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THE EXPONENTIAL ANALOGUE OF A GENERALIZED

WEIERSTRASS SERIES

GEORGE J. KERTZ AND FRANCIS REGAN

The generalized Weierstrass series

Y a z%

has as its exponential analogue

where {an} is a sequence of complex-valued constants and {λn}
is any real-valued strictly monotone increasing unbounded
sequence.

In this paper the λn will be chosen to be In n. Then the
above series becomes

hereafter called simply the A-series. In its region of absolute
convergence an A-series can be expressed as a Dirichlet series
conversely, a Dirichlet series can be represented by a n i -
series. Under restrictions on the sequence {an}, the imaginary
axis becomes a natural boundary of the function represented
by the A-series.

Since A(z) = A(—z), only values of z = x + iy, x > 0, will be
considered. Similar results hold in (1) for corresponding values of
—z. Hereafter, unless otherwise indicated, all summations will be
understood to range from n — 1 to oo,

2. Convergence of the A-series. The following theorems on
convergence are stated without proof.

THEOREM 1. (A) // X an diverges, the A-serίes converges and
diverges for all points z — x + iy, % > 0, with the associated Dirichlet

series Σ α ^ ~ *
(B) If Σ an converges, the A-series converges for all points z =

x + iy, % > 0.

Theorem 1 remains true if ordinary convergence and divergence
are replaced by absolute convergence and divergence throughout the
statement of the theorem.
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THEOREM 2. // the A-series converges at any point zQ — x0 + iyQ,
%o > 0, then the A-series converges uniformly over an angular region
with vertex at z0 defined by \ arg ( 2 - 2 0 ) | ^ α ) , 0 ^ ΰ ) < π/2.

+
THEOREM 3. If the A-series converges absolutely at a point z0 —

ô + iVoy x0 > 0, then the A-series converges absolutely uniformly over
the half plane comprising the points z = x + iy, x > x0.

3*Expansion of the ^.-series and inversion of a Dίrichlet series*
Expanding each term of the A-series and rewriting result in the
doubly infinite array

(2) -ϊ-+ΣΣ(-i) c Φ 2 c + r

which when summed according to increasing values of n2c+\ n —
2, 3, 4, c = 0, 1, 2, can be expressed as the single series

(3) - ^ L + 2 bkk- = X bkk-
2 k=l

where bx ~ aJ2. There remains to determine bk for k > 1.
In (2) above, ( —l)cα% is a coefficient of k~\ k > 1, if and only if

n2c+ί = k, or equivalently c = (l/2){(ln k/ln n) — 1)}. The coefficient bk

will then be the sum

where the summation extends over all n such that for some odd
natural number d', nd' = k. Hereafter, a primed letter, e.g. d', will
be used to indicate only odd natural numbers.

Assume now that the A-series converges absolutely at a point
z0 — x0 + iy09 χ0 > 0, and consider again the double array (2) above,
taking the absolute values of the individual terms. The nth. row
converges to \an\(n~x°/l — n~2x°) and the sum of the ' 'row-sums" is

which can also be shown to be convergent by comparison with the
assumed convergent series. Consequently the elements of the double
array can be rewritten in any order without affecting convergence
that is, the Dirichlet series (3) converges to the same value as the
A-series. Hence

THEOREM 4. In its region of absolute convergence an A-series
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n~
n~

can be represented by a Dirichlet series ]P£=ibkk~*, where bλ == aJ2
and for k > 1

= Σ ( - l ) 1 / 2 t ( l n f c / l n Λ ) - 1 } α n .

Conversely, given the coefficients bu δ2, of a Dirichlet series,
the equations

61 = α1/2, 6 A = Σ (-iyι^^ι^-1]an
nd' = k

determine the an uniquely. This is the case since, in the last sum,
the largest value of n occurs when df = 1. We have therefore

THEOREM 5. A given Dirichlet series ΣΓ-i bjc2 can be repre-
sented by an A-series.

The value of αΛ, n > 1, can be calculated by

In n

where J(d) is defined recursively by

Σ (-:
1 f or k = 1

0 f or k > 1,

the summation being taken over all positive integral divisors, d, of k
whose corresponding quotients, d\ are odd.

4* Existence of a natural boundary. We first determine the
behavior of the function represented by an A-series as the variable
approaches the axis of imaginaries along lines parallel to the axis of
reals. This is established by the following theorem.

THEOREM 6. Let z — x Λ- iyr, where x > 0 and yf is a fixed
element of the set (πk'/2(\n k): k' = (2r + 1), r = 0, ± 1, ± 2, k =
2, 3, 4, •••)• Let the coefficients of the A-series be so chosen that

Then

l n k fd "' 2(2r -
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where αr* = (-ίy*r-1)k'ak{2r-n .
As a consequence of the hypothesis, J^\an\ also converges, and

by the comment following Theorem 1 the A-series converges absolutely
over the half plane x > 0. The ^-series may therefore be written as
the sum of the two series indicated below.

Consider the subset of terms of the A-series for which n — kΌ',
k determined by the choice of y\ and vr an odd natural number. In-
dicate the summation of these terms by 2 i a n ^ the summation of
all remaining terms by ̂  A typical term of 2χ is

n~z

\ _|_ n~Zz k" 1 _(. e-2v'(lnk)(x + iy')

^ -I p—2v'—2v' (lnk)x

Replacing v' by its equal from the set {(2r — 1) : r = 1, 2, 3, •}, and
making the substitutions w = e~

{lnlc)x and αr* = (-iy2r~ί)kfak{2r~i) permit
2 i to be written

l

W{'

Ξ l 1 1

Consider now

( l - W ) Σ α * w

 2(2r i
r=l 1 W 2 ( 2 r 1} J

= lim i L z i £ ) . lim {(1 - w>) Σ < w ^

= A lim 1(1 - ^ ) Σ « r * W

 mrl)\
2 w - 1 - I r=l 1 — ^ 2 ( 2 r 1 } J

By another substitution, w2 = t, this last limit becomes

*-i- ffi 2(2r - 1) 1 + t + f + + f{r~1]

The series in this last expression is uniformly convergent for 0 ̂  t
so that this last limit can be rewritten

a* m (2r - l )^ 8 "- 1 ^ 2

+ t + f + + fir

έά 2(2r - ί) '

that is, the limit (4) has the value (5). Replacing w m (4) by its
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equal yields

hmUl ^k~x)Σ1an—- \ = Σ —

X->A ' \ + n~2z) - i 2 ( 2 r - l )

or

lim -
1 n l + n~2z) lnft έί 2 ( 2 r - 1) '

There remains to show that Σ2 is uniformly convergent in some
interval 0 ^ x ^ N, for then

lim {xΣ2} = Σ2 lim \xan — — — 1 = 0 .
χ->o+ x->o+ [ 1 + n~2z)

In order to establish the desired uniform convergence we shall require
the following

LEMMA. // k' is an odd integer, if n and k are natural numbers,
k greater than one, nΦkυ> for an odd natural number v'', and if
y0 — τε/2(lnk), then for x ^ 0

where C = min {1, y0}.

Proof. The set of points S — {z : z — n~2x + ê oî 'iαnnjj. ] j e o n a

circle of radius one about the point n~~2x ^ 1, but does not contain
the element z = n~2x — 1. If z e S and R(z) ^ n~2x, then

I z I ̂  1 > In (1 + (1/n)1*'1) .

Hence under the transformation w — u + iv = z — n~2x, ze S, we can
restrict our attention to points on the unit circle about the origin
lying to the left of the axis of imaginaries.

If a denotes the point — n~2x on the u-axis, w is a point on the

unit circle in the second quadrant, β is the projection of w on the

^-axis and δ is the point ( — 1 , 0), then \z\ = ΐϋa ^ ϊΰβ. The minor

arc wd = θ < 2 sin θ — 2wβ, where θ is the central angle subtending

the arc wd hence | z | ^ wd/2. Since w lies above the u-axis, the

arc wd = πQ — 2?/0 In (nlk']) where Q is the least positive integer such

that Qπ ^ 2yo(ln nlk'1) that is, the least positive integer Q such that

kQ - 1 > πlfc/|, from which we get Q(ln ft) - In ^ lfc/ | ^ In (1 + (l/w)U/|)

and finally πQ — 2τ/0(ln^lfc/|) ^ 2τ/0 In (1 + (l/w)1*'1). We have then | z \ ^

?̂ δ/2 g ^/oln(l + (1/^)IA;/'). A similar result holds if w lies on the unit
circle in the third quadrant the lemma follows.
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To complete the proof of the theorem then, we note that

11 + n-z* I = I n-
2x + e-i2kfy°{lnn) I

for all z such that R(z) ^ 0 hence for 0 ^ x ^ N

1 + n—2z κ 11 + n~2*

- 2 2 1 an 1 , . _ g g i , ._,

which by the lemma is less than or equal to

This last series, convergent whenever Σ\an\ n]k'1 is, becomes the domi-
nant series for the Weierstrass Λf-test.

Theorem VI is the main result required for the natural boundary
theorem which follows. A set of integers will be called dense if
there is a positive number I such that every interval of length I
contains an integer of the set.

THEOREM 7. If, to each positive integer k of an infinite set,
there corresponds a dense set of k' such that

Σ\an\ n]k'] < oo and Σ (-l){2r~1)k'^^-i) Φ 0 ,

then x ~ 0 is a natural boundary of the function represented by the
A'Series.

It is sufficient to show that set of singularities {iπk'l2Qiik)},
where for each k, kr assumes those values for which the hypothesis
of Theorem 6 are fulfilled, is everywhere dense on the axis of
imaginaries.
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