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THE SPECTRAL THEOREM FOR UNBOUNDED
NORMAL OPERATORS

S. J. BERNAU

This paper gives a direct constructive proof of the spectral
theorem for a normal operator T (bounded or unbounded) in
a complex Hubert space. It depends on the results, recently
obtained by elementary methods, that an unbounded positive
self adjoint operator A has a unique positive self adjoint square
root A1/2; and an arbitrary self adjoint operator A has a unique
representation A = A+ ~ A~ with A+ and A" self adjoint and
positive and the range of each contained in the null space of
the other.

Write ( T\ = (T*Γ)1 / 2 and, for complex λ and r ^ 0, let E(\, r)
be the null space projection of (| T — XI \ — r / ) + . For compact subsets
K of the complex plane

E(K)= Λ

and for any Borel set M,

E{M) = V {E(K): K compact and K £ M) .

It is shown that E is the unique spectral measure such that

T = \xE(dX) .

In the case of a bounded normal operator the spectral theorem
can be obtained in many different ways. For example, the theorem
can be deduced from the theory of Z?*-algebras [4], the representation
of linear functionals on C(M) (M compact Hausdorff) ([5], [2]), or
the Stone-Weierstrass theorem [8]. The proof of the theorem for
unbounded normal operators usually relies both on the bounded case
and on the theorem for unbounded self adjoint operators [4], [8],
[9]).

Our proofs are elementary in the sense of [7]. That is to say
we depend only on inherent properties of Hubert space and of the
complex number system. While we use the notation and some ele-
mentary results from the theory of spectral measures and integrals
these are merely convenient devices for stating the results. Apart
from this, and some manipulations with projections, all the results
needed are to be found in [1],

The method of proof seems to be new, even in the bounded case.
It is motivated, to some extent, by Riesz and Nagy's proof [8, §108]
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of the spectral theorem for bounded self-adjoint operators. The proof
of uniqueness of the spectral measure of a normal operator is based
on the neat characterisation of the spectral subspaces given by Halmos
[5, §41]. This in turn is based on the corresponding results for
bounded self adjoint operators given in [7].

To make the paper reasonably self contained statements of the
main results of [1] have been included.

I am grateful to the referee for pointing out one serious error
and some lesser mistakes in the original manuscript of this paper.

2* Definitions and preliminary results. Throughout this paper
§ denotes a complex Hubert space. All operators on ξ> are assumed
linear, but not necessarily bounded. For an operator Γ, *S)(T), $Ϊ(T)
and %l(T) denote, respectively, the domain, range and null space of
T. If T is bounded we assume ®(Γ) = ξ> and if T is not bounded
we assume 3)(Γ) is dense in ξ). By projection we always mean
orthogonal projection. All statements about convergence of operators
mean strong convergence.

We refer to [8, §§ 114-119] for definitions and elementary properties
of closed operators, the adjoint of an operator and extensions of an
operator. Recall that an operator T is self adjoint if T = Γ*, positive
if T is self adjoint and (Tx, x) ^ 0 (xe<§)(T)); and that T is normal
if TT* = T*T. If S is bounded we say that T commutes with S if
5 T g TS (i.e., TS is an extension of ST).

We record the following theorems.

THEOREM 1. If A is a self adjoint operator there exist unique
positive operators A+ and A~ such that

A - A+ - A-, 3*(A+) s 3Ϊ(A-), 3t(A") S ^(A+)

and A+ and A~~ commute with every bounded operator which commutes
with A.

THEOREM 2. If T is a normal operator there exist a positive
operator \ T\ and a unitary operator U such that

τ = i τ\u= u\ τ\.

I T\ = (T*T)112 and is uniquely determined by T, and U is unique
if we require (as we may) that

Ux = x (x

Furthermore,
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= ®(| T\) ,

For elementary proofs of these theorems see [1, Theorems 12 and
22].

We need some results about suprema and inίima of sets of projec-
tions. For these we refer to [5, §30], We also use the result that
a directed increasing (decreasing) set of commuting projections is
strongly convergent to its supremum (inίimum). A proof of this can
be based on [8, § 104, p. 263].

Throughout this paper T is a normal, but not necessarily bounded,
operator on ξ>; C is the complex plane, & is the set of all Borel
subsets of C, 3ίΓ is the set of all compact subsets of C and f/ is the
set of all open subsets of C.

3* Construction of the spectral projections* Suppose that λ e C
and r ^ 0. The operator T — XI is normal so that (| T — XI \ - rl) +
is uniquely defined, self adjoint and hence closed. It follows that
3ίi((| Γ - λ/| - rl)+) is closed. We now define E(\ r) to be the pro-
jection on Sβ((| T ~ Xl\ — r/) + ); E(X, r) is a bounded orthogonal pro-
jection.

For Ke SίΓ we define

E(K)= AV{E(\ε):XeK};

and extend the definition of E to arbitrary subsets M of C by the
formula,

E(M) = V {E(K)\ Ke J Γ a n d ί g i l ί } .

(Here and subsequently we take the supremum of an empty set of
projections to be 0. This gives E(0) = 0.)

In this section we show that E restricted to & is a spectral
measure.

It is important to know that

(1) E(X,r) = E(D(X,r))

where D(X, r) denotes the closed disc with centre λ and radius r.
This result is proved in Lemma 3. Before we can prove (1) we need
some commutativity results which apply to all the projections E(M)
(igC).

LEMMA 1. The projections E(M) (M £ C) commute with each
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other and with T, T* and \T -Xl\ (XeC).

Proof. As in the proof of [1, Theorem 23] it follows that for
each complex λ the projections E(X, r) (r ^ 0) commute with each
other and with T—Xl and ϊ 7* — λZ (= (T — λZ)*). Thus they commute
with T - μl and (T - μl)* (μeC). Hence [1, Theorem 10] they
commute with ( ( T - μI)*(T - μl)m) = \T - μl\ and [1, Lemma 16]
with E(μ, s) (μeC,s^0). Because multiplication of projections is
strongly continuous, inίima and suprema of sets of commuting projec-
tions are themselves commutative. It follows that

E(M)E(N) = E(N)E(M) (M, N g C) .

Now let g7 be any set of commuting projections all of which
commute with T. We show that V ^ and A 8" also commute with
T. Because the projections in g7 commute we may, using the formulae
for finite suprema of commuting projections, assume that gf is directed
increasing. Then g7 is strongly convergent to V S ' If a;
and Ee ξ?,Exe ®(T) and ETx = TEx. Now, Ex -> (V g > and

TEx = JSTx -> (V

Because T is closed, ( V ^ e S ( Γ ) and

Thus (y^)T^ Γ ( V ^ ) as required. Similarly A S7 commutes with

Γ.
By taking adjoints we deduce that V ^ a n ( i A & commute with

T*. It now follows that they commute with (T - λZ)*, (Γ - λ/) and,
by [1, Theorem 10] again, with | T — λ Z | . The remainder of the
Lemma is now obvious.

Before proving the next lemma we record some known facts about
the projections E(X, r) .

For fixed XeC:

(2) E(X, r) £ E(\, s) ( 0 g r < s ) ;

( 3 ) E(X, r) = lim E(X, s)

(4) E(X,r)-+I (r->oo).

These are proved in [1, Lemmas 17, 18]. It also follows from [l,
Lemma 17 and proof of Theorem 23] that (T — Xl)E(x, r) is a bounded
normal operator such that

( 5 ) {(T - XI)E(X, r)}* = (Γ - XI)*E(X, r)
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( 6 ) \\(T-Xl)E(X,r)\\£r;

and, writing F(X, r) = I — E(x, r), that:

( 7) (I Γ - XI \ F(X, r)x, F(x, r)x) ^ r \\ F(x, r)x ||2 (x e

(Recall that ®(| T- Xl\) = 3)(Γ~ XI) = ®(Γ) (XeC)).
It is an immediate corollary of (2) that, for any subset M of C:

(8) V W , £ ) : λ e I } ^ V {E(x, η):XeM} (0 g ε g 77)

and it follows from the definitions and from elementary properties of
suprema and infima that, if M S N,

( 9 ) E(M) g E(N) .

The next lemma is crucial.

LEMMA 2. If Xu , λΛ and μ are complex, rlt , rn and r are

nonnegative and

D(μ, r) C

then

E(μ, r) £ V E(Xi9 rt) .

Proof. Take ε > 0 and write

F, = ^(λ,, r< + ε) ,

^ = Π (E(μ, r) - E(μ,

Because all the projections commute, i^ε is a projection,

F ε - E(μ, r) - E(μ, r) V Ft ,

and, because all the E(X, r) commute with T (see proof of Lemma 1),
Fε commutes with T.

By (6), (T—μI)Fz is a bounded normal operator and \\(T—μI)Fs \\^r.
For the remainder of the proof we write F for Fζ and we assume,
as we may, that μ = 0. By [2, Theorem 2], because TF is bounded
and normal, there exist a complex number a and a sequence (xk) in
ξ> such that: | a \ = || TF | | , || % || = 1 for all fc and

TFxk - axk~>0 (k-> oo) .

Now, because T commutes with F, FTF ~ TF and hence,
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a{xk - Fxk) = (F - I)(TFxk - axk) -> 0 (fc — oo) .

Suppose that a Φ 0, then

xk-Fxk-+0 (A->oo) .

Consequently | | i ^ ; f c | | — + 1 (&—>oo) and we may, and do, assume that
xk = i ^ for all &.

Now, for i = 1, 2, , n,

Because F = (I — F^F, it follows from Theorem 2 and (7) that

II (T - XJ)Fxk || = || I (T - λ j ) I 2 ^ || || F ^ ||

^(\T-\J\Fxk,Fxk)

= r { + ε .

Hence,

(r< + ε) - || (T - aI)Fxk

Because | α | = || TF\\ Sr andD(0, r ) g U ^ ( λ ^ n ) , we have | a - ^ | g r ,
for some i. This is a contradiction so we must have a = 0, i.e.

= 0. Again, for some ΐ, 0 e -D(λi, r<) and, as above,

( r , + 6)11^11^11(7

Because 0 e D(Xif r<), | λ< | ̂  r<β Hence || i ^ || = 0 (a? € ξ>) and ί7 = 0.
Now let ε -> 0 + 0, by (3), F, — ̂ (λ,, r<) for each i. Thus, because

multiplication of projections is strongly continuous,

0 = Fε -+ Π (E(μ, r) - E{μ, r)E(Xi9 r,))

= £/(//, r) - E(μ, r) \f E(\, r4)

and jE7(jt€, r) g V?=i-^(λί> ri)» a s required.

LEMMA 3. For

E(β, r) - A V {^(λ, ε): λ e D(^, r)} .
ε>o
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Proof. If η > 0, it follows from Lemma 2 that

E(μ, r + η) ^ E(X, ε) ( λ e D ( μ , r); 0<ε^η) .

Hence

#(μ, r + ? ) ^ A V {#(λ, e): λ e D(μ, r)}
ε>0

and by (3),

E(μ, r) ̂  A V » . , e): λ e D(μ, r)} .
ε>0

Conversely, for each ε > 0, the set of open discs {z: || z — λ || < ε}
(XeD(μ, r)) covers the compact set D(μ,τ). Hence, there exist
XL, -, λn such that

, ε) .

By Lemma 2,

E(μ, r) ̂  V E(\,

Thus

£?(/*, r) g A V {^(λ, ε): λ e Z?(^f r)}

and the proof is complete.

LEMMA 4. // K and L are compact,

E{K) V E(L) = E{K U L) .

Proof. Because all the projections commute, it follows from [5,
§ 30, Theorem 3] that

E(K) V E(L)

= U V {E(\, e): λ e K}] V |~A V {E(μ, η): μ e L}Ί

= A>o([V {E(X, e): λ e #}] V [V {E(μ, η): μ e L}])

= A V {#(λ, ε) v E(μ, v):XeK,μeL}.
εv>o

Hence, by (8),
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E{K) v E(L) = Λ V {E(\ e) V E(p, ε):\eK,μeL}
ε>0

= AV {E(v,ε):veK(jL}
ε>0

- E(K U L) .

LEMMA 5. // M and N are disjoint subsets of C then,

E(M)E(N) = 0 .

Proof. Let K and L be compact subsets of M and N respectively.
Then K Π L — 0 and hence there exists a positive rj such that

D(λ, 97) Π D(μ, η)= 0 (\eK, μeL) .

Because all the relevant projections commute it is sufficient now to
prove that E(X, η)E{μ, η) = 0 (λ e K, μe L). Let x e § and write

2/ - #(λ, 7])E(μ, η)x .

Because y = ̂ (λ, ̂ )?/ = JE7(^, η)y, it follows from (6) that,

II (λ - ju)2/ II = II (Γ - μI)E(μ, η)y ~ (Γ - Xl)E(X, η)y ||

g II (Γ - ^ ) ^ , 7̂)1/ II + II (Γ - XI)E(X, η)y \\

^ 5 7 1 1 2 / H + 1 7 I I 2 / I I .

Because D(λ? 77) Π D(μ, η) = 0 , | λ — ̂  | > 2η. Hence || 7/ |j = 0 and
, η)E(μ, η) — 0 as required.

COROLLARY. / / iΓ αwd L are in SΓ and K Π L — 0,

E(K UL)

Proof. This follows from Lemmas 4 and 5.

LEMMA 6. / / K is in ^ r

= A{E(U): Ue?/,K^ U} .

Proof. By definition of E,

E(K) ^ Λ {E(U): Ue ?/, K^U}.

To prove the converse let

Es= V {E(X,e):XeK} (e > 0) .

By definition, E(K) = /\ζ>QE2. Let t7ε be the open ε-neighbourhood
of K; i.e.
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U2 = {zeC:d(z,K)<ε} (e > 0) .

Clearly K£ Ue. We complete the proof by showing that E(Ue) ̂  Ee

(s > 0).
Suppose that Le ^Γ and L S ί/ε. Then L is at positive distance

from C ~ Z7ε, i.e. there exists η such that 57 > 0 and if μ e L and
\z — μ\^rj then 2e Us. Thus, for each μ in L, the compact set
D(μ, 57) is covered by the open discs {z: | z — λ | < ε} (λe JK"). Hence
a finite set, corresponding, say, to λx, , λ%, of these discs cover

, 37). Then, by Lemma 2,

7) ^ y ^(λ i f e)

^ S, (^ e L) .

Thus E(L) ̂ Eε {LeSΓ and L £ ί/ε) and hence, E(Ut) ̂  Es . It
follows that

E{K) ^ AE(US)^ AE* = E{K) ,
ε>o ε>o

and, because each Uε is open,

E(K) = A {E(U): Ue f/, K^U} .

At this stage it is relevant to point out that we have proved
enough to show that, for each x in ξ>, the function (E( )x, x) restricted
to ^Γ is a regular content. Standard techniques [6, §§53, 54] would
enable us to extend this content to a regular Borel measure. We
would then have to show that this measure coincided with the restric-
tion of (E( )x,x) to &. It would then follow [5, §36] that E
restricted to έ%? was a spectral measure. We do not proceed in this
way because the proof that (E( )x, x) was the extension of the content
originally defined would be of the same order of magnitude as the
direct proof that E restricted to & is a spectral measure. There
are, however, obvious similarities between our proofs and the standard
procedures for extending a content.

Let sf denote the class of all subsets M of C such that

E(M) = A {E(U): Ue <?/, MSU}.

Clearly SΓ £ S>f and <?/ s j ^ . We shall show that & S J ^ and
that E restricted to Sf (and hence, restricted to &) is a spectral
measure.

LEMMA 7. If (Un) is a sequence in <?/ and U = U»-=i Un, then

E(U)= V E(Un).
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Proof. By (9), E(U) ^ VZ i E(Un) .
Conversely let Ke j % ^ , K g U. Because K is compact there exists

m such that

Hence, [6, §50, Theorem A], there exist compact Ku , Km such
that

Then, by definition, E(KJ g 2£(ϊ7n) for each n and, by Lemma 4,

ί?(JSΓ) = V E(Kn)
Λ = l

^ V

^ V

Thus £/(?/) ^ y~=1E(Un), which completes the proof.

LEMMA 8. 1/ (ikfJ is α sequence in sf and M = (J"=i -^n,
ikf is in s^ and

E(M) = V

Proof. By (9), J5(M) ^ V ^ E{Mn).
Now, suppose that s > 0 and a; e ξ>. By definition of j y there

exists a sequence (Z7J in ^/ such that ilίM S Un and,

x - E(Mn)x || < S2-1 (w = 1, 2, •) .

Let U = U~=i Un; U is open, M^U and, by (9) and Lemma 7,

Thus,

0 ^ E(M) - \fE{Mn) S VE(Un) - \fE{Mn)

^ \f{E{Un) - E(Mn)) .

Hence,
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|| E(M)x - (VE(Mn))x || ^ || {V(E(Un) - E(Mn))}x \\

= ε .

Thus E(M)x = {\fζ=1E{Mn))x (xe&) and E(M) = \/E(Mn).
It also follows from the proof above that

inί{\\E(U)x- E(M)x\\:

Henee,

E(M)= A{E(U):

Me Si/ and the proof is complete.

COROLLARY 1. // (Mn) is a disjoint sequence in

with the series strongly convergent.

Proof. By Lemma 5,

V

with the series strongly convergent.

COROLLARY 2. Every closed subset of C is in

Proof. Every closed subset of C is a countable union of compact
sets.

LEMMA 9. E(C) = I and, for every M in j ^ , if Mf = C - M,
then M'esv? and E{M') = I - E(M).

Proof. Because C is open, C e Sf and, by (9) and (4),

E(C) ^ E(0, r)-+I (r -> oo).

If U is open, U' is closed and, by the corollaries to Lemma 8,

E(U') + E(U) - E(C) ,
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Similarly, if K is compact, K' is open and

E(K') = I - E(K) .

Thus, by (9),

E{M') ^ V {E(U')\ Uef/,M^U)

= \f {I- E(U): Ue <&, M^U)

= 1- A{E(U): Ue?/,MQ U}

= 1- E(M)

and conversely,

E(M') S A {E(K'): Ke 3T, K S M)

= A {I - E(K): Ke

= I - V W O
= 1- E{M) .

It follows that E(M') = I - £/(M) and, because ίΓ' e ̂  if JKΓe
the second inequality above shows that M'

THEOREM 3. If E is restricted to & then E is a spectral
measure.

Proof. Lemmas 8 and 9 show that sf is a σ-ring of subsets of
C. Because, 3ίΓ S J ^ , it follows that & S j y . Because E is
(strongly) countably additive on Szf (Lemma 8, Corollary 1) and
E(C) = / (Lemma 9), it follows that E, restricted to ̂ f, is a spectral
measure.

REMARK. The proof given above shows that the spectral measure
given by the restriction of E is regular, i.e. if M is in ̂ ? ,

E(M) = V {E(K): Ke
/,M^ U} .

The proof can easily be adapted to give a simple direct proof that a
complex spectral measure [5, §39] is regular.

4* The spectral theorem* We now wish to prove the relation

T = [\E(dX) .

Before doing this we digress to define spectral integrals and recall
some elementary facts about them. Our remarks are based on [4,
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XII. 2.5] and [5, § 37].
If / is a complex-valued Borel-measurable function defined on C

and r > 0, fr is defined by

Λ(λ)=/(λ)

If E is any spectral measure we define

A = γ(X)E(dx)

as follows. S)(A) is the set of all x in § such that \fr(X)E(dX)x tends

to a limit as r —> oo and, for a; in ®(A)

Aa; = lim \fr(λ)E(dX)x .

(We make the convention that the range of integration is the whole

of C unless otherwise specified). Writing Ar = \fr(X)E(dX) and

Mr = {XeC:\f(X)\^r},

we have, for x in ξ>,

|| Arx - Asx II2 = j |/r(λ) - /.(λ) l^ίdλja?, a?)

It follows that

3>(A) = {x G φ: J |/(λ) \\E(dX)x, .τ)< o

and

(10) 11 Ax 112 = J I f(X) \\E(dX)x, x) (x e

For the remainder of this paper E denotes the spectral measure
with domain & which we obtained in § 3 (Theorem 3).

THEOREM 4. T= [χE(dx).

Proof. If M is a Borel set of diameter not greater than r and
if λ G M, it follows from (5) and (6) that

E(M)x = E(M)E(X, r)x G
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and

II TE{M)x - \E(M)x \\ S r \\ E(M)x || (x e ξ>) .

Hence

( XE(dX)x = \ XE(dX)E(O, r)x

= TE(0, r)x (xe&).

Thus, if xe<S)(T),

\ XE(dX)x = TE(Q, τ)x

= E(0,r)Tx
—> Tx ( r - » oo) .

This shows that x e 3)Π XE(dX)j and

so that Γ g \xE(dX). On the other hand if xe®([\E(dλ)\

TE(0, r)x = \ XE(dX)x

—> \λ£/(dλ)a; (r—> oo) .

Because T is closed and £7(0, r)x—>x (r—• oo), we have α;eS)(Γ) and

To; = fXE(dX)x. Thus Γ = ίλJS7(dλ) as required.

The construction of E makes uniqueness easy to prove.

THEOREM 5. If F is a spectral measure (with domain &) and

T = \xF(dX), then E = E.

Proof. Suppose t h a t XeC and r ^ 0. Let g(λ, r) be the set of

all x in ξ> such t h a t

^ G ® ( Γ W ) a n d \\r-n(T-Xl)nx\\ ^\\x\\ (n = 1, 2 , . . . ) .

The proof of [5, §41, Theorem 1] shows that g(λ, r) is a subspace of
§ which is invariant under every bounded operator which commutes
with T. We show that

r))) = g(λ, r) - ϋl(E(\ r)) .

Write F(\, r) = î (Z)(λ, r)). Because D(λ, r) is bounded
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F(\, r)x e S)(Γ") = ® ( Γ - λ/)%) (a? e ξ>)

and, by (10),

| | r ~ Λ ( Γ - \I)nF(X, r ) x | | 2

= ίr~2 % I jcjβ - λΓ(jP(dμ)F(λ, r)&, F(λ, r)x)

= \ r~2n \μ -X \2n(F(dμ)F(λ, r)x, x)
JDίλ*r)

£ ί (F(d/£)α, a;)
jD(λ.r)

Thus 9ϊ(F(\, r)) S S(λ, r).
Now suppose that a; 6 g(λ, r). Take s > r and write

2/ = x — ̂ (λ, s)«. Because %(\, r) is invariant under F(X, s), y e g(λ, r)
and | | ( Γ - λ J ) » | | ^ r | | y | | . Also,

\\(T-\I)y\\>=\\μ-\\*(F(dμ)y,y);

and, because F(λ, s)j/ = 0,

\\(T-Xl)y\\*=\ \μ-X\\F{dμ)y,y)
J|μ-λl>s

Thus, because s > r, || y \\ = 0. Accordingly, F(λ. s)α = x ( x e g(λ, r)).

Let t ing s —> r + 0, we have

x = F(\, r)x (x e g(λ, r)) .

Thus 3t(F(λ, r)) = g(λ, r).
A similar argument, shows that 3t(2£(λ, r)) = g(λ, r).
Thus the spectral measures £7 and F agree on all closed discs £)(λ, r)

(λ eC, r ^ 0). Hence they agree on the α -ring generated by these
discs, i.e., on ̂ . Thus E — F as required.

We now define the spectral measure (or resolution of the identity)
of a normal operator Γ to be the unique spectral measure E such
that

T =

We conclude with the important commutativity result.
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THEOREM 6. If T is normal its spectral measure commutes with
every bounded operator which commutes with T.

(i.e. If B is bounded and BT g TB then BE(M) = E(M)B (Me

Proof. For each complex λ and nonnegative r, %(X, r) is invariant
under B. Because g(λ, r) = 3t(#(λ, r)), 5J^(λ, r) = £7(λ, r)BE(X, r). Be-
cause I? commutes with T, JS* commutes with T* and, because

|| (T - λ i > || = || (Γ* - Xl)x \\ (x e

it follows that g(λ, r) is invariant under JB* so that B*E(X, r) =
#(λ, r)B*E(X, r) and, finally, β£;(λ, r) = £7(λ, r)ΰ. The desired result
is now an immediate consequence of the construction of E.
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