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A MODIFICATION OF MORITA'S CHARACTERIZATION
OF DIMENSION

J. E. VAUGHAN

Morita's characterization of dimension may be stated in
the following form. Let R be a metric space. A necessary
and sufficient condition that dim R ^ n is that there exists a
<r-locally finite base 2^ for the topology of R such that dim
(G - G) ̂  n - 1 for all G in gf.

The main result of this paper is the following:

THEOREM. Let R be a metric space. A necessary and
sufficient condition that dim R ^ n is that there exists a a-
closure-preserving base 2^ for the topology of R such that
dim(G - G) g % - 1 for all G in 5^.

Thus the "locally finite" condition in Morita's characteriza-
tion can be replaced by the weaker "closure-preserving" con-
dition. A further result is that the "closure-preserving"
condition can be replaced by the still weaker condition of
"linearly-closure-preserving" provided the "base" condition is
strengthened to a "star-base" condition.

Finally, several examples are given which show that the
"linearly-closure-preserving" condition is weaker than the
"closure-preserving" condition in important ways. In particular,
the following is proved.

THEOREM. There exists a nonmetric, regular TΊ-space
which has a tf-linearly-closure-preserving star-base.

If the word "linearly" is deleted from the above theorem,
the resulting statement is false since Bing has proved that a
regular TΊ-space with a ^-closure-preserving star-base is
metrizable.

1* Introduction and results* Throughout this paper, dim R
represents the usual covering dimension, and ind R represents the small
inductive dimension for a topological space R. See [2; 3; 5].

Morita's well known characterization of dimension [5, Lemma 2.2,
p. 351] states:

Let R he a metric space. A necessary and sufficient condition
that dim R S n is that there exists a cr-locally finite base ^ for the
topology of R such that dim(G - G) g n - 1 f or all G in 5f.

The main result of this paper is to modify Morita's result to:
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THEOREM 1. Let R be a metric space. A necessary and sufficient
condition that dim R S n is that there exists a o-closure-preserving
base 5f for the topology of R such that dim (G — G) <̂  n — 1 for all
G in 5f.

Following the terminology of Michael [4], we say that a collection
5^ of subsets of a topological space is closure-preserving provided
that for every subcollection & c g^ it is true that

A collection & of subsets is called σ-closure-preserving provided

Sf = Ό{^:i = 1,2, -.}

with each 5^ closure-preserving.
Instead of proving Theorem 1 directly, we shall prove a similar

result, Theorem 2, which has a weaker condition, but from .which
Theorem 1 can be proven easily. To facilitate the discussion of this
and further results, we first make the following definitions.

DEFINITION. A collection 5^ of subsets of a topological space is
called linearly-closure-preserving provided that there exists a well
ordering of 2^ = {(?<>, Gl9 , Gα, : a < η} such that

U {Gβ: β < a} - U {Gβ: β < a)

for all a <Ξ η. A collection & of subsets of a topological space is
called σ-linearly-closure-preserving provided ^ — U { S :̂ i = 1, 2, •}
with each g^ linearly-closure-preserving.

DEFINITION. A collection gf of open subsets of a topological space
i2 is called a σ-closure-preserving (respectively σ-linearly-closure-
preserving) star-base for J2 provided ^ — U{5^: i = 1, 2, •} is a cr~
closure-preserving (respectively σ-linearly-closure-preserving) collection
such that for every point x in R and for every open set D contain-
ing x there exists a positive integer k = k(x, D) such that

φ Φ S(x, s?k) c A

where S(a, gfA) - u{Ge ^ : ^ e G}.

THEOREM 2. Lβ£ R be a metric space. A necessary and sufficient
condition that dim R .g n is that there exists a σ-linearly-closure-
preserving star-base & for the topology of R such that

dim(G - G) ^n -1
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for all G in &.
The Nagata-Smirnov [7; 9] characterization of metrizability for

regular spaces (i.e., there exists a σ-locally finite base for the topology
of the space) shows that Morita's result above can be modified to the
following form:

Let R be a regular Tx-spaceβ A necessary and sufficient condi-
tion that R be metrizable with dim R :g n is that there exists a
(7-locally finite base gf for the topology of R such that

dim(G - G) ^ n - 1

for all G in 5f.

A similar modification of Theorem 1 is not possible. Bing has
given [l, Example C, p. 180] a nonmetric, regular TΊ-space which has
a σ-closure-preserving base. Bing has proven, however, [1, Theorem
4, p. 179] that a necessary and sufficient condition for a regular 2V
space to be metrizable is that there exists a σ-closure-preserving star-
base for the topology of the space. Thus, as a direct result of Bing's
Theorem and Theorem 1, we have:

THEOREM 3. Let R be a regular T^space. A necessary and
sufficient condition that R be metrizable with dim R ^ n is that
there exists a σ-closure-preserving star-base & for the topology of
R such that dim(G — G) ^ n — 1 for all G in Sf.

Theorem 3 raises the question of whether one can replace "σ-ciosure-
preserving" by "σ-linearly-closure-preserving" in Theorem 3. This
question is equivalent to the following one. Suppose a regular 2V
space R has a (7-linearly-closure-preserving star-base; does this imply
that R is metrizable? The answer is in the negative as can be seen
from the following example.

EXAMPLE. A nonmetric, regular TΓspace which has a <7-linearly-
closure-preserving star-base. Let C denote the usual "middle third"
Cantor set in [0,1], and let Q denote the set of all rational points in
[0,1], The space i?, which is to be the example, is the set of points
of C U Q with the following topology: V is open in R = C U Q if and
only if V = U (J W, where U is open in the usual subspace topology
of R, and W is any set of irrational points in R. In this topology
the irrational points of R are discrete, and the topology induced on
Q is the usual subspace topology of Q. Now, R is regular and Tu

but R is not metrizable.
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To construct a σ-linearly-closure-preserving star-base for R, we
first enumerate the rational points of R by ru r2, , rk, •; and
define

Π R}

for all i,jeN (where N is the set of natural numbers). Since each
&*i,d contains only one open set, it is trivially linearly-closure-preserv-
ing. We define one additional collection ^0 = {Go, Gu , Ga, •}
where Go = R — C, and {Gu G2, , Ga, •} is the set of irrational
points in R with any well ordering. Now Go is an open set in R
such that Go Π C = ψ and G0Γ]CZDQ. From this it follows that
the collection &0 is a linearly-closure-preserving collection of open
sets. It is easily verified that the collections

can be ordered into a single countable sequence of collections, and as
such form a σ-linearly-closure-preserving star-base for R.

Theorem 2 raises the question of whether one can replace "star-
base" by "base" in Theorem 2. This question is easily answered in
the negative as we now show. Roy [8] has defined a metric space
A which has the property that dim A = 1 and ind A = 0. Since ind
A = 0, there exists a base 2T for A such that dim (G — G) = —1 for
all G in gf. If ^ is given any well ordering, and if the whole
space A is added to the collection <& as its first element, then ^
becomes a linearly-closure-preserving base for A such that dim (G — G)
= — 1 for all G in <&. Since dim J = 1, it is clear that "star-base"
cannot be replaced by "base" in Theorem 2.

2. Proof of Theorem 2. To prove the necessity of the condi-
tion, we note by Morita's result mentioned above that d i m i ϊ ^ n
implies that there exists a ^-locally finite base ^ = U{§^: ieN} for
R such that dim (G - (?) ^ n - 1 for all 6 in ^ . Since R -is a
metric space, we may define

gfί.fc = {Ge Sf4: diameter of G < 1/fc}

for all i, ke N. Each 5 ^ is locally finite (hence, linearly-closure-pre-
serving), and dim (G — G) ^ n — 1 for all G in 5fifk since g ^ c S^
for all &. By well ordering ^ ' = U {§̂ ,/b̂ >& e V̂"} into a single countable
sequence of collections, we have that <&' is a σ-linearly-closure-preserv-
ing star-base for R such that dim (G — G) g w — 1 for all G in ST\

The proof of the sufficiency will be broken up into several asser-
tions. Each assertion will be assumed to have as hypothesis the
condition of Theorem 2, i.e., ^ = Ui^iieN} is a α -linearly-closure-
preserving star-base for R such that dim (G — G) ^ n — 1 for all G
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in 5^. The following notation and definitions will be used in the
assertions.

For any subset S of a topological space R, the boundary of S is
defined to be S Π (R — S), and is denoted by Bdry (S).

Since each collection ^ is linearly-closure-preserving, we may
write ^ = {GiQ, Giu , Gia, : a < rji} and define a collection of open
sets by

\Hia = (Gί£t - U Giβ): a<ηλ,

and a collection of closed sets by

and let

for all i e N, where F is defined below.

2.1. ASSERTION. For all ieN, \J{Fίβ: β < a} is a closed set in
iϋ for every a^ηim

Proof. Let i be arbitrary, but fixed. Let a ^ r]i and let a; be a
limit point of (J {Fiβ: β < a}. Then

xe\JFiβ =
β<a

Since the collection ^ is linearly-closure-preserving by hypothesis,
x G U {Giβ: β < a}. Let σ < a be the first index such that xeGiδ.
It is easy to see that x&Giσ, for Giσ is an open set which does not
intersect \J{Fίβ: σ 5Ξ β < a}. Hence, xeGiσ would imply that x is a
limit point of U {Fiβ: β < σ}. But this would imply that

xe\JFiβa\JGiβ,
β«r β<σ

and this would mean that there exists δ < σ such that x e Gi5 which
is impossible by the definition of σ. Hence, x&Giσ. Thus, we have
that

x e ( G i σ - \JGiβ) = Fiσ,
\ β^σ J

and the assertion is proven.
The following notation will be used in the succeeding assertions.

Let Ft = U {Fiβ: β < Vi], and let F = (J {F<: i e N}.
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2.2. ASSERTION. Dim F ^ n - 1.

Proof. By Assertion 2.1, F 4 is closed for all ί e AT. Hence, it
suffices by the usual sum theorem [5, Theorem 5.2, p. 355] to prove
that dim Ft ^ n - 1 for all i. Let i be arbitrary, but fixed. Then
by the subset theorem [5, Theorem 5.1, p. 355] we have that
dim Fia <Ξ n - 1 because

Fia c (Gia - Gia)

and dim (Gia - Gίa) ^ n - 1 by hypothesis. By Assertion 2.1

{F ία: a < 7],}

is a linearly-closure-preservίng collection such that dim F%a <J n — 1
for all a < ^ . Hence, the collection {Fia: a < η,} satisfys the hypo-
thesis of a sum theorem of Nagami [6, Theorem 1, p. 82]. Thus,

and the assertion is proven.
To complete the proof of Theorem 2, we need only prove that

dim(i? - F) g 0 by [5, Theorem 5.4, p. 355]. To prove that

dim (R - F) ^ 0

it suffices by Morita's characterization of dimension to demonstrate
a σ-discrete base for R - F each member of which has an empty
boundary in R — F.

2.3. ASSERTION. The collections ^ are discrete in the subspace

R - F f or all i e N.

Proof. Let i be arbitrary, but fixed. We shall show that for
every x in R - F there exists an open neighborhood of x in R - F
which intersects at most one of the sets Hia Π (R - F). Let xeR - F.
If x ί U {Gia: a < ^} then R - \J {Gia: a < ηt} is an open neighborhood
of x in R which intersects none of the Hia, hence, none of the

Hia Π (R - F) .

If, in the other case, xe\J{Gia\ a <ηi} let σ <ηi denote the first
index such that xeGiσ. We may assume thatα;eG ί σ , for otherwise,

xe(Giσ- \jG

w h i c h is i m p o s s i b l e b e c a u s e xeR- F. B y t h e def in i t ion of σ w e see
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that

x e (Giσ - U Giβ) c H%σ .

Clearly, Hiσ is an open neighborhood of x which does not intersect
any Hia for a Φ σ. Hence, Hiσ Π (R — F) is the required neighbor-
hood of x. This completes the proof of Assertion 2.3.

2.4. ASSERTION. The collection U {Jgf: ί e N} is a base for the
subspace R — F.

Proof. Let xe R — F. Let D be any open set in R — F which
contains x. Let D' be an open set in R such that D — Dr f] (R — F).
By hypothesis there exists an integer k such that φ Φ S(x, g .̂) c D'.
Let σ <τ]kbe the first index such that xeGkσ, then GΛσ c D'. Now,
^ ί U {Gkβ' β < &} for otherwise, xe\J {Gkβ: β < σ} would imply that
there exists an index 3 < σ such that xeGk5. Since δ < σ, we would
have that

M - \JGkβ) = F

This is impossible since x e R — F. Thus

xe[Gkσ- \JGkβ) =Hkσ.

Hence, x e Hkσ Γl (-B — -P7), which is an open neighborhood of x in
R — F and a subset of D. Assertion 2.4 is, therefore, proven.

2.5. ASSERTION. For each i, Bdry (ί?^) c F 4 for all a < ^ .

Proof. Let i be fixed, and let a <η{. Since g^ is a linearly-
closure-preserving collection of open sets,

Bdry (Hia) = Bdry [Gia - U Giβ c U {Bdry (G,β): /S ̂  α} .

Let x G Bdry (£Γία). Since JJ {Giβ: β < α} is an open set which does not
intersect Hiay we have that x g (J {Gίβ: /5 < α}. Let δ ^ α be the
first index such that xeBdry(G ί δ ). Then

2.6. ASSERTION. Bdry (fί ί α Π (i? — F)) = ό in the subspace R — F
for all ί e N, and for all a < ηit
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Proof. This assertion follows from Assertion 2.5 and the fact
that the boundary of (Hia Π (R — F)) with respect to the subspace
R — F is a subset of the boundary of Hia with respect to the space
R.

By Assertions 2.3, 2.4, and 2.6 we have shown that

is a ^-discrete base for R — F such that dim (H — H) = — 1 for all
H in 21?. Hence, dim (R - F) ^ 0, and Theorem 3 is completely
proven.

3* Proof of Theorem 1. The proof of the necessity of the
condition is trivial.

To prove the sufficiency, let Sf be the σ-closure-preserving base
for R such that dim (G — G) <£ n — 1 for all G in g". By the same
method as was used in the proof of the necessity of Theorem 2, ^
may be "rearranged" into a σ-closure-preserving star-base. Thus the
condition of Theorem 2 is satisfied. We may, therefore, conclude that
dim R g n, and Theorem 1 is proven.

The author would like to thank Dr. J. H. Roberts and Dr. Keiδ
Nagami for their guidance in the preparation of this paper.
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