection of closed subsets Fu F2j , Fn of a 2-sphere S satisfies
(*, F, S) provided Property (*, Fi<s S) holds for each i (Theorem 21).
It follows from this result and Theorem 15 that S is tame if S is
locally tame modulo the union of a finite collection of closed subsets
F{ where (*, Fi9 S) holds for each i. We also use some of the results
of Sections 3, 4, and 5 in another paper [16] where we give some
conditions under which a 2-sphere is tame in E3.

We use the prefix in "ε-disk", "ε-set", etc., to imply that the
point set in question has diameter less than ε. However, the prefix
in "2-sphere" refers to the dimension of the sphere. It should be
clear in which context the prefix is to be taken. The distance function
in E3 is denoted by "p". The symbol "N(R, ε)", where ε > 0 and R
is a set, is synonymous with "ε-neighborhood of R" and is defined as
the set of all points that are within a distance ε of some point of R.
We indicate that a point set R has diameter less than ε by writing
"diam R < ε". If {Z)J is a countable sequence of disks such that lim
diam Z)ί = 0, we call {DJ a null sequence of disks. The closure of a
set R is denoted by C\(R). If S is a 2-sphere we denote the bounded
and unbounded components of E3 — S by Int S and Ext S, respectively.
If D is a disk we let Int D = D - Bd D, where Bd D is the boundary
of D.

Most of the definitions used here will be found in either [4] or
[10]; however, we will review some of them briefly. A 2-sphere S
in E3 is tame if there is a homeomorphism h of E3 onto itself such
that h(S) is polyhedral. The set Y is locally simply connected at a
point p of Cl(Y) if for each neighborhood N of p there is an open
set U containing p such that each map of a simple closed curve into
U Γ) Y can be shrunk to a point in N Γi Y. A 2-sphere S is said to
be tame from a complementary domain V of S if S + V is a
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3-manifold with boundary. The sphere S is locally tame at a point p
from V if p is in S and p lies in a subset U of S + V such that U
is open relative to S + F and Cl( U) is a topological cube.

2 • (*, F, S) implies that F is tame* We now give an alternative
definition of Property (*, F, S).

Property (*, F, S). Let F be a closed subset of a 2-sphere S in
E\ We say that Property (*, F, Ext S) holds if and only if for each
ε > 0 there is a polyhedral 2-sphere S' containing a finite collection of
disjoint ε-disks Du D2, , Dn and there is a finite collection of disjoint
ε-disks Eu E2, * 9Er on S such that

1Ψ there is a homeomorphism of S onto S' which moves no point
as much as ε,

2. S'-ΣAcExtS,
3. iS-Σ^cIntS', and

A similar definition is made for (*, F, IntS), and we define (*, ί7, S)
to mean that both (*, F, IntS) and (*, F, Ext S) hold.

The property defined by (*, F, S) in the introduction follows
directly from this definition. The converse is also true as can be seen
using the technique illustrated in [6, p. 585]. Since the two defini-
tions of Property (*, F, S) are equivalent we will use whichever de-
finition seems appropriate.

Although we show in this section that Property (*, F, S) implies
that F is tame, it is not true that S is locally tame at points of F
if Property (*, F, S) holds. To see this, let F be an arc on the 2-
sphere S described in [5], Then F is tame, so Property (*, F, S)
holds [13, Theorem 10], Yet S is not locally tame at any point.

THEOREM 1. If ε > 0 and F is a closed subset of a 2-sphere S
in Ez such that (*, F, S) is satisfied, then there is a continuum M
on S and a null sequence {A} of disjoint e-disks on S such that

2, (*, M, S) is satisfied, and
3.

Proof. Let εu ε2, ε3, be a sequence of positive numbers (subject
to restrictions to be mentioned later), and let Su S2, Sz, be a
sequence of polyhedral 2-spheres, where Si is obtained relative to ε̂
using Property (*, F, S), such that for each i

(1) Si is homeomorphically within βi of S,

(2) S contains a finite collection of disjoint εΓdisks Eiu Ei2, , Einii)
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such that ( x EiS )f] F=0,

( 3) Si contains a finite collection of disjoint εΓdisks Diu Di2, , Dir{i)

such that

(a) Si - Σί=ί A i c Int S and S - Σ £ ί #<; c Ext S< if ΐ is an odd
integer, and

(b) S i - Σ S A yCiExtS and S - χj«> EiS c Int S< if i is an
even integer,

We will impose restrictions on the ε/s to insure that S —
Σ<°=i Σ?=ί ^ i contains a continuum ikΓ which satisfies the requirements
of Theorem 1. First we insist that ε, < e/i for each ί. We need an
inductive procedure for defining the remaining restrictions to be imposed
on the ε/s. In this inductive procedure we also define an array of
ε-disks

G21G22 *' G^ίco * G2

where the kih row is a finite collection of disjoint ε-disks on S such
that Σt\] Eki c ΣiL*i} Int Gki; Gk+li c Gfcί for A = 1, 2, . . and 1 ^ %S
t(k) (that is, the columns are nested); and no Gkj intersects F. We
will also do the construction so that for each fixed row k, diam
Gkj < εf if t(f - 1 ) < j g ί(/) (where ί(0) = 0 and 1 g / ^ t(k)).

Assuming we have defined such an array of disks, we let A3 be
the intersection of the j t h column; that is Ad = Πt°°=i Gid (where we let
Gi:j — S = Int Gid j > t(i)). Since Aά is the intersection of a nested
collection of disks it follows that Aά is a continuum. In fact we have
defined a sequence of disjoint continua Au A>, A3, on S such that
for each i

(4) Ai does not separate S,

( 5) diam A{ < ε ,

( 6) lim diam Ai — 0 , and

(7) AiΠF=0.

In the inductive definition of the G^ 's we will insure that

(8) if Emf (where m is a positive integer and l g / ^ %(m)) lies in

Gmk (where k is a positive integer such that 1 ^ fe ^ ί(m)), then

# w / c Π Gίfc = Λ .
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Condition (8) implies that

(9) λ
i=\ 3=1

Assuming that all these conditions are satisfied, let us show how
the proof can be completed. From (6) the decomposition G of S whose
only nondegenerate elements are the At

9s is upper semicontinuous. It
follows from (4) and [18] that the decomposition space is a 2-sphere.
Since there are only a countable number of nondegenerate elements
in G, the image of these nondegenerate elements forms a countable
point set in the decomposition space. Also from (7) this countable set
fails to intersect the image of F in the decomposition space. Using
(5) and (6) we can find an infinite collection of disks in the decompo-
sition space such that the pre-images of these disks form a null
sequence of disjoint ε-disks Du D2, D3y on S, where no A intersects
F and ΣΓ=i A c %T=* Int Dim The continuum M which is required in
the conclusion of the statement of Theorem 1 is S — Xf=1 Int Dim

Obviously M contains F. Let a be a positive number, and let V
be a complementary domain of S. Since the ε^s converge to zero we
can find an odd integer x and an even integer y such that ex and ey

are each less than a. If V = Int S, then Sx will satisfy the conditions
of (*, M, IntS) relative to a. If V= E x t S , then Sy will satisfy the
conditions of (*, M, E x t S ) relative to a. For example, consider V —
IntS. Then Sx satisfies Conditions (1), (2), and (3a) as stated in the
first paragraph of this proof. All we need to show is that M does
not intersect (Σ?ixi Fxj). But this follows immediately from (9) and
the fact that the 4»'s lie in the union of the interiors of the D/s.
Hence we have (*, M, S).

Now let us show how the induction is carried out to define the
ε/s and the infinite array of G /s. We indicate the inductive procedure
by illustrating the first three steps.

Step 1. No further restriction is placed on eu so we let S1 be a
polyhedral 2-sphere satisfying (1), (2), and (3a). There is a finite
collection of disjoint εΓdisks Gn, G1%, , Gln{1) so that Eu c Int Gλi

and Gti Π F = 0. For convenience in our inductive procedure we let
n(ΐ) = t(ϊ), and we let Hu = EH for 1 ^ i S t(ΐ). We choose ε2 to be
less than ρ(Hu, S - Gu) for 1 ^ i ^ t(l). Then S2 is defined to satisfy
(1), (2), and (3b).

Step 2. Let K21, iζ>2, , Kmi) be the components of (Σi=lHu +
Σt=l E2i) such that Hu c K2i. From our choice of ε2, K2i c Int Gu.
Let H2i be Ku plus the sum of all components of S — K2i which lie
in GH, for 1 g i g ί(l). Then
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(10) Eu = Hu c K2i c Hu c Int Gu , for l ^ i g ί(l) .

For each i such that 1 S i ^ ί(l), we let G2i be a disk in Int Gu such
that G ϊ in(Σ5L 1ίίΓi< + Σ ? i ϊ ^ ) = fi2ί

c=IntG2ί. Let ί(2) be a non-
negative integer so that exactly t{2) — ί(l) of the E2i'& are not covered
by J1{1)GU. We define H2t{1)+1, — -,H2t{2) to be these uncovered E2i's.
Now expand each H2i(t(l) < i ^ ί(2)) slightly to obtain a collection of
disjoint ε2-disks G2t{1)+1, •••, G2t{2) covering Σί(αJ+iJΪ2ί such that no G2i

intersects F. The G2i'& are selected so that G2U G22y , G2t{2) is a
finite collection of disjoint ε-disks satisfying

(ii)

(12) iJ 2 ί c Int G2ί c G2ί c Int Gti , for 1 ^ i ^ ί(2) ,

(13) diam G2i < ε2 for ί(l) < ΐ ^ ί(2) ,

(14) (jZGlt) Π F = 0 , and

/ί(l) n(

(15) G 2 i n ( Σ ^ + I

It follows from (12) that

(16) diam G2i < εx if 1 ̂  i ^

Choose ε3 less than ^(ίΓ^, S - G2i) for 1 ̂  i ^ ί(2). Then S3 is
chosen relative to ε3 so that S3 satisfies (1), (2), and (3a).

Step 3. Let K3U K32, •••, Ku{2) be the components of ( Σ L2ίίf2ί +
Σ?=i E3i) such that H2i c iΓ3ί. From the definition of ε3, K3i c Int G2i.
Define Hu to be Ku plus the sum of the components of £ — K3i which
lie in Int G2ί (1 ^ i ^ ί(2)). Then

(17) H2ίdK3ic:H3ic:IntG2ί for 1 ̂  i ^ ί(2) .

For each i such that l ^ i g ί(2), we let G3ί be a disk in Int G2i such
that G3i n (ΣiSfl"« + Σ?=ί #*) = fl"si c Int G3i. Let ί(3) be a non-
negative integer so that there are exactly ί(3) — t(2) of the 2£3<'s which
are not covered by X L2ί G3i, and let H3t{2)+1, - --, H3ti3) be these
uncovered 2£3i's. Now we expand each Hu(t(2) < i ^ ί(3)) so slightly
that we obtain a collection of disjoint ε3-disks G3t{2)+1, , G3 ί ( 3 ) covering
Σi=ί(2)+ifiΓ3i such that no G3i intersects F and no G3ί(ί(2) < i g ί(3))
intersects a G3 i(l ^ j ^ t(2))m The collection G31, G32, , G3ί(3) can be
selected to form a disjoint set of ε-disks satisfying

/nil) Λ(2)

(18) (Σ^i*+Σ^« +
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(19) Hu c I n t GM C G3i c I n t G2ί for l g i g ί(3) ,

(20) diam Gu < ε3 , for ί(2) < i g ί(3) ,

/ί(3) \

(21) (ΣG3iJ Γ\ F= 0 , and

( ί(2) »(3) \

Σ # 2 i + Σ #«) = # 3 i for 1 £ i ^ t(β) .
From (13), (16), and (19) it follows that

(23) diam G3i < ε2 if t(l) < i ^ t(2) ,

and diam Gu < a, if 1 ^ i ^

Choose ε4 less than ρ(Hu, S - G3<) for 1 ^ i ^ ί(3), and let S4 be
defined to satisfy Conditions (1), (2), and (3b). Now we are ready to
proceed with Step 4 where ε5 is defined.

We assume that the inductive process is completed, so we have
defined an array of G^/s which satisfies the conditions required at the
beginning of the proof. Perhaps we should elaborate on the reason
that Condition (8) is satisfied. From the inductive procedure, as
illustrated by Conditions (10) and (17), we see that Hl3 c H2j c Hsj

for each j , provided we let Hiό = 0 if Hi3 is not yet defined. Also
from Conditions (12) and (19), carried through the inductive process,
we have ΣiT=iHi:j c ΠΓ=i Giό = A5. Suppose now that Emf lies in Gmk

(see (8)). Then the intersection of Gmk with (Σ'=WΓ1} H*-u + ΣΓiT) Emi)
is Hmk (see Condition (22)), so Emf lies in Hmk. Since ΣT^iH^αft^Gi^
Condition (8) holds.

The other conditions on the array of G^/s are easily verified, so
the proof is complete.

THEOREM 2. // U is an open subset of a 2-sphere S in E3 and
F is a closed set in U such that (*, F, S) is satisfied, then there is
a closed set Ff containing F such that

1. F' is a subset of £7,
2. (*, F', S) is satisfied, and
3. the set of diameters of the components of Fr has a positive

lower bound.

Proof. Let V be an open set whose closure lies in U such that
F lies in V. Choose a positive number ε less than ρ(F, Bd V). From
Theorem 1, F lies in a nondegenerate continuum M in S such that
(*, M, S) is satisfied. But M might not lie in U so we suppose that
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M intersects Bd U.
Let Q be the set of all components of M Π Cl( V) which intersect

F. For each element C in Q, diam C > ε since C intersects both F
and Bd V. Let F' be the sum of the elements of Q. Then F'
satisfies Conditions 1, 2, and 3 of Theorem 2. We need only show
that F' is closed.

Suppose F' is not closed and let p e Cl(F') - F'. Let L be the
component of M Π Cl( V) which contains p. Then L does not intersect
F. There is a sequence of points {pj converging to p such that each
Pi lies in some d in Q. It follows that lim sup C{ is a subcontinuum
U of L which contains p. Then L' fails to intersect F, so we let
N be an open set containing U which does not intersect F. For each
i, we can find a point gf in C* — N, since otherwise some C* would
lie in N and consequently N would intersect F. Then the set of g/s
has a limit point g in S — N. The point g must be in U by the
definition of U. Hence we have a contradiction. Then i*7' is closed.

The following lemma, which we state without proof, has been
used by Gillman in the proof of Theorem 2 in [13].

LEMMA 1. If S is a 2-sphere in Ez and ε > 0, then there is a
positive number δ so that if f is a homeomorphism of S which moves
no point more than δ, then any δ-subset of f(S) lies in a disk in
f(S) of diameter less than ε.

THEOREM 3. If U is an open subset of a 2-sphere R in i?3, F
is a closed subset of U such that (*, F, R) is satisfied, and S is a
2-sphere in Ez containing U, then (*, F, S) is also satisfied.

Proof. Let a be a positive number, and let V be a complementary
domain of S. We will construct a 2-sphere h(S) which satisfies the
conditions o:: (*, F, V) relative to a. The construction of h(S) is
similar to Bing's construction of h(S) in his proof of Theorem 1 in [4],
but the construction here could be considered simpler in the sense
that we do not parallel his third approximation (the one which is
obtained using Dehn's lemma). For convenience we assume V = Int S,
and Theorem 2 allows us to assume that the diameters of the com-
ponents of F are bounded below by a. If R = U the theorem is
trivial, so we assume this is not the case.

Let ε be a positive number such that each ε-subset of S lies in
a disk in S of diameter less than a. Then let εx be a positive number
satisfying the two conditions

(1) 3εx < p(F, R-U) , and

(2) 146, < e .
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(a) A special cellular decomposition of S. Let T be a decom-
position of S into disks so that

(3) the diameter of each disk of T is less than εlf

(4) the collection of disks of T is the sum of three finite subcollec-

tions Au A>, and Az such that no two elements of Ai intersect

(ί = 1, 2, 3), and

(5) if D and D' are two elements of T, then IntD and IntZ?' do

not intersect.

To see how to obtain such a decomposition, see [4, p. 298]. We
let Kx be the 1-skeleton of T; that is, Kx is the sum of the boundaries
of the disks of T.

(b) Pulling the disks of T partially into Int S. Let S be a
positive number so small that the distance between two disks of T
without a common point is more than δ. We also require that

( 6 ) δ<εlm

Using Lemma 1, we let ε2 be a positive number so that if / is a
homeomorphism of R which moves points no more than ε2, then each
ε2-subset of f(R) lies in a δ/6-disk on f(R). This, together with (6),
implies that

( 7 ) ε2 < δ/6 < εJ6 .

Let Sλ be a polyhedral 2-sphere and let hλ be a homeomorphism
of S onto Si such that

(8) hi moves no point as much as ε2,

( 9 ) Si contains a finite collection of disjoint ε2-disks Hu H2, ••, Hz

such that Sx - Σ I n t Hi ^ I n t s ,

(10) S contains a finite collection of disjoint ε2-disks such that S minus

these disks lies in Ext Sl9 and

(11) h^K,) aS^-ΣHi.

For details on how to obtain St and hu see [4, p. 298] and [8].

(c) The next approximation to elements of T. For each disk
Ώ in Γ, h^D) is a first approximation to Z>. Notice that h^D) Π S lies
in the sum of a finite collection of disjoint ε2-disks in h^IntD) (this
collection of disks is a subcollection of the disks H{ of (9)), and
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h(D) - Σ Int Hi lies in Int S. It follows from (7) and (8) that

(12) h^D) lies in a δ/6-neighborhood of D, for each disk DeT.

We will now construct a second approximation h2(D) to each disk
D in T. Let C be the set of all disks D in T such that ^(D)
intersects F. For each disk D in Γ — C, we choose a homeomorphism
Λ2 which agrees with h1 on D; that is, for J9 in T — C, the second
approximation to D is just h^D). We must show how h2(D) is obtained
if D is in C.

Let C" be the set of all disks Df m T such that there is a disk
D in C which intersects £>'. Then for D' in C" it follows that there
is a disk D in C such that h^D) and /^(JD') intersect. Notice that
C c C , and fc2 is already defined on the disks in C" — C.

Using (3), (7), and (8), it follows that

(13) diam hx{D) <ex + 2ε2 < ε, + δ/3 < 2εx , for each DeT.

Consider a disk Dr in C". There is a disk Z) in C such that /^(D) and
hj[Df) intersect. From (7) we see that 2(εx + δ/S) is less than 3ε1#

Since h^D) intersects F, we may use (13) to see that

(14) hx{Df) lies in a 3εΓneighborhood of F, for D' in C .

From (14) and (1) it follows that

(15) K{D') Π i ί c ί / , for each disk D' in C .

Then from (9) and (15) we have

(16) h^D') - Σ Int IT* c E* - i? , if D' is a disk in C .

Thus we may choose a positive number ε3 such that it is less than
Hi9 R) for each diskD' in C". We also require that

Let C[ be the set of all disks D in C such that h^D)—
J, c Exti? and let C ^ C n C[. Let C/ be C - C/, and let

C2 = C Π C2'. Notice that C = C, + C2, and C = C/ + C/. If D is
in C2, then hλ{D) intersects F and hγ{D) — J^ Int ^ lies in Int R. We
will first show how to obtain hz(D) for the disks in Cu

Using (*, F, ΈxtR), we let S' be a polyhedral 2-sphere and we
let hr be a homeomorphism of R onto £' such that

(18) h' moves no point as much as ε3,

(19) S' contains a finite collection of disjoint ε3-disks such that S'

minus these disks lies in Exti2,
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(20) R contains a finite col lect ion of d i s jo int ε3~disks Yl9 Y2, •••, Yb

such t h a t 22 - Σ I n t Γ< c I n t S', a n d

(21) (Σ **) n F = 0 .

Consider a disk 2) in C le From our choice of ε3, S' Π λiCEtycΣInt-H
We assume with no loss in generality that h^D) Π S' consists of a
finite number of disjoint simple closed curves, and we let Q be the
component of hL(D) — S' which contains Bd h^D). The simple closed
curves in C1(Q) Π S' will be denoted by Ju J2, •••, Jr. Since each Ji

lies in some Hs and diam H5 < ε2, it follows that diam J{ < ε2. Using
(17), (18), and the definition of ε2, we see that each Ji bounds a disk
Ft in S' such that

(22) diam F< < 8/6 .

From (18), the definition of ε3, and [15, p. 97] it follows that h^D)-
Σ I n t 2 2 ^ ExtS ' (this is true for all disks D in C/). We fill the
holes in Q with the F/s, moving each F{ slightly into E x t S ' as we
add it, to obtain a polyhedral disk h2{D) in E x t S ' [4, p. 297]. The
F/s are moved to slightly that the new F s also have diameter less
than δ/6. Henceforth we use the symbol F{ to denote the disk F{

after it has been moved into E x t S ' . Notice that h2(D) does not
intersect F from (20) and (21). The homeomorphism h2 is selected to
agree with hx on hί^h^D) — J^IntHi). Thus we have obtained Jι2(D)
for each disk D in Cu

For D in C2 we obtain h2(D) in just the same way as for the disks
in Ct. The only difference is that we use (*, F, Int 22) to obtain a
polyhedral 2-sphere S", homeomorphically within ε3 of 22, which "lies
almost in Int 22 and misses F" (that is, S" satisfies conditions similar
to (18), (19), (20), and (21)). For each disk D in C2, hx(D) will lie
"almost" in Int S", so we can "pull hJJD) and S" apart" just as we
"pulled hJJ)) and S' apart" in the preceding paragraph to obtain a
polyhedral disk h2(D) in I n t S " . Again h2 is selected to agree with
hι on D- Σ ^ ί l n t Jϊi). Thus h2 is defined for all disks D in T in
such a way that

(23) h2{D) Π F = 0 , for each disk D i n Γ .

Now consider a disk 2) in C. We will prove that the disks Fi9

which replaced disks in h^D) to form h2(D), do not intersect Si —
Σ Int Hi. First we observe from the construction of h2(D) and (22)
that

(24) h2{D) lies in a S/6-neighborhood of h£D), for each Be T.

From (12) and (24) we have
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(25) h2(D) lies in a δ/3-neighborhood of D for each De T.

If D' does not intersect D, it follows from (25) and the definition of
δ that h2(D) and h2(D') fail to intersect. Thus if D is in C, Fi is a
disk associated with A 2φ), and F.t intersects h2(Df), then D' is in C
Consider a disk Z>' in C". It follows from the definition of e3 and (18)
that Ft does not intersect h^D') — J ^ I n t i ^ . Recalling that hx = A2

on hϊ^h^D) - Σ l n t i ϊ ί ) , we see that no F,- intersects Sx - Σ l n t f l * .
Summarizing;

(26) If h2(D) and Int A2(D') intersect and D Φ D \ then £> and Df are

both in C". Furthermore if D Φ D\ then hz(D') cannot intersect

Int A2(D) in the set (h^D) - Σ # t ) .

(d) Untangling the h2(D)'s. This section is the same as §(e) in
[4, p. 298] provided we substitute our Λ2(D)'s for the A3(D)'s in that
paper. In order to be sure we have a 2-sphere h(S) after we use
Bing's untangling process, we must be sure that if D and D' are two
elements of T which do not intersect, then h2(D) and h2(D') also fail
to intersect. However this follows directly from (25) and the defini-
tion of 3.

Notice that from (26) we know the intersection of Jι2(D) with
IntA2(jD') does not intersect Sx - Σ, Int i ί ; (unless D is Dr). This
means that the untangling process does not involve S1 —
so we may choose h equal to h2 (and equal to hx) on hϊ1(S1 — ^
Thus h(S) contains the set Sx — ^IntHi, which is a 2-sphere minus
a finite collection of disjoint disks. To be sure that h(S) is homeo-
morphically within a of S, we insure that the disks which are added
t° ^ — X I n t St to form Λ(S) are of small diameter. We show in
§(e) that this has been accomplished. From (23) we see that the
untangling can be done so that h(S) (λ F ~ 0.

(e) The homeomorphism h moves no point as much as Oί.
From (3), (25), and (6) it follows that diam h2(D) < diam D + 2(3/3) < 2εu

for each disk D in T. Since h ~ h2 on each disk of Au we have

(27) diam h(D) < 2εx , if D is a disk in A, .

Let D' be a disk in A2. To form h(Dr) we added to h2{D') disjoint
disks near h(D) where D is in Alm Then from (27),

(28) diam h(D') < diam h2{D') + 2(2εx) < 6ex , if D ' e Λ .

Let JD" be a disk in Λ . In forming h(D")y we added to h2(D") disks
near A(D) for D in Λ and disks near h{Df) for Z)' in A2. Using (27)
and (28) we see that each disk added to Jι2(D") has diameter less than
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ββi. Since each added disk intersects h2{D"), it follows that

(29) h(D) lies in a 6εΓneighborhood of h2(D), for each D e Γ , and

(30) diamλ(D) < diam A2(D) + 2(6εx) < Uεu for each

From (29) and (25), each point of h(D) lies within a distance 6ε,. of a
point of hJJJ) which lies within a distance δ/S of a point of Zλ Hence
no point is moved more than 6εx + δ/S + diam D < 8εx < ε < a; using
(6), (3), and ε < a.

(f) Property (*, F, Int S) is satisfied. Since the homeomorphism
h was selected to agree with hx on the set S ~ X ^ Γ ^ I n t ί ί J , each
Bd JŜ  lies in some Λ(£) and bounds a disk A in that h(D)m From (30)
and (2), diam A < ε. The collection of disjoint ε-disks A , A , , A
on h(S) has the property that h(S) Π S c X Int A (see Condition (9)).
It follows from (9) and (11) that h(S) - Σ A c Int S.

We must exhibit a finite collection of disjoint α-disks on S so
that none of these disks intersect F and so that S Π h(S) lies in the
union of these disks. Since each component Z of h(S) Π S lies in some
A , diam Z < ε. From the definition of ε, Z lies in an α-disk on S.
Assuming 2a is less than diam S and recalling that a is a lower bound
on the diameters of the components of F, we see that F lies in the
large component of S — Z(Z Γi F= 0 because h(S) Π F = 0 ) , for
each component Z of A(S) Π S. Following the procedure in the proof
of Theorem 9 of [8], we obtain a finite collection of disjoint <2-disks
Gi, <?*, , Gt on S such that ( 2 ^ ) 0 ^ - 0 and A(S) n S c β G*).
Theτ3 (*, î , intS) is satisfied.

A similar procedure is used to establish (*, F, ExtS) . Then it
follows that (*, F, S) is satisfied.

REMARK. The proofs of the next three theorems are modifications
of Bing's proofs of Theorems 4, 5, and 1 in [6], Consequently we
do not carry out the details of the proofs, but merely outline the
differences between his proofs and ours.

For what is meant by "a 2-sphere S can be ε approximated from
I n t S (or ExtS)", see [6]. We define "H(A, B) < ε" to mean that A
and B are homeomorphically within ε of each other.

THEOREM 4. If ε > 0 and F is a closed subset of a 2-sphere S
in Es suck that (*, F, IntS) is satisfied, then there is a 2-sphere S'
such that

1. Sf is obtained from S by removing a finite collection of
disjoint ε-disks from S — F and replacing them with ε-disks
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and
2. Sr can be e approximated from IntS ' .

Proof. Because of the definition of (*, F, IntS), we are able to
accomplish in one paragraph all the essential elements in the first
three paragraphs of Bing's proof of Theorem 4 in [6]. We know
there is a polyhedral 2-sphere S" containing a finite collection of disjoint
ε/6-disks A, A, , Dn and there is a finite collection of disjoint ε/6-
disks Eu E2i , £7m on S such that S ' - X A c Int S, S -
Σ Ei c Ext S", no Ei intersects F, and H(S, S") < ε/6. In fact since
F is closed, we may assume with no loss in generality that S" — 2 Int A
lies in Int S and S - X Int E, c Ext S".

The proof is completed by following Bing's paragraphs 4, 5, 6,
and 7 in his proof of Theorem 4 in [6].

THEOREM 5. // ε > 0 and F is a closed subset of a 2-sphere S
in E3 such that (*, F, S) is satisfied, then there is a 2-sphere S'
such that

1. S' is obtained by removing a finite number of disjoint
ε-disks from S — F and replacing them with e-disks and

2. S' can be ε approximated from each of its complementary
domains.

Proof. The proof of Theorem 5 in [6] is followed here. We
apply Theorem 4 to obtain a 2-sphere S1 such that

(1) Sλ is obtained by removing a finite collection G of disjoint ε/4-

disks Eu E2i •••, Em from S — F and replacing them with ε/4-

disks and

(2) there is a 2-sphere S" in Int Sx such that H(SU S") < ε/4.

Let 3 be a positive number subject to four restrictions to be
mentioned later. Since S — X E{ is an open subset of S Π Sλ which
contains F, it follows from Theorem 3 that (*, F, SJ is satisfied.
This permits us to reapply Theorem 4, this time relative to Ext St and
d, to obtain a 2-sphere S' such that

(3) S' is obtained by removing a finite collection of disjoint S-disks

A, A, , Dn from Si — F and replacing them with δ-disks and

(4) there is a polyhedral 2-sphere S"' in ExtS' such that

H(S"', Sf) < δ.

With suitable restrictions on δ, S' is the required 2-sphere.
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Restrictions 1, 2, and 4 of the proof of Theorem 5 in [6] are also used
here. We change Restriction 3 somewhat.

Restriction 3. We must identify a collection H of disjoint ε-disks
on £ which are to be replaced as mentioned in the first requirement
in the conclusion of Theorem 5. For each i (1 ^ i g m), let E\ be
an ε/3-disk on S such that Έ, c Int E\, El Π F = 0 , and E[ Π E'5 = 0
if i Φ j . We choose δ so that δ < ρ(S - El, E,) for each ί. If we
let Hi be the component of S ί l ( Σ ^ + Σ A ) which contains #<
( H ί ^ m), it follows from our choice of δ that Hi lies in Int i£ for
each ί. Then we can find a simple closed curve J{ in JB7J — Σ A which
separates S - El from I/* in S. Let L; be the ε/3-disk in El which
is bounded by Jim Then H{ c L i # Thus we have defined a finite
collection of disjoint ε/3-disks Lu L2, « , L m such that for each i,
# , c IntL^ L< Π F = 0 , and (BdL,) Π ( Σ A ) = 0 .

Suppose the intersection with S of some disk A on SΊ is not
covered by Σ^< Since A fails to intersect any Lό, we know that
Di lies in the intersection of S and S lβ From Restriction 1 we know
that 8 < ε/4, so diam Dt < ε/4. The collection H is the set of all the
L'fi together with all the Dls which are not covered by the sum of
the X s.

THEOREM 6. If e > 0 and F is a closed subset of a 2-sphere S
in E% such that (*, F, S) is satisfied, then there is a continuum M
on S and a null sequence {D{} of disjoint ε-disks on S such that

lm Λf=S-ΣIntA,
2, (*, M, S) is satisfied,
2. FcJIf-XiJ. = S-ΣA, and
4. M lies on a tame 2-sphere in E3.

Proof It follows from Theorem 1 that there is a continuum M
and a sequence {DJ of disks satisfying Conditions 1, 2, and 3 in the
statement of Theorem 6. All we need to show is that there is a
tame 2-sphere in E* which contains M. This tame 2-sphere will be
constructed as the limit of a sequence of 2-spheres Su S2, •••, just as
in the proof of Theorem 1 of [61. In that proof Bing indicates three
restrictions to be placed on the S s to insure that

(1) lim Si is a 2-sphere,
(2) lim ̂  is tame, and
(3) lim S{ shares a Sierpinski curve X with S.
Our restrictions to insure that lim Si is a tame 2-sphere are the

same as those used by Bing in his Steps 1 and 2, provided we sub-
stitute our Theorem 5 wherever he uses his Theorem 5. In the fol-
lowing paragraph we show that limS^ shares M with S. Of course
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(3) follows because of the construction of M.
Since (*, M, S) is satisfied, we are able to use Condition 1 of

Theorem 5 to obtain a 2-sphere Sλ such that Sλ is constructed by
removing from S a closed set H1 which is the sum of a finite collec-
tion of disjoint s^disks in S — M. Then S — H1 is an open set in
S f) S1 which contains M. Applying Theorem 3 we see that (*, M, Sx)
is satisfied.

Again we apply Condition 1 of Theorem 5, this time relative to
Sl9 to obtain a 2-sphere S2 such that S2 is constructed by removing
from S1 a closed set H2 which is the sum of a finite collection of
disjoint ε2-disks in S, — M. Then S, — H, is an open subset of S, Π S2

which contains M. From Theorem 3 we have (*, M, S2) satisfied.
We continue this procedure so that MczSi for each i. This

insures us that I c lim S iβ

Remark. Gillman has shown that a 2-sphere S can be pierced
by a tame arc at a point p of S if and only if p lies in a tame arc
on S [13, Theorem 6]. It follows that S can be pierced by a tame
arc at each point of the continuum M identified in the conclusion of
Theorem 6. Repeated application of Theorem 6 will thus establish
that the set Y of points of S where S cannot be pierced by a tame
arc is a subset of a O-dimensional Gδ set. We state this result, without
proof, as Theorem 7. Bing has already proven that Y lies in a 0-
dimensional G8 set [7, Theorem 5.2], and Gillman has shown that Y
is a O-dimensional Fσ set [13, Theorem 11].

THEOREM 7. Each 2-sphere S in Ez contains a sequence {M%} of
tame continua such that for each ί

1. Mi c Mi+1,
2. (*, Mi9 S) holds,
3. S — X Mi is a O-dimensional Gδ set, and
4. S can be pierced by a tame arc at each point of 2, M{.

3* Conditions which are equivalent to (*, F, S). In the fol-
lowing definitions we are considering F to be a closed subset of a
2-sphere S in E*.

Property (A, F, S). For each ε > 0 there is a δ > 0 so that each
^-simple closed curve in E* — S is homotopic to a constant (can be
shrunk to a point) in an ε-subset of Ez — F.

Property (B, F, S). There exist infinite sequences {SJ and {SI}
of 2-spheres such that St and S are each homeomorphically within
1/i of S, F c Int Si9 and F c Ext SI
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Hosay has announced that if the diameters of the components of
F have a positive lower bound and either of Properties (A, F, S) or
(β, F, S) is satisfied, then F lies on a tame 2-sphere in E3[14]. It
is our purpose to show that if the diameters of the components of F
have a positive lower bound, then not only are Properties (A, F, S)
and (J3, F, S) equivalent, but each is equivalent to Property (*, F, S).
The proof follows the pattern (*, F, S) => (5, F, S) => (A, F, S) => (*, F, S).
For convenience, we state the following two lemmas but do not include
their proofs. A proof for Lemma 2 can be found in [10, Lemma 1],
and Bing has stated Lemma 3 in [4, p. 294],

LEMMA 2. If Du A, , Dn is a finite collection of disjoint
disks in E3 and f is a map of a disk K into E3 such that
/(Bd K) c Ez ~ Σ A, then there is a map g of K into E3 such
that

1. g\BdK = f\BdK,
2. g(K) c f(K) + Σ Int Di9 and
3. g{K) — 2 A is connected.

LEMMA 3. If F is a closed subset of a 2-sphere S in Es such
that for each point pe F and for each neighborhood N of p there is
an open set U such that pe U and each simple closed curve in
U — S can be shrunk to a point in N — F, then for each ε > 0 there
is a o > 0 such that each δ-simple closed curve in E3 — S can be
shrunk to a point in an ε-subset of E3 — F.

THEOREM 8. // F is a closed subset of a 2-sphere S in E3 such
that (*, F, S) is satisfied, then (B, F, S) is also satisfied.

Proof. For each positive integer i we must show the existence
of 2-spheres S< and S such that each is homeomorphically within 1/i
of S, FalntS^ and F a Ext SI Using the definition of (*, F, Ext S)
we obtain a polyhedral 2-sphere St containing a finite collection of
disjoint 1/ΐ-disks A, A, •••, A* and a finite collection of disjoint 1/i-
disks Eu E2, , Er on S such that S and Si are homeomorphically
within 1/ΐ, St - Σ A c: Ext S, S - Σ EJ Kes in Int Sif and
( Σ ^ i ) Π i^= 0 . It follows that î 7 lies in Int S,.

The 2-sphere S is obtained in the same manner using the defini-
tion of (*,F, IntS).

THEOREM 9. If F is a closed subset of a 2-sphere S in E3 such
that (B, F, S) is satisfied, then (A, F, S) is also satisfied.

Proof. All that we need to show is that for each pe F and for
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each neighborhood N of p there is a neighborhood U of p such that
each simple closed curve in U — S is homotopic to a constant in
N — F. The uniform condition in the definition of (A, F, S) then
follows from Lemma 3.

Let p be a point of F, and let N be a neighborhood of p such
that there are points of S not in N. Let K be a disk in ΛΓ Γi S such
that p is in Int if, and let U be a neighborhood of p such that
Cl(ί/) Π S c Int if, Bd Z7 is a tame 2-sphere, and C1(Z7) c N. Let J
be a simple closed curve in U — S. Then J is homotopic to a con-
stant in U, so we let / be a map of K into U such that / restricted
to Bd K is a homeomorphism onto J. For convenience we assume
that / is in Ext S.

Choose a positive number δ so that
(1) δ<p(J,S),
(2) δ<ρ(S-K, U), and
(3) δ < p(BdN, K).

Using (B, ί7, S), we let S' be a 2-sphere which is homeomorphical-
ly within δ of S and such that F c Int S\ Let A be a homeomorphism
of S onto S' such that

(4) h moves no point as much as δ.

Suppose that S' intersects U in S' — h{K). Then there is a point
a? in S — K such that A(ίc) is in U. This means that p(x, h(x)) ^
p(S — K, U) ̂  δ, using (2). Since this contradicts (4) we have

(5) Uϊ\S'c:h(K).
In a similar manner, using (3) and (4), it follows that
(6) k(K)czN.

Then from (1), (4) and [15, p. 97], we have
(7) J c E x t S ' .

Condition (7) allows us to use Lemma 2 to obtain a map g of K
into JB3 such that

(8) g\BdK = f\BdK,
( 9) g(K) c f(K) + Int A(JKΓ), and
(10) g(K) - A(iΓ) is connected.

Suppose g(K) is not a subset of S" + Ext S\ Then the connected
set g(K) — A(ΐΓ) intersects both complementary domains of Sf and
consequently intersects S'. But from (5), (9), and the fact that
f(K)cz U, we see that this is impossible. Hence g(K) lies in S' + ExtS',
which means that g(K) Π F= 0. It follows directly from (6) and
(9) that g(K) c N. Hence g(K) a N — F, and we have established
Theorem 9.

THEOREM 10. If F is a closed subset of a 2-sphere S in Ez such
that Property {A, F, S) is satisfied and the diameters of the com-
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ponents of F have a positive lower bound, then (*, F, S) is satisfied.

Proof. The proof here is almost identical to Bing's proof that a
2-sphere in Ez is tame if its complement is 1-ULC [4, Theorem 1].
Bing uses the 1-ULC condition to construct a 2-sphere h(S) which
lies m Int S and is homeomorphically close to S. Property (A, F, S)
permits us to use the same type construction to obtain 2-sphere h(S)
which satisfies all the requirements of Property (*, F, S), although
h(S) need not lie in Int S. Bing has broken his proof into six sections-
a through e. We indicate how each of these sections can be changed
to obtain a proof of Theorem 10.

Let a > 0 and let ε be a positive number so small that each ε-
subset of S lies in an α'-disk on S. With no loss in generality we
assume that a is less than the diameter of each component of F. We
choose a positive number ε1 so that 14εx is less than ε.

We will show that the conditions of Property (*, F, I n t S ) are
satisfied relative to the positive number a. We follow exactly the
same procedure that Bing followed in Sections a, b, and c where he
obtained a special cellular decomposition and applied the Side Appro-
ximation Theorem.

d. Third approximation to D. It is here that the major change
is made. (Notice that " B d D " should be changed to "&2(Bd D)" in the
first paragraph of §d of Bing's paper). Everywhere Bing uses
" I n t S " in his §d we substitute "E3 - F". The remainder of his §d
is followed here except we allow the open set U, which contains the
singular points of g(h2(D)), to intersect S — F, but we insist that
F n U — 0 . This is possible since each Bd E\ is shrunk to a point
missing F.

e. The fourth approximation to D. Bing's untangling procedure
can be done so that no h(D) intersects F since each component of
hs(S) Π S lies in U.

f. Epsilontics. In the paragraph where Bing defines ε4 we replace
the second occurence of "E3 — S " with "E3 - F", using {A, F, S) in
place of 1-ULC. The remainder of Bing's § f is followed here, but
we must add a few comments to complete the proof.

Since d2 < p(S, hJJD) — Σ # » ) , we know that S', as identified by
Bing, intersects hx(D) only in 2 , I n t ^ . Then h2 may be selected to
agree with h, on each D — J^hr^IntEt). Each point of Bd£7; (of §d)
is within ε4 of S and Bd E is shrunk to a point in a <52/2-subset of
E3 — F. This means that each Bd E( is shrunk to a point in a set
which is within ε4 + <J2/2 of S. Since ε4 < 52/2, then g{h(D)) has its
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singular points within δ2 of S. It follows from the definition of 82

that hz may be chosen to agree with h2 on D — 2, hϊ^lτΛ E{). Since
hι{D) — 2 Ei is not involved in the untangling process described in
§e, h may also be chosen to agree with hx on D — ^ / ^ ( I n t i ^ ) . It
follows that each simple closed curve Bd E{ lies in h(D) and bounds
a disk Ri in h{D). Bing has shown that h{D) lies in a 6εΓneighborhood
of A3(.D) and that diam hs(D) is less than 2εlβ Then

diam i2Λ < diam Λ(D) < 2εL + 2(6ε:) = 14εx ,

which is less than ε. Each h(D) has an associated collection of -R/s,
so we collect all these J?/s together to form a finite collection of dis-
joint ε-disks Gu G2, , Gk on h(S) so that h(S) Π S c ^ I n t G;.
Furthermore, since h{D) — X Int G{ = Λ^D) — X Int ̂  which lies in
IntS, it follows that h(S) - Σ ^ c IntS.

To show that h(S) satisfies the conditions of (*, F, IntS) relative
to a we must exhibit a finite collection of disjoint α-disks Hu H2, ,
Hr on S such that no Hi intersects F and S Π h(S) c X ^ . Since
each component Z of Λ(S) Π S lies in an ε-disk Gi9 it follows that
diamZ<ε. Then Z lies in an #-disk on S(see the definition of ε).
Since a is a lower bound on the diameters of the components of F
and no Z intersects F, we may use the procedures in the proof of
Theorem 9 of [8] to obtain disjoint α-disks {Hi} such that H{ Π F =
0 and h(S) Π S c Σ ^ ,

Thus Property (*, F, IntS) is satisfied. The proof that (*, F,
ExtS) holds is similar, so Property (*, F, S) is satisfied.

REMARK. The requirement that F be such that the diameters of
its components are bounded below by a positive number cannot be
removed from the hypothesis of Theorem 10. For let S be the wild
2-sphere described by Fox and Artin [13] where the set of wild points
of S consists of a single point p. It is easy to see that Property
(5, {p}, S) is satisfied and that Property (*, {p}, S) does not hold.
However the following question apparently has not been answered.
If F is a closed subset of a 2~sphere S in E\ Property {B, F, S) is
satisfied, and F has no degenerate components, then will Property
(*, F, S) hold? Of course a similar question could be asked where
Property {A, F, S) replaces Property (JS, F, S).

We also note that if F is a closed subset of a 2-sphere S such
that Property {A, F, S) is satisfied, then F need not lie in a non-
degenerate subcontinuum M of S such that (A, M, S) holds. To see
this we use the same example as in the previous paragraph and let
F= {p}. If a nondegenerate continuum M exists such that pe MaS
and (A, M, S) holds, then (*, M, S) also holds, but this is impossible.
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If Property (A, F, S) holds for a closed subset F of S where F has
no degenerate components, then does F lie in a nondegenerate conti-
nuum M in S such that (A, M, S) holds?

The next two theorems are useful in the proofs of some theorems
in [16], but they also lead to some interesting results in this paper.
We define a simple closed curve in Ez to be unknotted if it is the
boundary of a tame disk in E\

THEOREM 11. Suppose p is a point of a 2-sphere S in E3, V is
a complementary domain of S, N is a neighborhood of p, and K is
a disk. Then there is an open set U containing p such that for
each closed subset F of S satisfying (*, F, V) and for each map f
of Bά K into U Γ) V there is a finite collection of disjoint disks
Hu H2, , Ht in (N — F) n S and there is a map g of K into N
such that g\BdK = f and g{K) Π S c ^ I n t H t .

Proof. For convenience in notation we will assume K is a disk on
S such that p e Int K c K c N. Let K' be a disk on S such that
pelntK' and K' c Int K, and let U be a neighborhood of p such
that Cl(!7) n S c Int K', C\(U) c N, and Bd U is a tame 2-sphere. For
convenience we assume V = Ext S. Let / be a map of Bd K into
Uf] V. Since Bd U is tame we can extend / to map all of K into U.

Choose a positive number δ so that

(1) δ<p(f<pdK),S),
(2) δ<p(S-K,K'),
(3) d <p(BdN, K), and
(4) δ<p(S-K', U).
Now let F be a closed subset of S satisfying (*, F, Ext S).
Using the definition of (*, F, Ext S), we let Sr be a polyhedral

2-sphere containing a finite collection of disjoint δ-disks Dl9 D2, , Dm

and let Elf E2, , Er be a finite collection of disjoint δ-disks on S
such that

( 5) There is a homeomorphism h of S onto S' such that A moves
no point as much as S,

(6) S-ΣInt^dntS',
(7) S'-ΣAciExtS, and

(8) fn ( Σ ^ ) = 0.
Condition (6) does not come directly from the definition of (*, F, S);
however, from (*, F, S) we have S — χ ^ < c Int S'. Then we can
find a finite collection of disjoint <5-disks E[,E[, •••,£// on S such
that S - Σ ! n t El cz Int S' and no £7/ intersects F. Thus we may
assume without loss in generality that Condition (6) holds.

I t follows from (4) and (5) that
(9) UΓ\S'ah{K'),
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from (3) and (5) that
(10) h(Kf)aN,

and from (2) and (5) that
(11) h(K') n S c if.
From (1) and (5) we have f(BάK) c E* - h(K'). This allows us

to use Lemma 2 to obtain a map g of K into Ez such that
(12) ^|BdiΓ = /|Bd^,
(13) g(K) c f(K) + Int Λ(JSΓ'), and
(14) g(K) - h(K') is connected.
It follows from (13) and (10) that g(K) c N. Let Hu H2, -- ,Ht

be the subcollection of the JE7/s such that each H{ intersects h(Kf) and
h(K') n SdΣiHi. Since each iί* is a δ-disk that intersects h(K'), it
follows from (11), (3), and (8) that each Hi lies in (N - F) Π S.

Now we will show that g(K) f) S a J^lnt Hi9 It follows from
(12), (1), (5), and [15, p. 97] that g(BdK) lies in E x t S ' . Suppose
g(K) intersects S — ̂  Int .H*. Then #(if) intersects both components
of E3 — S', by (6); hence, g(K) — A(iίr) intersects each component of
E*-S'. From (14), g(K) - Λ(1Γ) intersects S'. Then from (13) and
the fact that f{K) lies in U, it follows that g(K) — h{Kr) intersects
S' in U. But this contradicts (9). Then g(K) n S c Σ l n t i f , .

THEOREM 12. Suppose p is a point of a 2-sphere S in E\ V is
a complementary domain of S, and N is a neighborhood of p. Then
there is an open set U containing p such that for each closed subset
F of S which satisfies (*, F, V) and for each unknotted simple
closed curve J in U Π V there is a finite collection of disjoint disks
Hly H2, , Ht in (N — F) Π S such that J bounds a tame disk D in
N and D f] S c Σ I n t Hi-

Proof. The proof here is similar to the proof of Theorem 11.
Let Kr

y K, and U be defined as in that proof, and let J be an
unknotted simple closed curve in U (Ί V. Then J bounds a tame disk
E in U. Now the proof here reads the same as the proof of Theorem
11 up to and including Condition (11) if we identify J with /(Bd K)
and E with f{K).

We assume that E is locally polyhedral at its interior points [2,
Theorem 7] and that E and h(K') are in general position. Let C be
the component of E — h(K') such that J lies in C, and let Jlf J2, Jn

be the components of C1(C) Π h(Kr). Since E Π S' c h(K') and
J c E x t S ' , we know that each Ji is a simple closed curve. Let
A, A, , Dn be the disks on h(Kr) such that Bd Ό{ — Ji and assume
that the Z>/s are ordered so that if i < i, then Iλ,- is not a subset of
A. Now we add A to C and move A slightly into Ext S'. Next we
add A and move it into ExtS' . We continue until all the JD/s have
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been added to C and adjusted, following a procedure described by
Bing [4, p. 297], Then we have a polyhedral disk D in E x t S ' such
that Bd D = J. The moving at each stage is done so that D c N
and D Π S lies in 2, Int E^.

The subcollection Hu H2, , Ht of the i?/s is chosen in the same
way as in the proof of Theorem 11. Since D lies in E x t S ' , it follows
from (6) and (8) that D c N - F.

REMARK. Theorem 12 allows us to define another property which
is equivalent to (*, F, S) for certain closed sets F on a sphere S.

Property (A', F, S). Let F be a closed subset of a 2-sphere S
in E*Ψ If for each ε > 0 there is a δ > 0 such that each unknotted
simple closed curve of diameter less than δ, which lies in I?3 — S,
bounds a tame ε-disk in E'ά — F, then F and S are said to satisfy
Property (A', F, S).

If (*, F, S) is satisfied, p e F, and N is a neighborhood of p, it
follows from Theorem 12 that there is a neighborhood U of p such
that each unknotted simple closed curve in U — S bounds a tame disk
in N — F. Thus we can apply an argurment similar to the proof of
Lemma 3 to show that (*, F, S) implies (A', F, S).

The converse is also true provided the diameters of the components
of F have a positive lower bound. To see this we observe that in
the proof of Theorem 10 all we needed was to have certain small
unknotted simple closed curves in E3 — S bound small tame disks
missing F. Thus the following theorem holds.

THEOREM 13. If the diameters of the components of the closed
subset F of a 2-sphere S in E3 have a positive lower bound, then
(Af, F, S) and (*, F, S) are equivalent.

THEOREM 14. If S is a 2-sphere in EB, V is a component of
E3 — S, F is a closed subset of S, (*, F, V) holds, and W is an open
subset of S such that V is locally simply connected at each point of
W — F (or equivalently, S is locally tame from V at each point of
W — F), then S is locally tame from V at each point of W.

Proof. Let pe F Π W, and let N be a neighborhood of p such
that N Π S c W. Let U be an open set containing p such that U
satisfies the conditions of Theorem 11 relative to V, N, and p. Let
/ be a map of the boundary of a disk K into U Π V.

Using the properties of U guaranteed by Theorem 11, we let
HlfH2, •• ,i? ί be a finite collection of disjoint disks in (N — F) Π S
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and we let g be a map of K into N so that g | Bd K = / and
flr(ίΓ) Π S c Σ l n t i ί ; . Let X be an arc from a point bef(BdK) to
a point g in S — Σ ^ such that X — g lies in F. For each
i(l ^ i ^ ί) there is a disk ϋ / such that Bd Hi = Bd # „ Int iJ/ c Fn N,
and #(Bdif) + X lies in Ext (Hi + HI). This is because S is tame
from V at each point of each H^l; 17].

Using Lemma 2 we obtain a map h oί K into i?3 such that
A I Bd K = /, A(JS:) C flf(ίΓ) + Σ I n t Hi, and A(JKΓ) - Σ Hi i s connected.
Obviously Λ(iΓ) c JV. Since Λ(iQ is connected and Λ(Bd iΓ) c F, it
will follow that h(K) c F if we show that h(K) Π S = 0. To show
this we use the fact that h(K) — Σ Ή\ ^s arcwise connected.

Suppose h(K) intersects S. Let Y be an arc in h(K) — Σ Hi
from the point b to a point d in S such that (Y — d) c F. Since
flf(iΓ) Π S c Σ Int Hi and A(ίΓ) c g(ίΓ) + Σ Int Hi, it follows that
delntHj for some j(l ^ j ^t). Let Z be an arc from the point q
to d such that Z - (d + q) a. E3 - (S + V). Then X + Y + Z contains
a simple closed curve L which links B d ^ [7, Theorem 3.3], and it
follows from Theorem 10 of [2] that L links Bd£Γ;. Therefore L
intersects H], But this is a contradiction since X + Y + Z does not
intersect H'ά.

Thus h(K) (Z N Π F, so F is locally simply connected at each point
p oί W Π F. Then, from the hypothesis, F is locally simply connected
at each point of W. Using Theorems 1 and 2 of [10], it follows that
S is locally tame from F at each point of W.

THEOREM 15. // a 2-sphere S in E3 is locally tame modulo a
closed subset F which satisfies (*, F, S), then S is tame.

Proof. Using W = S in Theorem 14, we have the result that S
is locally tame from each of its complementary domains. Then S is
tame from each such domain; hence S is tame.

REMARK. It follows from Theorem 15 that F cannot contain an
isolated wild point of S if (*, F, S) is satisfied. Also the set W of
wild points of a 2-sphere S fails to satisfy (*, W, S), since ΫFis closed.

4* Property (*, F) and its relation to (*, F, S)* We now define
Property (*, F). If a closed subset F of a 2-sphere S in E3 has no
degenerate components, we suspect that Property (*, F) is satisfied if
and only if Property (*, F, S) holds. However Theorem 16 is as close
as we have come to establishing this equivalence.

Property (*, F). A closed set F has Property (*, F) if and only
if it satisfies each of the following conditions:
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1. F is a subset of some 2-sphere in Ez.
2, If S is a 2-sphere in Ez such that S contains F and S is

locally tame modulo F, then S is tame.

If each of the following sets lies on some 2-sphere in i?3, then
each is an example of a set F satisfying property (*, F): (1) a tame
disk [2; 11], (2) a tame finite graph [11, Corollary 1], (3) a tame
Sierpiπski curve [9, Theorem 8.2], and (4) a set which is the union
of a finite number of tame finite graphs and tame Sierpinski curves
[9, Theorem 8.4], If F consists of a single point, it is easy to see
that F does not satisfy (*, F) (see the example of a 2-sphere which
is wild at a single point, as given in [12]). This raises a question
which is related to one asked in [13, p. 464]. Does a closed set F
satisfy (*, F) if F lies in a tame 2-sphere and F has no degenerate
components? We do not answer this question.

THEOREM 16. A closed subset F of a 2-sphere satisfies (*, F) if
and only if (*, F, S) is satisfied relative to each 2-sphere S contain-
ing F.

Proof. Suppose F has Property (*, F, S) relative to each 2-sphere
S containing F. We want to show that (*, F) holds, so we let S' be
a 2-sphere such that S' contains F and Sr is locally tame modulo F.
We apply Theorem 15 to see that S' is tame. As suggested by Gillman,
the other half of Theorem 16 is proved using the techniques in the
proof of Theorem 2 in [13].

THEOREM 17. If S* is a 2-sphere in Ez containing a finite
collection of closed sets Fu F2, , Fn such that each Ft satisfies
(*, F<), then (*, ̂ F{) also holds.

Proof. Let S be a 2-sphere containing X F{ such that S is
locally tame modulo X Fi9 We will complete the proof by showing
that S is tame. First we observe from Theorem 16 that (*, Fi9 S)
holds for each i. Now an application of Theorem 14 shows that S is
locally tame from Ext S at each point of the open set U1 = S — Σ?=2ί

7i.
Another application of Theorem 14 shows that S is locally tame from
Ext S at each point of the open set U2 = S - Σ ? = 3 ^ We continue
applying Theorem 14 until we have S locally tame from Ext S at each
point of Un = S. Then S is tame from Ext S. A similar argument
shows that S is tame from Int S. Hence S is tame.

THEOREM 18. If S is a 2-sphere in Ez; Fl9 F2, , Fnis a finite
collection of closed subsets of S such that (*, Ft) holds for each i;
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and U is an open subset of S such that S is locally tame at each
point of U — (ΣjFi), then S is locally tame at each point of U.

Proof. Although a proof similar to the proof of Theorem 17 can
also be given here, we give an alternative method. We apply Theorem
17 to see that (*, 2, F{) holds; then we use Theorem 16 to see that
(*>Σ-^i>S) is true. Now two applications of Theorem 14 will show
that S is locally tame from each of its complementary domains at
each point of U. Thus S is locally tame at each point of U.

REMARK. It is known that if F lies on some 2-sphere in E3 and
F is either a tame finite graph or a tame Sierpinski curve, then (*, F)
is satisfied [11; 9]. Theorem 19 shows the existence of a continuum
M satisfying (*, M) such that M is not a finite union of tame finite
graphs and tame Sierpinski curves. It follows that Theorems 17 and
18 are generalizations of Theorems 8.4 and 8.5, respectively, in [9].
It also follows from Theorem 19 that the continuum M in the conclu-
sion of Theorem 6 satisfies (*, If).

Theorem 19. If M is a tame continuum on a 2-sphere S in Ez

such that M is obtained by removing from S the interiors of a null
sequence of disjoint disks on S, then (*, M) is satisfied.

Proof. Let M = S — ^lntDiy where {A} is a null sequence of
disjoint disks on S. Suppose S' is a 2-sphere containing If such that
S' is locally tame modΛf. We will show that S' is tame.

Let Ei be the disk on S' such that B d ^ = Bd A , for each ί.
It is easily seen that {i?J must be a null sequence.

Let G = {Hu H2y •}, be an infinite collection of disjoint disks of
Sf such that lim diam Hi = 0, each Et is in G, and 2, Hi is dense in
S'. Then S' - Σ I n t ^ i s a Sierpinski curve K[20]f and since KcM,
it follows that K is tame. Furthermore, since S' is locally tame at
each point of J]lntHi, it follows that S' is locally tame modulo K.
Since (*, K) is satisfied [9], then S' is tame.

THEOREM 20. If S is a 2-sphere in E3, {Z)J is a null sequence
of disjoint disks on S, and M — S — 2 I n t D ί f then the following state-
ments are equivalent'.

1. M is tame.
2. (A, M, S) is satisfied.
3. (*, M, S) is satisfied.
4. (*, M) is satisfied.
5. (5, M, S) is satisfied.
6. {A\ M, S) is satisfied.
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Proof. Since M is a nondegenerate continuum, we have already
proven that Statements 2, 3, 5, and 6 are equivalent (see Theorems
8, 9, 10, and 13). Bing's proof of Theorem 8.1 in [9] also shows that
Statement 1 implies 2. Since 2 implies 3, the proof will be completed
if we show that 3 implies 4 and 4 implies 1. If 3 is satisfied it
follows from Theorem 6 that 1 is true. Then 4 follows from Theorem
19, Thus 3 implies 4. Section 8 of [8] shows the existence of a 2-
sphere S' containing M such that S' is locally tame modulo M. Then
4 implies 1 because S' is tame if 4 is satisfied.

REMARK. Statements 1 through 6 of Theorem 20 characterize
tame Sierpinski curves on 2-spheres in E3. This follows because if
if is a Sierpinski curve on S, then there is a null sequence of disjoint
disks A, A, , on S such that K = S - Σ Int Όi [19].

5* Finite sums of sets F satisfying (*, F, S)* The following
theorem is used in [16].

THEOREM 21. If Flf F2y -. , Fn is a finite collection of closed
subsets of a 2-sphere S in E3 such that (*, Fi9 S) is satisfied for each
i, then (*, Σ^», S) also holds.

Proof. We use Theorem 6 to obtain a finite collection of tame
contiπua Mlf Λf2, , Mn on S such that, for each i, (*, Mi3 S) is
satisfied, i^ c M ,̂ and Mt is obtained by removing from S the interiors
of a null sequence of disjoint disks on S. From Theorem 19 we see
that (*, Mi) is satisfied for each i. Then it follows from Theorem 17
that (*, X Mί) holds. Now we use Theorem 16 to see that (*, X Mif S)
is satisfied, and (*, ̂ Fi9 S) follows because Σ ^ i c Σ ^

REMARK. We note that Theorem 21 cannot be extended to the
case where the F-s form an infinite collection of closed subsets of S.
To see this, let S be a wild 2-sphere in Ez and for each i let Fi be
a continuum Mi as in the statement of Theorem 7. Then (*, Mi9 S)
holds for each i and S — Σ Mt is a 0-dimensional set. Suppose
( * , Σ ^ > £ ) holds. Since S — Σ ^ contains no disk it follows that
S can be homeomorphically approximated in each of its complementary
domains. This is a contradiction since under these conditions S is
tame [3, Theorem 2.2]. Is ( ^ X ^ S } satisfied if {F,} is an infinite
collection of closed subsets of S such that Σ Fi ί s closed and (*, Fiy S)
holds for each i?

THEOREM 22. If Fu F2, , Fn is a finite collection of closed
subsets of a 2-sphere S in E5 such that for each i
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1. either (A, Fi9 S) or (B, Fi9 S) is satisfied, and
2. the diameters of the components of Fi have a positive lower

bound,
then (A^F^S) and (£, Σ Ή, S) are satisfied.

Proof. Because (*, Fi9 S), (A, Fi9 S), and (B, Fi9 S) are equivalent
under Condition 2 of the hypothesis (see Theorem 8, 9 and 10), Theorem
22 is a direct corollary to Theorem 21.

THEOREM 23. If Fl9 F2, , Fn is a finite collection of disjoint
closed subsets of a 2-sphere S in E* such that either (A, Fi9 S) or
(B, Fi9 S) is satisfied for each i, then (Af Σ Fi9 S) is satisfied.

Proof. We will show that (A, F± + F2, S) is satisfied, then by
induction and Theorem 9 the theorem will follow. Let ε be a positive
number. We assume that 3ε < p(Fu F2). There are positive numbers
δί and δ2, obtained using the definitions of (A, Fl9 S) and (A, F2, S),
respectively, such that for each i (i = 1, 2) each <5Γsimple closed curve
in Ez — S can be shrunk to a point in an ε-subset of E3 — F{. We
choose δ ~ min (δ2, δ2), and suppose that J is a δ-simple closed curve
in Ez — S. Let N be an ε-neighborhood of / . Since δ < ε it follows
that N is a 3ε-subset of Ez. Then N cannot intersect both Fx and
F2m Since δ ^ δ^i — 1, 2), J can be shrunk to a point in N—(F1+F2).
Thus we have established Property (A, Ft + F2, S).

REMARK. We do not know whether Theorem 23 is true without
the requirement that the JP/S be disjoint. We have an affirmative
answer in the special case where the diameters of the components of
each Ft are bounded below by a positive number, since in this case
Properties (A, Fif S), (B, Fu S), and (*, Fi9 S) are equivalent (see
Theorems 8, 9, 10, and 22).
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