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THE EXPONENTIAL ANALOGUE OF A GENERALIZED
WEIERSTRASS SERIES
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The generalized Weierstrass series
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has as its exponential analogue
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where {a,} is a sequence of complex-valued constants and {1.}
is any real-valued strictly monotone increasing unbounded
sequence,

In this paper the 2, will be chosen to be Inn. Then the
above series becomes

_nr
1+ n2

)

(1) Alz) = 2%

hereafter called simply the A-series. In its region of absolute
convergence an A-series can be expressed as a Dirichlet series;
conversely, a Dirichlet series can be represented by an A-
series. Under restrictions on the sequence {a,}, the imaginary
axis becomes a natural boundary of the function represented
by the A-series.

Since A(z) = A(—=z), only values of z = + iy, x > 0, will be
considered. Similar results hold in (1) for corresponding values of
—2. Hereafter, unless otherwise indicated, all summations will be
understood to range from n = 1 to oo,

2. Convergence of the A-series. The following theorems on
convergence are stated without proof.

THEOREM 1. (A) If 3. a, diverges, the A-series comverges and
diverges for all points z = © + 1y, * > 0, with the associated Dirichlet
series >, a,n"%,

(B) If 3 a, converges, the A-series converges for all points z =
x4+ iy, x>0,

Theorem 1 remains true if ordinary convergence and divergence
are replaced by absolute convergence and divergence throughout the
statement of the theorem,
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THEOREM 2. If the A-series converges at any point z, = X, + i¥,,
%, > 0, then the A-series converges uniformly over an angular region
with vertex at 2, defined by |arg (z —z)| = ®,0 = w < /2.

THEOREM 3. If the A-series converges absolutely at a point z, =
Ty + 1W,, €, > 0, then the A-series converges absolutely unmiformly over
the half plane comprising the points z = x - iy, x > X,.

3.Expansion of the A-series and inversion of a Dirichlet series.
Expanding each term of the A-series and rewriting result in the
doubly infinite array

() U 5 S (- ey
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which when summed according to increasing values of n**!, n =

2,3,4 +-;¢=0,1,2, ... can be expressed as the single series

(3) D S bkt = S bk
2 k=2 =1

where b, = a,/2. There remains to determine b, for k > 1.

In (2) above, (—1)%a, is a coefficient of k=%, k > 1, if and only if
n** =k, or equivalently ¢ = (1/2){(In k/In n) — 1)}. The coefficient b,
will then be the sum

_ 1/2{(ink/lnn)—1}
bk~nd,2:k(ﬁ1)” a,
where the summation extends over all » such that for some odd
natural number d’, n* = k. Hereafter, a primed letter, e.g. d’, will
be used to indicate only odd natural numbers.
Assume now that the A-series converges absolutely at a point
% = @ + 1Y, ¢, > 0, and consider again the double array (2) above,
taking the absolute values of the individual terms. The nth row
converges to |a,|(rn /1 — n~**) and the sum of the ‘‘row-sums’ is

0w
AR

which can also be shown to be convergent by comparison with the
assumed convergent series. Consequently the elements of the double
array can be rewritten in any order without affecting convergence;
that is, the Dirichlet series (3) converges to the same value as the
A-series. Hence

THEOREM 4. In its region of absolute convergence an A-series
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n—Z
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can be represented by a Dirichlet series S.7.,bk~, where b, = a,/2
and for k>1

by = 3 (—1)yptunemm-ng

nd' =k

Conversely, given the coefficients b,, b,, --- of a Dirichlet series,
the equations

b1 = a1/2, bk oy Z (___1)1/2((1nk/lnn)—-1)an

nd =k

determine the @, uniquely. This is the case since, in the last sum,
the largest value of n occurs when d’ = 1. We have therefore

THEOREM 5. A given Dirichlet series S, bk~ can be repre-
sented by an A-series.

The value of a,, » > 1, can be calculated by

— J<lnn>

Zerr NInk

where J(d) is defined recursively by

S (— D=1 g(d) =

k=dd’

1 fork=1
0 for k>1,

the summation being taken over all positive integral divisors, d, of k
whose corresponding quotients, d’, are odd.

4. Existence of a natural boundary. We first determine the
behavior of the function represented by an A-series as the variable
approaches the axis of imaginaries along lines parallel to the axis of
reals, This is established by the following theorem.

THEOREM 6. Let z = a + 1y’, where x>0 and y' 1is a fived
element of the set (nk'/2(Ink): k" = (2r +1),r =0, =1, £ 2, ---; k=
2,3,4, --+). Let the coefficients of the A-series be so chosen thal

Sila, < e,
Then

s 1
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where af = (—1)* V% q 0y .

As a consequence of the hypothesis, ¥ |a,| also converges, and
by the comment following Theorem 1 the A-series converges absolutely
over the half plane # > 0. The A-series may therefore be written as
the sum of the two series indicated below.

Consider the subset of terms of the A-series for which n = k¥,
k determined by the choice of ¥’, and " an odd natural number., In-
dicate the summation of these terms by >} and the summation of
all remaining terms by 3. A typical term of I, is

n-* e—-'v'(lnk)(a:-l—'iy’)
a, — akv’ -
1 + n—% 1 + e—2v'(lnk)(z+w')

(=) sin (v'zk'[2)e "R
1 . e——zv’(lnk)w ‘

— akv

Replacing ' by its equal from the set {(2r — 1):7 =1,2,8, .-}, and
making the substitutions w = ¢~ and a} = (—1)* """ @ ey permit
> to be written

o s w[2r——1)
D S
= 1 — qu2er—b

Consider now

. oo w(2r~1)
) o —w St 2

w* w-o1—

o= 1 — “ 1 — qp2er—1

:;%m%a—uﬁiw_ﬁﬁi—}

w1~ = 1 — e
By another substitution, w® = ¢, this last limit becomes
1 . oo t(2r—1)/2
Fim{e -0 o0

. oo S 2/',, . l)t(2r—1)/2
= lim ar . ( .
fim > 22r — 1) 1t 42 oo 2D

The series in this last expression is uniformly convergent for 0 <t =<1
so that this last limit can be rewritten

o * 2 — 1)er-ni2
5 llm{ ar . (
(%) vz=lc—>1— 22r —1) 1+t 4+ + oo 4700
_émm—n’

that is, the limit (4) has the value (5). Replacing w in (4) by its
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equal yields

Hm{l—k%_zaw_lil_}: ST
%ﬁ( )2 1+n éZ@%—D

or
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There remains to show that Y, is uniformly convergent in some
interval 0 <o < N, for then

lhn{xZg::Azzhnl{wan——ﬂii——}::O
+ e 14+ n

-0 z—

In order to establish the desired uniform convergence we shall require
the following

LEMMA., If K is an odd integer, if n and k are natural numbers,
k greater than one, n+k* for an odd natural number v', and if
Y, = z/2(Ink), then for =0

|n—-2x 4+ @20k’ (inn) | g C In (1 + (1/n)|k'l)

where C = min {1, y,}.

Proof. The set of points S = {z:2z = n" + ¢#it™} lie on a
circle of radius one about the point n~** < 1, but does not contain
the element z = n=** — 1, If ze S and R(z) = n~*, then

[2z]=21>1In(1+ (1/n)) .

Hence under the transformation w = w + v =2z — n*,2¢€ S, we can
restrict our attention to points on the unit circle about the origin
lying to the left of the axis of imaginaries.

If « denotes the point —7~** on the w-axis, w is a point on the
unit circle in the second quadrant, @ is the projection of w on the
u-axis and ¢ is the point (—1,0), then |z| = wa = wB. The minor
arc wo =0 < 2sinf — 2&)-,@, where 6 is the central angle subtending
the arc wi; hence |z]| = @/2. Since w lies above the wu-axis, the
arc wd = 1Q — 2y, In (n'*) where @ is the least positive integer such
that @ = 2y,(In »'*""); that is, the least positive integer @ such that
ke — 1 >2*, from which we get Q(Ink) —In»n'*' = In (1 + (1/n)*")
and finally 7@ — 2y,(Inn*") = 2y, In (1 + (1/n)*"). We have then [2| =
7,273/2 = Y In(1 + (1/n)*"). A similar result holds if w lies on the unit
circle in the third quadrant; the lemma follows.
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To complete the proof of the theorem then, we note that
ll + ,n—2z| — In—zz + 6—i2k'y0(lrm)[

for all z such that R(z) = 0; hence for 0 = = N

1+n* |14 %=
1
:2210’%‘

]"L—% + 6—i2k'yo(lnn) ‘
which by the lemma is less than or equal to

1 1
< 2 TR ey,

.

This last series, convergent whenever ¥|a,|n'*"' is, becomes the domi-
nant series for the Weierstrass M-test.

Theorem VI is the main result required for the natural boundary
theorem which follows., A set of integers will be called dense if
there is a positive number ! such that every interval of length I
contains an integer of the set.

THEOREM 7. If, to each positive integer k of an infinite set,
there corresponds a dense set of k' such that

Yla, | n < oo and 3 (—-—1)(27—1),0,@,:(27—1) =0,
=

then © = 0 is a natural boundary of the function represented by the
A-series,

It is sufficient to show that set of singularities {imk’/2(Ink)},
where for each k, k' assumes those values for which the hypothesis
of Theorem 6 are fulfilled, is everywhere dense on the axis of
imaginaries.
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