ON A PROBLEM OF O. TAUSSKY

Bernard W. Levinger and Richard S. Varga

Recently, O. Taussky raised the following question. Given a nonnegative $n \times n$ matrix $A=\left(\alpha_{i, j}\right)$, let \AA_{A} be the set of all $n \times n$ complex matrices defined by

$$
\begin{equation*}
\AA_{A} \equiv\left\{B=\left(b_{i, j}\right)| | b_{i, j} \mid=a_{i, j} \quad \text { for all } 1 \leqq i, j \leqq n\right\} . \tag{1.1}
\end{equation*}
$$

Then, defining the spectrum $S(\mathfrak{M})$ of an arbitrary set \mathfrak{M} of $n \times n$ matrices B as

$$
\begin{equation*}
S(\mathfrak{M}) \equiv\{\sigma \mid \operatorname{det}(\sigma I-B)=0 \quad \text { for some } \quad B \in \mathfrak{M}\}, \tag{1.2}
\end{equation*}
$$

what can be said in particular about $S\left(\Omega_{A}\right)$? It is not difficult to see that $S\left(\Omega_{A}\right)$ consists of possibly one disk and a series of annular regions concentric about the origin, but our main result is a precise characterization of $S\left(\Omega_{4}\right)$ in terms of the minimal Gerschgorin sets for A.

Introduction. We shall distinguish between two cases. If there is a diagonal matrix $D=\operatorname{diag}\left(x_{1}, \cdots, x_{n}\right)$ with $\boldsymbol{x} \geqq \mathbf{0}$ and $\boldsymbol{x} \neq \mathbf{0}$ such that $A D$ is diagonally dominant, then A is called essentially diagonally dominant. In this case, the set $S\left(\dot{\Omega}_{4}\right)$ is just the minimal Gerschgorin set $G\left(\Omega_{4}\right)$ of [6], rotated about the origin (Theorem 1 and Corollary 2). Determining $S\left(\Omega_{4}\right)$ in this case is quite easy, since it suffices to determine those points of the boundary of $G\left(\Omega_{A}\right)$ which lie on the positive real axis (Theorem 2). This is discussed in $\S 2$.

In the general case when A is not essentially diagonally dominant, we must use permutations and intersections (Theorem 3) to fully describe $S\left(\Omega_{4}\right)$, in the spirit of [3]. These results are described in $\S 3$. Also in this section is a generalization (Theorems 3 and 4) of a recent interesting result by Camion and Hoffman [1]. Our proof of this generalization differs from that of [1].

Finally, in $\S 4$ we give several examples to illustrate the various possibilities for $S\left(\Omega_{A}\right)$.

Before leaving this section, we point out that the question posed by O. Taussky [5, p. 129] has an immediate answer in terms of the results of [3]. In [3], the authors completely characterized the spectrum $S\left(\Omega_{0}\right)$ of a related set Ω_{0} of matrices, where $C=\left(c_{i, j}\right)$ was an arbitrary $n \times n$ complex matrix and

$$
\begin{equation*}
\left.\Omega_{o} \equiv\left\{B=\left(b_{i, j}\right)| | b_{i, j}\right)=\left|c_{i, j}\right| \text { and } b_{i, j}=c_{i, j} \text { for all } 1 \leqq i, j \leqq n\right\} \tag{1.3}
\end{equation*}
$$

Clearly, $\Omega_{A} \subset \mathscr{\Omega}_{A}$. On the other hand, if $D(\theta)$ represents an $n \times n$ diagonal matrix all of whose diagonal entries have modulus unity:
$d_{j, j}=\exp \left(i \theta_{j}\right), 1 \leqq j \leqq n$, then $A D(\theta) \subset \AA_{\Delta}$ and $\AA_{\Delta}=\mathbf{U}_{\theta} \Omega_{A D(\theta)}$, where the union is over all possible choices of $D(\underline{\theta})$. Thus,

$$
\begin{equation*}
S\left(\AA_{A}\right)=\bigcup_{\theta} S\left(\Omega_{A D(\theta)}\right) \tag{1.4}
\end{equation*}
$$

While this answers the question posed, it neither gives an insight into the nature of $S\left(\Omega_{4}\right)$, nor allows $S\left(\Omega_{4}\right)$ to be effectively calculated. We shall show that in fact $S\left(\Omega_{4}\right)$ is more easily determined than $S\left(\Omega_{4}\right)$.
2. The essentially diagonally dominant case. Let $A=\left(a_{i, j}\right)$ be given $n \times n$ nonnegative matrix. In order to develop the material of this section, we recall some definitions and results concerning the minimal Gerschgorin set $G\left(\Omega_{4}\right)$ associated with A. In [3, 6], a continuous real-valued function $\nu(\sigma)$, defined for all complex numbers σ, was characterized by

$$
\begin{equation*}
\nu(\sigma) \equiv \inf _{u>0} \max _{i}\left\{\frac{1}{u_{i}}\left[\sum_{j \neq i} a_{i, j} u_{j}-\left|\sigma-\alpha_{i, i}\right| u_{i}\right]\right\} . \tag{2.1}
\end{equation*}
$$

Using the Perron-Frobenius theory of nonnegative matrices [7, § 2.4 and §8.2], it can be shown that there exists a nonnegative vector $\boldsymbol{x} \neq 0$ such that

$$
-\left|\sigma-a_{i, i}\right| x_{i}+\sum_{j \neq i} a_{i, j} x_{j}=\nu(\sigma) x_{i}, \quad 1 \leqq i \leqq n
$$

From $\nu(\sigma), G\left(\Omega_{\Delta}\right)$ is defined by

$$
\begin{equation*}
G\left(\Omega_{\Delta}\right)=\{\sigma \mid \nu(\sigma) \geqq 0\} \tag{2.2}
\end{equation*}
$$

In view of (2.1') and (2.2), a complex number σ is contained in $G\left(\Omega_{4}\right)$ if and only if there is a nonnegative vector $\boldsymbol{x} \neq \mathbf{0}$ such that

$$
\begin{equation*}
\left|\sigma-a_{i, i}\right| x_{i} \leqq \sum_{j \neq i} a_{i, j} x_{j}, \quad 1 \leqq i \leqq n \tag{2.3}
\end{equation*}
$$

The set $G\left(\Omega_{\Delta}\right)$ is a closed bounded set, and its boundary, denoted by $\partial G\left(\Omega_{4}\right)$, satisfies,

$$
\begin{equation*}
\partial G\left(\Omega_{4}\right) \subset S\left(\Omega_{4}\right) \subset G\left(\Omega_{4}\right) \tag{2.4}
\end{equation*}
$$

We first prove a result concerning $G\left(\Omega_{\Delta}\right)$ which will have later applications.

Lemma 1. If, for $z_{0}>0, z_{0} e^{i \theta} \in G\left(\Omega_{4}\right)$ for all real θ, then all z with $|z| \leqq z_{0}$ are in $G\left(\Omega_{\Delta}\right)$, and $z=0$ is an interior point of $G\left(\Omega_{\Delta}\right)$.

Proof. This is a simple application of (2.3). By assumption,
$-z_{0} \in G\left(\Omega_{4}\right)$. Since $z_{0}>0$ and $a_{i, i} \geqq 0,1 \leqq i \leqq n$, then

$$
\left|-z_{0}-a_{i, i}\right|=z_{0}+a_{i, i}
$$

Thus, for any z with $|z| \leqq z_{0}$,

$$
\left|z-a_{i, i}\right| \leqq|z|+a_{i, i} \leqq z_{0}+a_{i, i}
$$

and (2.3) holds for z with the same vector $\boldsymbol{x} \geqq \mathbf{0}$ which satisfies (2.3) for $-z_{0}$, which completes the proof.

We next introduce the notion of rotating a given point set P about the origin. Let

$$
\begin{equation*}
\operatorname{rot} P \equiv\left\{\sigma \mid \sigma e^{i \theta} \in P \text { for some real } \theta\right\} \tag{2.5}
\end{equation*}
$$

With this notation, we have
Lemma 2. $\operatorname{rot} S\left(\AA_{4}\right)=S\left(\AA_{4}\right)$.
Proof. It is clear that $S\left(\Omega_{4}\right) \subset \operatorname{rot} S\left(\Omega_{\Delta}\right)$. If $\sigma \in \operatorname{rot} S\left(\Omega_{4}\right)$, then $\sigma e^{i \theta}$ is an eigenvalue of some B in Ω_{A} and thus σ is an eigenvalue of $e^{-i \theta} B$. But $e^{-i \theta} B \in \AA_{\Delta}^{\circ}$ and hence $\sigma \in S\left(\AA_{A}\right)$, which completes the proof.

This elementary result already establishes that the spectrum $S\left(\Omega_{4}^{\circ}\right)$ can be described as the union of a family of circles concentric about the origin.

Lemma 3. If $\sigma \in S\left(\Omega_{4}\right)$, then $|\sigma| \in G\left(\Omega_{\Delta}\right)$.
Proof. For any $\sigma \in S\left(\AA_{A}\right)$, there is a matrix $B=\left(b_{i, j}\right)$ in Ω_{A} and a vector $\boldsymbol{y} \neq 0$ such that $B \boldsymbol{y}=\sigma \boldsymbol{y}$. Equivalently, we have

$$
\begin{equation*}
\left(\sigma-b_{i, i}\right) y_{i}=\sum_{j \neq i} b_{i, j} y_{j}, \quad 1 \leqq i \leqq n \tag{2.6}
\end{equation*}
$$

If we take absolute values in (2.6) and note that

$$
\left|\sigma-b_{i, i}\right| \geqq\left||\sigma|-\left|b_{i, i}\right|\right|=\left||\sigma|-a_{i, i}\right|,
$$

we obtain

$$
\begin{equation*}
\left||\sigma|-a_{i, i}\right|\left|y_{i}\right| \leqq\left|\sigma-b_{i, i}\right|\left|y_{i}\right|=\left|\sum_{j \neq i} b_{i, j} y_{j}\right| \leqq \sum_{j \neq i} a_{i, j}\left|y_{i}\right| \tag{2.7}
\end{equation*}
$$

so that $|\sigma|$ satisfies (2.3) with the nonnegative vector $\boldsymbol{x}=|\boldsymbol{y}|$, which completes the proof.

From the definition (2.5), it follows that, if P and R are any sets with $P \subset R$, then $\operatorname{rot} P \subset \operatorname{rot} R$. Thus, (2.4) and Lemma 3 combine to give

Corollary 1. $\operatorname{rot} \delta G\left(\Omega_{\Delta}\right) \subset S\left(\Omega_{\Delta}\right) \subset \operatorname{rot} G\left(\Omega_{4}\right)$.

We now study the case for which the inclusions of Corollary 1 become equalities.

Theorem 1. Let A be a nonnegative $n \times n$ matrix. Then, $\operatorname{rot} \partial G\left(\Omega_{4}\right)=S\left(\Omega_{\Delta}\right)=\operatorname{rot} G\left(\Omega_{\Delta}\right)$ if and only if $z=0$ is not an interior point of $G\left(\Omega_{4}\right)$.

Proof. First, assume that $z=0 \notin \operatorname{int} G\left(\Omega_{A}\right)$, and let σ be an arbitrary nonzero point of $\operatorname{rot} G\left(\Omega_{4}\right)$, so that $\sigma e^{i \theta_{0}} \in G\left(\Omega_{4}\right)$ for some real θ_{0}. The circle $|z|=|\sigma|$ cannot lie entirely in $G\left(\Omega_{4}\right)$. For otherwise, by Lemma 1 , the entire disk $|z| \leqq|\sigma|$ would be contained in $G\left(\Omega_{A}\right)$ and $z=0$ would be an interior point of $G\left(\Omega_{\Delta}\right)$. Thus, the circle $|z|=|\sigma|$ necessarily intersects the boundary $\partial G\left(\Omega_{4}\right)$, and there exists a real θ_{1} such that $\sigma e^{i \theta_{1}} \in \partial G\left(\Omega_{4}\right)$. It follows that $\sigma \in \operatorname{rot} \partial G\left(\Omega_{4}\right)$, and thus from Corollary $1, \sigma$ is also a point of $S\left(\Omega_{4}\right)$. To complete this part of the proof, we need only examine the point $z=0$. Clearly, the statement that $0 \notin \operatorname{int} G\left(\Omega_{4}\right)$ is equivalent to the statement that either $0 \in G^{\prime}\left(\Omega_{\Delta}\right)$, the complement of $G\left(\Omega_{\Delta}\right)$, or $0 \in \partial G\left(\Omega_{\Delta}\right)$. Thus, if $0 \in \operatorname{rot} G\left(\Omega_{4}\right)$, i.e., $0 \in G\left(\Omega_{4}\right)$, then the previous remark shows that $0 \in \partial G\left(\Omega_{4}\right)$, which completes the proof of the first part. Now, assume that $\operatorname{rot} \partial G\left(\Omega_{\Lambda}\right)=S\left(\Omega_{\Delta}^{\circ}\right)=\operatorname{rot} G\left(\Omega_{\Delta}\right)$, and call this common set of points H. If $0 \in H$, then $0 \in \partial G\left(\Omega_{4}\right)$, and hence $0 \notin \operatorname{int} G\left(\Omega_{4}\right)$. If $0 \notin H$, then $0 \notin G\left(\Omega_{\Delta}\right)$, which implies that $0 \in G^{\prime}\left(\Omega_{4}\right)$, and again $0 \notin \operatorname{int} G\left(\Omega_{\Delta}\right)$, which completes the proof.

The statement $z=0 \notin \operatorname{int} G\left(\Omega_{4}\right)$ can be seen to be equivalent to $\nu(0) \leqq 0$, and this has an interesting connection with diagonally dominant matrices, i.e., $n \times n$ matrices $B=\left(b_{i, j}\right)$ satisfying

$$
\begin{equation*}
\left|b_{i, i}\right| \geqq \sum_{j \neq i}\left|b_{i, j}\right|, \quad 1 \leqq i \leqq n \tag{2.8}
\end{equation*}
$$

Obviously, if $\nu(0) \leqq 0$, then from (2.1'), there is a nonnegative vector $\boldsymbol{y} \neq \mathbf{0}$ such that

$$
\begin{equation*}
a_{i, i} y_{i} \geqq \sum_{j \neq i} a_{i, j} y_{j}, \quad 1 \leqq i \leqq n \tag{2.9}
\end{equation*}
$$

Thus, if D is the diagonal matrix $D \equiv \operatorname{diag}\left(y_{1}, \cdots, y_{n}\right)$, then (2.9) asserts that the product $A D$ is diagonally dominant. Conversely, if $D=\operatorname{diag}\left(y_{1}, \cdots, y_{n}\right)$ where $\boldsymbol{y} \geqq \mathbf{0}$ and $\boldsymbol{y} \neq \mathbf{0}$ and $A D$ is diagonally dominant, then it follows from (2.3) that $\nu(0) \leqq 0$.

The statement that $\nu(0) \leqq 0$ can also be coupled with results of Ostrowski [4] on H-matrices, which are defined as follows. Let $B=\left(b_{i, j}\right)$ be an arbitrary $n \times n$ complex matrix, and associate with B the new matrix $C=\left(c_{i, j}\right)$, where $c_{i, j}=-\left|b_{i, j}\right|, i \neq j$, and

$$
c_{i, i}=\left|b_{i, i}\right|, \quad 1 \leqq i \leqq n
$$

Then, B is an H-matrix if and only if all the principal minors of C are nonnegative. [That is, the matrix C is a possibly degenerate M-matrix.] In [4], it is shown that B is an H-matrix if and only if there exists a diagonal matrix $D=\operatorname{diag}\left(y_{1}, \cdots, y_{n}\right)$ with $\boldsymbol{y} \geqq \mathbf{0}, \boldsymbol{y} \neq \mathbf{0}$, such that $B D$ is diagonally dominant. Thus we have

Corollary 2. Let A be a nonnegative $n \times n$ matrix. Then, $\operatorname{rot} \partial G\left(\Omega_{4}\right)=S\left(\Omega_{4}\right)=\operatorname{rot} G\left(\Omega_{\Delta}\right)$ if and only if A is an H-matrix.

Summarizing, we have shown that the sets $\operatorname{rot} \partial G\left(\Omega_{4}\right), S\left(\Omega_{4}\right)$, and $\operatorname{rot} G\left(\Omega_{4}\right)$ are equal in the case that A is an H-matrix, and this might logically be called the essentially diagonally dominant case, the title of this section.

We have already shown that $S\left(\Omega_{4}\right)$ is a collection of annuli and disks concentric about the origin. It is now logical to ask how the radii of these regions can be determined. For convenience, we will assume that A is irreducible (cf. [7, p. 20]). The reducible case requires only minor modifications.

We consider the function $\nu(t)$ along the nonnegative real axis $t \geqq 0$. Let $\left\{t_{i}\right\}_{i=1}^{m}$ define the finite sequence of points $t_{1}>t_{2}>\cdots$ $>t_{m}>0$, such that $\nu\left(t_{i}\right)=0$ and $\nu\left(t_{i}+\varepsilon\right) \cdot \nu\left(t_{i}-\varepsilon\right)<0$ for all sufficiently small $\varepsilon>0$. Then, these points t_{i} indicate strong sign changes in $\nu(t)$. In [6], it was shown that the spectral radius of A,

$$
\rho(A) \equiv \max _{i}\left\{\left|\lambda_{i}\right| \mid \operatorname{det}\left(\lambda_{i} I-A\right)=0\right\},
$$

is such a point, and since it was further shown that $\nu(\rho(A)+\delta)<0$ for all $\delta>0$, it is evidently the largest such point, i.e., $t_{1}=\rho(A)$ and $m \geqq 1$. We define $t_{m+1}=0$, and now show that the points t_{i} divide the nonnegative real axis into intervals in which $\nu(t) \geqq 0$.

Lemma 4. For $t \geqq 0, \nu(t) \geqq 0$ if and only if $t_{2 i} \leqq t \leqq t_{2 i-1}$ for some i with $1 \leqq i \leqq[(m+1) / 2]$.

Proof. Since $\nu(t)$ is continuous for $t \geqq 0$, it suffices to show that there is no $\mu>0$, corresponding to a degenerate change of signs, with $\nu(\mu)=0$ such that $\nu(\mu-\varepsilon)<0$ and $\nu(\mu+\varepsilon)<0$ for all sufficiently small $\varepsilon>0$. This assertion is basically a consequence of the assumption that A is irreducible. For, if such a $\mu>0$ exists, then $\mu \in \partial G\left(\Omega_{\Delta}\right)$. Moreover, since $\left|t e^{i \theta}-a_{i, i}\right|>\left|t-a_{i, i}\right|$ for any $t>0$ and any real θ with $0<|\theta| \leqq \pi$, it follows from (2.1) that $\nu\left(t e^{i \theta}\right)<\nu(t)$ and hence that $\nu(z)<0$ for all complex $z \neq \mu$ in a neighborhood of μ. Thus, μ is an isolated point of $G\left(\Omega_{4}\right)$. As such, it follows [6] that μ is necessarily a diagonal entry of A, i.e., $\mu=a_{j, j}$ for some j. But, since
A is irreducible, it is known [6] that $\nu\left(a_{k, k}\right)>0$ for every $1 \leqq k \leqq n$. This contradiction establishes the desired result.

Theorem 2. Let A be a nonnegative irreducible $n \times n$ matrix, and let $t_{1}>t_{2}>\cdots>t_{m}>0$ be positive real numbers such that $\nu\left(t_{i}\right)=0$ and $\nu\left(t_{i}+\varepsilon\right) \cdot \nu\left(t_{i}-\varepsilon\right)<0$ for all sufficiently small $\varepsilon>0$. If $m>1$ and z is any complex number with $|z| \geqq t_{2[m / 2]}$, then $z \in S\left(\Omega_{4}\right)$ if and only if $t_{2 i} \leqq|z| \leqq t_{2 i-1}$ for some i with $1 \leqq i \leqq[m / 2]$.

Proof. If z_{0} is any complex number with $\left|z_{0}\right| \geqq t_{2[m / 2]}$ and $t_{2 i} \leqq\left|z_{0}\right| \leqq t_{2 i-1}$ for some $1 \leqq i \leqq[m / 2]$, then from Lemma $4, \nu\left(\left|z_{0}\right|\right) \geqq 0$. Also, from Lemma 4 it follows that $\nu(|\boldsymbol{z}|)<0$ for any $|\boldsymbol{z}|$ with $t_{2 i+1}<|z|<t_{2 i}$. Thus, all points in the disk $|z| \leqq\left|z_{0}\right|$ are not points of $G\left(\mathscr{\Omega}_{4}\right)$, and we deduce from Lemma 1 that $\left|z_{0}\right| e^{i \theta} \in \partial G\left(\Omega_{4}\right)$ for some real θ. Thus, $z_{0} \in \operatorname{rot} \partial G\left(\Omega_{A}\right)$, and thus from Corollary $1, z_{0} \in S\left(\AA_{A}\right)$, which proves one part of this result. Conversely, for any $z_{0} \in S\left(\Omega_{4}\right)$ with $\left|z_{0}\right| \geqq t_{2[m / 2]}, \nu\left(\left|z_{0}\right|\right) \geqq 0$ from Lemma 3. Then from Lemma 4, it follows that $t_{2 i} \leqq\left|z_{0}\right| \leqq t_{2 i-1}$ for some i with $1 \leqq i \leqq[m / 2]$, which completes the proof.

Using the results of [6], it is now simple to determine the exact number of eigenvalues of any matrix $B \in \AA_{\boldsymbol{A}}$ which lie in each of the outer annuli: $t_{2 i} \leqq|z| \leqq t_{2 i-1}$ for $1 \leqq i \leqq[m / 2]$.

Corollary 3. Let A be a nonnegative irreducible $n \times n$ matrix with $m>1$. Then, for any $B \in \grave{\Omega}_{A}, B$ has p_{i} eigenvalues in the annulus $t_{2 i} \leqq|z| \leqq t_{2 i-1}, \quad 1 \leqq i \leqq[m / 2]$, if and only if A has p_{i} diagonal entries in this annulus.

Proof. By a familiar continuity argument, going back to Gerschgorin, each connected component of $S\left(\Omega_{4}\right)$ contains the same number of eigenvalues for each $B \in \AA_{\Delta}$, and hence, the same number as A. But from [6], A has p_{i} eigenvalues in this annulus if and only if A has p_{i} diagonal entries in this annulus, which completes the proof.

As final remarks in this section, we mention that Theorem 2 precisely gives $S\left(\Omega_{4}\right)$ and the radii of its associated concentric annuli in the case that m (the number of strong sign changes in $\nu(t)$ for $t \geqq 0$) is even. In this regard, it is interesting to point out that the geometrical result of Theorem 1 and Corollary 2 is basically contained in Theorem 2, since it can be obtained by applying Theorem 2 to a family of nonnegative irreducible matrices $A(\varepsilon), \varepsilon \geqq 0$, where $A(\varepsilon) \rightarrow A$
as $\varepsilon \downarrow 0$, for which m is again even for each $A(\varepsilon)$ for all sufficiently small $\varepsilon>0$. We also mention that computing the points t_{i} or Theorem 2 , whether m is even or odd, is not difficult because of the inclusion relationships of (2.1).

In the case that $m=2 l+1$ is odd, Theorem 2 gives no information about the final disk $0 \leqq|z| \leqq t_{2 l+1}$, and different techniques are necessary to decide which points of this disk are points of $S\left(\AA_{4}\right)$. This will be discussed in $\S 3$.
3. $\nu(0)>0$. If $z=0$ is an interior point of $G\left(\Omega_{\Lambda}\right)$, i.e., $\nu(0)>0$, we can still give a precise characterization of $S\left(\Omega_{4}\right)$ using the methods of [3], but these results are considerably more complicated than those given in §2. We shall show by means of examples in $\S 4$ that these complications cannot, unfortunately, be avoided.

We first give a more or less well known result.

Lemma 5. Let $0 \leqq \alpha_{1} \leqq \alpha_{2} \leqq \cdots \leqq \alpha_{n}$ be nonnegative real numbers, and ρ an arbitrary complex number. Then, there exist real numbers $\theta_{1}, \cdots, \theta_{n}$ such that $\rho=\sum_{j=1}^{n} \alpha_{j} e^{i \theta \rho}$ if and only if

$$
\begin{equation*}
\sum_{j=1}^{n} \alpha_{j} \geqq|\rho| \geqq \alpha_{n}-\sum_{j=1}^{n-1} \alpha_{j} \tag{3.1}
\end{equation*}
$$

Proof. This lemma is precisely Lemma 1 of [1] applied to the $n+1$ nonnegative numbers $\alpha_{1}, \cdots, \alpha_{n},|\rho|$. However, for completeness, we give a proof by induction.

Only the fact that (3.1) implies the existence of the θ_{j} is nontrivial. For $n=2,\left|\alpha_{2}+\alpha_{1} e^{i \theta}\right|=\sqrt{\alpha_{2}^{2}+2 \alpha_{1} \alpha_{2} \cos \theta+\alpha_{1}^{2}}$ which varies continuously from $\alpha_{2}+\alpha_{1}$ to $\alpha_{2}-\alpha_{1}$ as θ varies from 0 to π.

For $n+1$, we distinguish two cases. Consider first the case where $|\rho| \geqq\left|\alpha_{n+1}-\sum_{i=1}^{n} \alpha_{i}\right|$. Then, as in the previous case for $n=2$, for some θ we can write $|\rho|=\left|\alpha_{n+1}+e^{i \theta} \sum_{i=1}^{n} \alpha_{i}\right|$. Otherwise, if $|\rho|<\left|\alpha_{n+1}-\sum_{i=1}^{n} \alpha_{i}\right|$, then from (3.1) we deduce that $|\rho|<\sum_{i=1}^{n} \alpha_{i}-\alpha_{n+1}$, which gives us the inequalities

$$
\alpha_{n}-\sum_{i=1}^{n-1} \alpha_{i} \leqq \alpha_{n} \leqq|\rho|+\alpha_{n+1} \leqq \sum_{i=1}^{n} \alpha_{i}
$$

Thus, from the inductive hypothesis, $\alpha_{n+1}+|\rho|$, and hence also ρ, have the representations of the desired form.

With this, we now characterize $S\left(\dot{\Omega}_{4}\right)$ by a set of linear inequalities.

Lemma 6. Let σ be an arbitrary complex number. Then $\sigma \in S\left(\Omega_{\Delta}\right)$ if and only if there exists a nonnegative vector $\boldsymbol{x} \neq \mathbf{0}$ such that

$$
\begin{equation*}
\sum_{j=1}^{n} a_{i, j} x_{j} \geqq|\sigma| x_{i} \geqq a_{i, k} x_{k}-\sum_{j \neq k} a_{i, j} x_{j} \tag{3.2}
\end{equation*}
$$

for each i and k with $1 \leqq i, k \leqq n$.
Proof. If $\sigma \in S\left(\Omega_{\Lambda}\right)$, there exists a matrix $B \in \Omega_{A}$ and a vector $\boldsymbol{z} \neq \mathbf{0}$ with $B z=\sigma z$. Taking absolute values and setting $\left|z_{j}\right|=x_{j}$, we obtain for the i-th component

$$
\sum_{j=1}^{n} a_{i, j} x_{j} \geqq\left|\sum_{j=1}^{n} b_{i, j} x_{j}\right|=|\sigma| x_{i} \geqq a_{i, k} x_{k}-\sum_{j \neq k} a_{i, j} x_{j},
$$

for each $1 \leqq k \leqq n$, which establishes the first part of this theorem. Conversely, if (3.2) is satisfied by a nonnegative vector $\boldsymbol{x} \neq \mathbf{0}$ for each i and $k, 1 \leqq i, k \leqq n$, we can repeatedly apply Lemma 5 to find real constants $\theta_{k, j}$ such that $\sigma x_{k}=\sum_{j=1}^{n} a_{k, j} e^{i \theta_{k}, j} x_{j}$ for $1 \leqq k \leqq n$, so that $\sigma \in S\left(\Omega_{4}\right)$, which completes the proof.

We now remark that the inequalities of (3.2) are equivalent to the following set of n^{2} linear inequalities

$$
\begin{align*}
& \sum_{j \neq i}(-1)^{\delta_{j, k}} a_{i, j} x_{j}+(-1)^{\delta_{i, k}}| | \sigma\left|+(-1)^{\delta_{i, k}} a_{i, i}\right| x_{i} \geqq 0 \tag{3.3}\\
& 1 \leqq i, k \leqq n
\end{align*}
$$

where $\delta_{i, k}$ is the Kronecker delta function. For $k \neq i$, the second inequality of (3.2) is identical with (3.3). For $k=i$, (3.2) yields

$$
\sum_{j \neq i} a_{i, j} x_{j} \geqq\left(|\sigma|-\alpha_{i, i}\right) x_{i} \geqq-\sum_{j \neq i} a_{i, j} x_{j},
$$

which is equivalent to

$$
\sum_{j \neq i} a_{i, j} x_{j}-\left||\sigma|-a_{i, i}\right| x_{i} \geqq 0
$$

In order to develop the material of this section, we recall some definitions and results [3] concerning the minimal Gerschgorin set $G^{\varphi}\left(\Omega_{\sigma}\right)$ associated with a matrix C relative to the permutation φ. Let $C=\left(c_{i, j}\right)$ be an arbitrary $n \times n$ complex matrix, and let φ be any permutation of the first n positive integers. If σ is any complex number, we can define a continuous real valued function $\nu_{\varphi, \sigma}(\sigma)$ by

$$
\begin{align*}
\nu_{\varphi, \sigma}(\sigma)= & \inf _{u>0} \max _{i}\left\{\frac { 1 } { u _ { \varphi (i) } } \left[\sum_{j \neq i}(-1)^{\delta_{j, \varphi(i)}}\left|c_{i, j}\right| u_{j}\right.\right. \tag{3.4}\\
& \left.\left.+(-1)^{\delta_{i, \varphi(i)}}\left|\sigma-c_{i, i}\right| u_{i}\right]\right\} .
\end{align*}
$$

The minimal Gerschgorin set $G^{\varphi}\left(\Omega_{0}\right)$ is given as in (2.2) by

$$
\begin{equation*}
G^{\varphi}\left(\Omega_{\sigma}\right)=\left\{\sigma \mid \nu_{\varphi, \sigma}(\sigma) \geqq 0\right\} . \tag{3.5}
\end{equation*}
$$

Equivalently, $\sigma \in G^{\varphi}\left(\Omega_{\sigma}\right)$ if and only if there exists a nonnegative vector $\boldsymbol{x} \neq 0$ such that

$$
\begin{equation*}
\sum_{j \neq i}(-1)^{\delta_{j, \varphi(i)}}\left|c_{i, j}\right| x_{j}+(-1)^{\delta_{i, \varphi(i)}}\left|\sigma-c_{i, i}\right| x_{i} \geqq 0, \quad 1 \leqq i \leqq n \tag{3.6}
\end{equation*}
$$

In order to couple the inequalities (3.3) to those of (3.6), let $A^{\varphi}=\left(a_{i, j}^{\varphi}\right)$ be an $n \times n$ matrix derived from A as follows:

$$
a_{i, j}^{\varphi}=\left\{\begin{array}{ll}
a_{i, j}, & j \neq i \tag{3.7}\\
(-1)^{1+\delta_{i, \varphi(i)}} a_{i, i}, & j=i
\end{array}\right\}, \quad 1 \leqq i, j \leqq n
$$

It is clear from Lemma 6 and the definition of A_{φ} that $\sigma \in S\left(\AA_{A}\right)$ implies that $|\sigma| \in G^{\varphi}\left(\Omega_{\mathbb{A}^{\rho}}\right)$ for each permutation φ. Note that this result generalizes Lemma 3 of $\S 2$ to arbitrary permutation. Hence, it follows that $|\sigma| \subset \bigcap_{\varphi} G^{\varphi}\left(\Omega_{\mathbb{A}^{\varphi}}\right)$, so that

$$
\begin{equation*}
S\left(\Omega_{\Delta}\right) \subset \operatorname{rot}\left(\bigcap_{\varphi} G^{\varphi}\left(\Omega_{A^{\varphi}}\right)\right) \tag{3.8}
\end{equation*}
$$

We now show that equality is valid in (3.8).

Theorem 3. Let $A=\left(a_{i, j}\right)$ be a nonnegative $n \times n$ matrix. Then,

$$
S\left(\AA_{\Delta}\right)=\operatorname{rot}\left(\bigcap_{\varphi} G^{\varphi}\left(\Omega_{\mathbb{A}^{\varphi}}\right)\right)
$$

Proof. From (3.8), it suffices to show that $|\sigma| \in \bigcap_{\varphi} G^{\varphi}\left(\Omega_{4^{\varphi}}\right)$ implies that $|\sigma| \in S\left(\stackrel{\circ}{\Omega}_{4}\right)$. To prove this, we define the sets $M_{i, k}(|\sigma|)$ from (3.3) by

$$
\begin{align*}
M_{i, k}(|\sigma|)= & \left\{\boldsymbol{x} \geqq \mathbf{0} \mid \sum_{j=1}^{n} x_{j}=1 ; \sum_{j \neq i}(-1)^{\delta_{j, k}} a_{i, j} x_{j}\right. \tag{3.9}\\
& \left.+(-1)^{\delta_{i, k}}| | \sigma\left|+(-1)^{\delta_{i, k}} a_{i, i}\right| x_{i} \geqq 0\right\} .
\end{align*}
$$

By (3.3), $|\sigma| \in S\left(\Omega_{A}\right)$ is equivalent to the existence of a vector \boldsymbol{x} with

$$
\boldsymbol{x} \in \bigcap_{1 \leq i, k \leq n} M_{i, k}(|\sigma|)
$$

and thus we must prove that $\bigcap_{1 \leqq i, k \leqq n} M_{i, k}(|\sigma|)$ is nonempty. We shall show that the hypothesis, $|\sigma| \in \bigcap_{\varphi} G^{\varphi}\left(\Omega_{A^{\varphi}}\right)$, implies that any n of the sets $M_{i, k}(|\sigma|)$ have a nonempty intersection. Then, the conclusion will follow from Helly's Theorem [2, p. 33], which states that if K is a family of at least n convex sets in Euclidean ($n-1$)-space,
R^{n-1}, such that every subclass containing n members has a common point in R^{n-1}, there is a point common to all members of K. Since the $M_{i, k}(|\sigma|)$ are convex and of dimension at most ($n-1$), this implies our theorem.

It remains to show that any collection $\left\{M_{i_{j}, k_{j}}(|\sigma|)\right\}_{j=1}^{n}$ has a nonempty intersection. This is always true if the second subscript k_{j} fails to take on the integer value $k_{0}, 1 \leqq k_{0} \leqq n$. For, if \boldsymbol{y} is the vector with components $y_{k_{0}}=1, y_{j}=0$ for $j \neq k_{0}$, we see that (3.3) is satisfied and thus $\boldsymbol{y} \in \bigcap_{j=1}^{n} M_{i_{j}, k_{j}}(|\sigma|)$. By (3.6) and (3.7), the condition $|\sigma| \in G^{\varphi}\left(\Omega_{A^{\varphi}}\right)$ is equivalent to the assertion that $\bigcap_{\varphi} M_{i, \varphi(i)}(|\sigma|)$ is nonempty. Thus, $|\sigma| \in \bigcap_{\varphi} G^{\varphi}\left(\Omega_{A^{\varphi}}\right)$ implies that $\bigcap_{j=1}^{n} M_{i_{j}, k_{j}}(|\sigma|)$ is nonempty whenever $k_{j}=\varphi\left(i_{j}\right)$ for some permutation φ. Finally, consider a collection $\left\{M_{j(k), k}\right\}_{k=1}^{n}$ where $j(k)$ is not one-to-one. In this case, there is evidently a repeated first index, and for convenience, we assume that $1=j(1)=j(2)=\cdots=j(r), r \geqq 2$. Then let \boldsymbol{y} be any nonnegative vector with $y_{1}+y_{2}=1, y_{j}=0$ for $2<j \leqq n$. For such vectors, it follows from (3.9) that
$\left(3.10^{\prime \prime}\right) \quad \boldsymbol{y} \in M_{j(k), k}, k>2$ if and only if $a_{j(k), 1} y_{1}+a_{j(k), 2} y_{2} \geqq 0$.
Clearly, from (3.10") all such vectors \boldsymbol{y} are in $\bigcap_{k>2} M_{j(k), k}$. If $a_{1,2}>0$, then the vector \boldsymbol{y} with $y_{2}=\left(\left||\sigma|-a_{1,1}\right| y_{1}\right) / a_{1,2}$ is in $M_{1,1} \cap M_{1,2}$, and if $a_{1,2}=0$, then the vector \boldsymbol{y} with $y_{2}=1 y_{1}=0$ is in $M_{1,1} \cap M_{1,2}$. Thus, $\bigcap_{k=1}^{n} M_{j(k), k}$ is nonempty, and we conclude that any collection of n sets $M_{i, j}$ has a nonempty intersection, which completes the proof.

We can further show that, if $\sigma \notin S\left(\AA_{4}\right)$, then as in [1] there is a unique permutation φ such that $|\sigma| \notin G^{\varphi}\left(\Omega_{A^{\varphi}}\right)$. This will permit us to show that at most $(n+1)$ permutations are necessary to characterize $S\left(\AA_{4}\right)$ in Theorem 3.

THEOREM 4. If $\sigma \notin S\left(\Omega_{4}\right)$, then there exists a unique permutation φ such that $|\sigma| \notin G^{\varphi}\left(\Omega_{A^{\varphi}}\right)$.

Proof. If $\sigma \notin S\left(\Omega_{\Delta}\right)$, then, by Theorem 3, there is at least one permutation φ with $|\sigma| \notin G^{\varphi}\left(\Omega_{d^{\varphi}}\right)$. Thus, if $|\sigma| \notin G^{\psi}\left(\Omega_{\left.A^{\psi}\right)}\right)$, we must show that $\psi=\varphi$, i.e., $\psi(i)=\varphi(i)$ for $1 \leqq i \leqq n$.

To prove this, we introduce the sets

$$
\begin{align*}
N_{i, k}= & \left\{\boldsymbol{x} \geqq 0 \mid \sum_{j=1}^{n} x_{j}=1 ; \sum_{j \neq i}(-1)^{\delta_{j k}} a_{i, j} x_{j}\right. \tag{3.11}\\
& \left.+(-1)^{\delta_{i, k}}| | \sigma\left|+(-1)^{\delta_{i, k}} a_{i, i}\right| x_{i}<0\right\}
\end{align*}
$$

with $1 \leqq i, k \leqq n$. Clearly, $N_{i, k}$ is the complement of $M_{i, k}(|\sigma|)$ relative to the ($n-1$)-simplex $S \equiv\left\{\boldsymbol{x} \geqq \mathbf{0} \mid \sum_{j=1}^{n} x_{j}=1\right\}$. It is also clear that $N_{i, k}$ is empty if and only if $\alpha_{i, k}=0$ when $i \neq k$, and $\left||\sigma|-\alpha_{i, i}\right|=0$ when $i=k$, and $N_{i, k}$ does not intersect the face of the simplex S defined by $x_{k}=0$. Further, it is readily verified that $N_{i, k} \cap N_{i, k^{\prime}}$ is empty if $k \neq k^{\prime}$.

If $|\sigma| \notin G^{\varphi}\left(\Omega_{A^{\varphi}}\right)$, it follows from (3.6) and (3.7) that $S=\bigcap_{i=1}^{n} N_{i, \varphi(i)}$. On the other hand, $|\sigma| \notin G^{\varphi}\left(\Omega_{4^{\varphi}}\right)$ implies from (3.5) that $\nu_{\varphi, 4^{\varphi}}(|\sigma|)<0$, and hence, from the definition of (3.4), there must exist (by continuity) a positive vector $\boldsymbol{u}>\mathbf{0}$ with $\boldsymbol{u} \in N_{i, \varphi(i)}$ for all $1 \leqq i \leqq n$, i.e., if \boldsymbol{u} is normalized, then $\boldsymbol{u} \in \bigcap_{i=1}^{n} N_{i, \varphi(i)}$. Similarly, $|\sigma| \notin G^{\psi}\left(\Omega_{\left.A^{\psi}\right)}\right)$ implies that $S=\bigcap_{i=1}^{n} N_{i, \psi(i)}$.

Now, let $I=\{j \mid \psi(j)=\varphi(j), 1 \leqq j \leqq n\}$. Assuming that $\psi \neq \varphi$, then I is a proper subset of the first n positive integers. From the vector $\boldsymbol{u}>0$ above, form the vector $\boldsymbol{v} \in S$ as follows: $v_{\varphi(j)}=0, j \in I$; $v_{\varphi(j)}=u_{\varphi(j)}, u_{\varphi(j)} /\left(\sum_{j \notin I} u_{\varphi(j)}\right), j \notin I$. Since $u \in N_{i, \varphi(i)}$ for all $1 \leqq i \leqq n$, it is easy to verify that $\boldsymbol{v} \in N_{i, \varphi(i)}$ for any $i \notin I$, and thus $\boldsymbol{v} \in \bigcap_{i \notin I} N_{i, \varphi(i)}$. Furthermore, $\boldsymbol{v} \in \mathbf{\bigcup}_{i \notin I} N_{i, \psi(i)}$ since the union of the $N_{i, \psi(j)}$ covers the simplex S, and $N_{j, \psi(j)}$ does not intersect the face $v_{\varphi(j)}=0$ for $j \in I$. Thus, there is a $k \notin I$ such that $\boldsymbol{v} \in N_{k, \psi(k)} \cap N_{k, \varphi(k)}$. But since $N_{i, k} \cap N_{i, k^{\prime}}$ is empty if $k \neq k^{\prime}$, then it follows that $\psi(k)=\varphi(k)$, i.e., $k \in I$, which contradicts the assumption that I is a proper subset of the first n positive integers. Hence, $\varphi(i)=\psi(i)$ for all $1 \leqq i \leqq n$, which completes the proof.

We remark that the special case $\sigma=0$ of Theorems 3 and 4 corresponds to the main results of [1].

Letting R^{\prime} denote the complement of any set R in the complex plane, then Theorem 4 implies:

Corollary 4. If K is an open connected component of $\left(S\left(\Omega_{4}\right)\right)^{\prime}$, the complement of $S\left(\Omega_{\Delta}\right)$, then there is a unique permutation ψ for which $K \subset\left(G^{\psi}\left(\Omega_{\Delta^{\psi}}\right)\right)^{\prime}$.

Proof. Since $\bigcap_{\varphi} G^{\varphi}\left(\Omega_{A^{\varphi}}\right) \subset S\left(\AA_{\Delta}\right)$ by Theorem 3, then obviously $\left(S\left(\Omega_{\Delta}\right)\right)^{\prime} \subset\left(\bigcap_{\varphi} G^{\varphi}\left(\Omega_{A^{\varphi}}\right)\right)^{\prime}=\bigcup_{\varphi}\left(G^{\varphi}\left(\Omega_{\mathbb{A}^{\varphi}}\right)\right)^{\prime}$. Next, we remark that if $|\sigma|$ were replaced by σ in the definition of $N_{i, k}$ in (3.11), all subsequent arguments remain valid. In particular, from the proof of Theorem 4, it follows that the $\left(G^{\varphi}\left(\Omega_{A^{\varphi}}\right)\right)^{\prime}$ are nonintersecting open sets. Thus, the open connected component K can be in only one set $\left(G^{\psi}\left(\Omega_{\Delta} \psi\right)\right)^{\prime}$, which completes the proof. We remark that in general $K \neq\left(G^{\psi}\left(\Omega_{A^{\psi}}\right)\right)^{\prime}$ because of the rotational invariance of any connected component of ($\left.S\left(\Omega_{\Omega_{4}}\right)\right)^{\prime}$.

We now consider the closed connected components of $S\left(\Omega_{\Delta}\right)$.

THEOREM 5. Every connected component of $S\left(\AA_{4}\right)$ contains the same number of eigenvalues for each matrix B in $\stackrel{\Omega}{4}^{\circ}$.

Proof. This is basically a continuity argument. For, given any matrix $B \in \AA_{\Delta}$, we can construct a matrix $B(t) \in \AA_{\Delta}$ whose entries are continuous functions of $t, 0 \leqq t \leqq 1$, such that $B(0)=A$ and $B(1)=B$. Since the eigenvalues of $B(t)$ then vary continuously with t, each matrix $B \in \AA_{\Delta}$ must have the same number of eigenvalues as A in each connected component of $S\left(\Omega_{4}\right)$, which completes the proof.

Theorem 3 states that $S\left(\Omega_{4}\right)$ can be determined from the n ! sets $G^{\varphi}\left(\Omega_{\Lambda^{\varphi}}\right)$. The next result shows that at most $(n+1)$ permutations are necessary for the determination of $S\left(\Omega_{4}\right)$.

Theorem 6. There exist permutations $\varphi_{1}, \varphi_{2}, \cdots, \varphi_{r}$ with $r \leqq n+1$ such that $S\left(\Omega_{\mathbb{A}}\right)=\operatorname{rot}\left(\bigcap_{i=1}^{r} G_{i}^{\varphi_{i}}\left(\Omega_{\mathbf{A}^{\varphi} i}\right)\right)$.

Proof. Since the matrix A has n eigenvalues, then $S\left(\AA_{A}\right)$ can have at most n closed connected components by Theorem 6. Because each closed connected component of $S\left(\Omega_{4}\right)$ is either a (possibly degenerate) disk or an annulus centered at the origin, then it is clear that the complement of $S\left(\Omega_{4}^{\circ}\right)$ consists of at most $(n+1)$ similar regions. By Corollary 3, exactly one permutation corresponds to each open connected component of $\left(S\left(\Omega_{4}^{\circ}\right)\right)$, and thus at most $(n+1)$ permutations are necessary to describe $S\left(\Omega_{4}\right)$.

We remark that, since $\left(S\left(\AA_{A}\right)\right)^{\prime}$ always contains the unbounded connected component $\{z||z|>\rho(A)\}$, the identity permutation must always occur as one of the r permutations of Theorem 6. This follows from the fact [3] that $G^{\varphi}\left(\Omega_{A^{\varphi}}\right)$ is a bounded set only for the identity permutation. Of course, if A is essentially diagonally dominant, then $r=1$ from Theorem 1. We now remark that the results of Theorem 2 and Corollary 3 can be used to obtain an improved upper bound for r. For, if t_{m} is, as in Theorem 2, the smallest positive number such that $\nu\left(t_{m}\right)=0$, then by Corollary 3 , the number of eigenvalues σ for each $B \in \Omega_{A}^{\circ}$ with $|\sigma| \geqq t_{m}$ is equal to the number, k, of diagonal entries $a_{i, i}$ of A with $a_{i, i} \geqq t_{m}$, and clearly $k \geqq\lfloor m / 2]$. Thus, by the same argument as above,

$$
r \leqq n+1-k
$$

In $\S 4$, we give an example of a 3×3 matrix for which 3 permutations are required to determine $S\left(\Omega_{4}^{\circ}\right)$. In general, examples can similarly be given where n permutations are required for the $n \times n$ case, and we conjecture that the result of Theorem 6 is valid with
$n+\mathbf{1}$ reduced to n.
To actually calculate $S\left(\Omega_{4}\right)$ in the general case, it is necessary from Corollary 4 to work with the complements of the sets $G^{\varphi}\left(\Omega_{\mathbb{A}^{\varphi}}\right)$, i.e., to determine those intervals of the positive real axis ($t \geqq 0$) for which $\nu_{\varphi, 4^{\varphi}}(t)<0$ for some permutation φ. However, it is in general not easy to determine a priori which $r(\leqq n+1)$ of the n ! permutations suffice to characterize $S\left(\Omega_{4}\right)$ in Theorem 6. For this reason, the analogue of Theorem 2 which could be stated for the general case seems computationally unattractive.
4. Examples. To illustrate the results of §2, consider the following diagonally dominant matrix A :

$$
A=\left[\begin{array}{lll}
1 & 1 / 2 & 0 \tag{4.1}\\
1 / 2 & 3 & 1 / 2 \\
0 & 1 / 2 & 5
\end{array}\right]
$$

For this matrix, the minimal Gerschgorin set $G\left(\Omega_{4}\right)$ is given by

$$
\begin{equation*}
G\left(\Omega_{4}\right)=\{z: 4|z-1| \cdot|z-3| \cdot|z-5| \leqq|z-5|+|z-1|\} \tag{4.2}
\end{equation*}
$$

From this, it can be verified that the intervals of the nonnegative real axis for which $\nu(t) \geqq 0$ are given by

$$
\begin{equation*}
0.88 \leqq t \leqq 1.14 ; 2.75 \leqq t \leqq 3.25 ; 4.86 \leqq t \leqq 5.12 \tag{4.3}
\end{equation*}
$$

From Theorem 2, $S\left(\Omega_{4}\right)$ then consists of three concentric annuli, and from Corollary 3, each $B \in \AA_{A}^{\circ}$ has exactly one eigenvalue in each annulus.

To illustrate the results of $\S 3$, consider the matrix $A(\varepsilon)$ where

$$
A(\varepsilon)=\left[\begin{array}{lll}
\varepsilon & 1 & 0 \tag{4.4}\\
0 & \varepsilon & 1 \\
1 & 2 & \varepsilon
\end{array}\right]
$$

and $\varepsilon \geqq 0$. Note that $A(0)$ is the companion matrix for the polynomial $x^{3}-2 x-1$. It is not difficult to show that at most three permutations ${ }^{1}, \varphi_{1}=I, \varphi_{2}=(23), \varphi_{3}=(123)$, are necessary to describe $S\left(\AA_{A_{4(8)}}\right)$, i.e., $G^{\varphi}\left(\Omega_{\Delta(\varepsilon) \varphi}\right)$ is the entire complex plane for all other permutations for every $\varepsilon \geqq 0$. Thus, from Theorem $3, S\left(\Omega_{A_{(\varepsilon)}}\right)$ is determined by the sets $G^{\varphi_{i}}\left(\Omega_{A^{(8)}} \varphi_{i}\right)$, which turn out to be

$$
\begin{align*}
G^{\varphi_{1}}\left(\Omega_{\left.A^{(\varepsilon)}\right)_{1}}\right) & =\left\{\sigma: 1+2|\sigma-\varepsilon|-|\sigma-\varepsilon|^{3} \geqq 0\right\} \tag{4.5}\\
& =\{\sigma:|\sigma-\varepsilon| \leqq 1.62\}
\end{align*}
$$

[^0]\[

$$
\begin{align*}
G^{\varphi_{2}}\left(\Omega_{\Delta(\varepsilon)} \varphi_{2}\right) & =\left\{\sigma: 1-2|\sigma-\varepsilon|-|\sigma-\varepsilon| \cdot|\sigma+\varepsilon|^{2} \geqq 0\right\} \tag{4.6}\\
G^{\varphi_{3}}\left(\Omega_{\Delta(\varepsilon)} \varphi_{3}\right) & =\left\{\sigma:-1+2|\sigma+\varepsilon|+|\sigma+\varepsilon|^{3} \geqq 0\right\} \\
& =\{\sigma:|\sigma+\varepsilon| \geqq 0.45\} .
\end{align*}
$$
\]

The basic reason for considering such an example is that, for suitable choices of ε, the actual number r of permutations in Theorem 6 which are necessary to describe $S\left(\Omega_{A^{(\varepsilon)}}\right)$ can be made to vary from one to three. More precisely, for $0 \leqq \varepsilon<0.045, r=3$; for $0.045 \leqq \varepsilon<0.45$, $r=2$; and for $0.45 \leqq \varepsilon, r=1$. The first two cases are illustrated in Figures 1 and 2.

Fig. 1

$$
\varepsilon=0 ; R_{1}=0.45, R_{2}=0.62, R_{3}=1.00, R_{4}=1.62
$$

Fig. 2
$\varepsilon=0.05 ; R_{1}=0.40, R_{2}=1.67$

This last example serves to answer some questions which might naturally arise in reading the previous sections. First, it shows that $n \times n$ matrices A exist for which at least n permutations φ are necessary to determine $S\left(\Omega_{4}^{\circ}\right)$. On the other hand, it shows that it is not necessary for A to be essentially diagonally dominant in order that $S\left(\Omega_{A}^{\circ}\right)$ coincide with $\operatorname{rot} G\left(\Omega_{A}\right)$ (cf. Theorem 1), since choosing $\varepsilon=0.5$ in (4.4) gives this condition. Finally, it demonstrates that, in general, it is not possible to find a single matrix $B \in \AA_{A}$ for which $S\left(\Omega_{A}\right)$ is $\operatorname{rot} S\left(\Omega_{B}\right)$. This fact follows quite easily from the last example with $\varepsilon=0.05$, in particular.

Bibliography

1. Paul Camion and A. J. Hoffman, On the nonsingularity of complex matrices, Pacific J. Math. 17 (1966), 211-214.
2. H. G. Eggleston, Convexity, Cambridge at the University Press, 1958.
3. B. W. Levinger and R. S. Varga, Minimal Gerschgorin sets II, Pacific J. Math. 17 (1966), 199-210.
4. A. M. Ostrowski, Über die Determinanten mit Überwiegender Hauptdiagonale, Comment. Math. Helv. 10 (1937), 69-96.
5. Olga Taussky, On the variation of the characteristic roots of a finite matrix under various changes of its elements, Recent advances in matrix theory, edited by H . Schneider, University of Wisconsion Press, 1964, 125-138.
6. Riehard S. Varga, Minimal Gerschgorin sets, Pacific J. Math. 15 (1965), 119-729.
7. , Matrix iterative analysis, Prentice-Hall, Inc. 1962.

Received October 29, 1964.
Case Institute of Technology
Cleveland, Ohio

[^0]: 1 Here, we are describing permutations by their disjoint cycles.

