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EXISTENCE OF OPTIMAL CONTROLS

A. W. J. STODDART

Let / = (/i,/2, ,/n) be a mapping to En from a set D
in Et X EnX Em; and /0 a real function on Zλ Consider a
"control" function tt from an interval I = [t0, ίi] in £Ί to
Em; and a "response" function x from J to ϋ^ such that
(£, #(£), ̂ 00) e -D for almost every t e I, fo(t, x(t), u{t)) has an
integral (finite or +oo) on I,f(t9x(t),u(t)) is integrable on I,
and

x(t) = x(t0) I /(s, x(s), u(s))ds

for all te I. In a class ,Γ of such control-response pairs (u9 x)9

a pair (u*9x*) is called optimal (with respect to f0) if the
"cost" functional

has a minimum at (w*, a?*). Here we consider conditions suffi-
cient for existence of such optimal pairs.

The problem of existence of optimal controls for various functions
jf,/0 and classes Γ has been treated in [6], [11], [7], [5], [8], [9], [13],
[10], [1], [2], and [3]. Gamkrelidze [6] assumed /0 constant, / linear
in (x, u), and u restricted to a cube U in Em. Pontryagin [11]
extended Gamkrelidze7s work to the situation where U is any compact
convex polyhedron. Lee and Markus [8] considered / and f0 linear in
u, and U any compact convex set. Simple integral restraints on u
were treated by Krasovskii [7] and Neustadt [9].

The conditions on U and / for f0 constant were relaxed remarkably
by Filippov [5], who considered a variable compact restraint set U{t, x)
such that the set f(t9 x, U(t, x)) is convex for each (t, x). Roxin [13],
in effect, considered U a fixed compact set with (/, /<>)(£, x, U) convex.
By taking / and fQ linear in x and U compact, Neustadt [10] avoided
all convexity assumptions. Cesari [1] assumes U(t, x) compact,
f(t, x, U(t, x)) convex, and f0 sufficiently convex in u compared with
the curvature of / in u. In [3], Gesari extends considerations to
restraint sets U(t, x) which can be unbounded.

In this paper, we consider variations of the conditions above for
the case in which / is linear in u, f0 is convex in u, and the variable
restraint set Z7(ί, x) is convex and closed but not necessarily bounded.
In particular, integral restraints are taken into account, and used as
an alternative source for the fundamental compactness condition. In
a later section, we apply our results to classical existence problems
of the calculus of variations.
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168 A. W. J. STODDART

2* Definitions. We shall call a real function φ(t, x, u) "linearly
bounded below in u" if

φ(t, x, u) Ξ> p(t, x) + u q(t, x)

for some uniformly continuous and bounded functions p, q. The
meaning of "linearly bounded in v," will be obvious.

Consider the following sets, functions, and numbers.

( 2 ) The sets Jo = [To, Γo'], J1 = [2^, T[\ are compact intervals in
E, with TQ ^ T[. Let J = [To, T[\.

(3) The set B is a closed set in J x En, and U is a closed
convex set in Em. Let D = B x Ϊ7.

( 4 ) The real continuous functions h^t, x, u) on D, at most
countable in number, are convex and linearly bounded below in u.
Let U(t, x) = U n {u: hd(t, x, u) ^ 0 for all j}.

( 5 ) The mapping GQ(t), from J o to the class of compact sets in
En, is continuous in the Hausdorίf sense. The mapping Gx{t), from
Jx to the class of closed sets in En, is also continuous in the
Hausdorff sense.

( 6 ) The real continuous functions gk(t, x, u) on D are convex
and linearly bounded below in u; ck are corresponding real numbers.

( 7 ) The continuous mapping /(£, x, u) from D to En is linear in
u and with each component function / { linearly bounded in u. Note
that linear bounding of each fi does not follow from linearity, even
if the coefficients in / are bounded; for example, / = u sin x2 on
Eι x EL. However, if the coefficients in / are bounded and each
component of u in U is bounded above or below (in particular, U
bounded), then linearity implies linear bounding.

Define Γ to be the class of all control-response pairs (u, x) on
intervals / — [t0, £J, such that (1) holds, and

( 8) tQeJ0, ίi e Ji

( 9 ) (ί, x(t)) e B for every tel;

(10) a (ίo) e G0(ί0) , x(t,) e G&)

(11) u(t) e U(t, x{t)) f o r a l m o s t e v e r y tel;

(12) (I)\9k(^9 XJ u)dt ^ ck for each k .

We shall assume that
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(13) \\u\ is equi absolutely continuous on Γ;

that is, for any ε > 0, there exists λ(ε) > 0 such that (M)\\ u\dt < ε

for any (u, x) e Γ and measurable set M £ I for which the Lebesgue
measure μ(M) < λ(ε). (Conditions sufficient for this will be discussed

in §6.) Note that (I)\\u\dt is then bounded on Γ.

Note also that, without further restrictions on /, x is not neces-
sarily determined through (1) by x(tQ) and u.

Our general approach will be to prove that the class Γ is
sequentially compact and closed in an appropriate convergence system.
We then apply a general semicontinuity theorem of [14] to obtain the
existence of a minimum for C(u, x) on Γ.

3* A compactness theorem* We first prove a compactness
theorem for Γ. It is essentially an abstraction of techniques of
Tonelli [15] and Lee and Markus [8].

THEOREM 1. Any infinite subclass of Γ contains a sequence
(un, xn) such that there exist a compact interval I * = [£0*, t*], a
continuous mapping x* from /* to En, and an integrable mapping
u* from I * to Em, for which

(14) ( a ) «?—>*?, <Γ—>*f;

( b ) a (ί?) — α>*(ί0*), xnm — %*(tΐ);

( c ) sup {| xn{t) - x*(t) I : t e Γ Π /*} — 0; and

( d ) (In n E)\u*dt — (I* ΓΊ E)\u*dt

for every measurable set E £ E1%

Proof. The linear bounding of the component functions ft gives
I / ] ̂  a + b I u I for some constants α, b. Then

I x{t') - x(t) I S a(t' - t) + b[ \u\ds
}t

from (1); thus x is equicontinuous on Γ.
All GQ(t) and J o are compact; hence, by an elementary argument,

(J G0(t) is compact. In addition, x is equicontinuous and J is bounded;
hence cc is equibounded on Γ.

On J, define

a;+(ί) = aj(ίo) on [Γo, ί0] ,

a (ί) on [ί0, ί j ,

»(i0 on [ίlf Γ/]

%+(t) - 0 on [Γo, ί0) and (tu T[\ ,

u(t) on [t0, ί j .
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Let Γ+ be the corresponding class of pairs (u+, x+). On Γ+, x+ is

equicontinuous and equibounded, and \\u+\ is equi absolutely con-

tinuous and (J)\\u+\dt is bounded. Consequently, from any infinite

subclass of Γ+, we can extract in succession sequences ΪS—>t£,tΐ—>t?,

x\ —• x% uniformly on /, and u\ —•> u% weakly in LX{J) [4, p. 294] for

some t*, if, continuous x%, and integrable u%.
Define x* = x* | [i0*, if], u* = t6ί | [i0*, if]. Then ίc* is continuous

and u* is integrable. Since x+(t$) ~^ &*(**), ^+ is equicontinuous, and
*o-»ίo*, we have a?Λ(ί?) —• a;*(i0*). Similarly, »n(i?) -> a5*(ίf).

For any ε > 0, there exists λ(ε) > 0 such that (E)\\ u+ \dt < ε for

any set E S J with Lebesgue measure μ{E) < λ(ε). Now

(J)[φu%dt

for every ζD e LJJ). For any measurable set E £ £Ί, take
characteristic function of I* Π i£. Then

as the

(/* Π E)\uldt - (Γ n E)\u%dt

for n greater than some N(ε, E). Now

< ε

μ(I* Π E - Γ Π JS7) + /i(/% Γ)E - I* f)E)

~t*\ + \t?- if

which is less than λ(ε) for
n > N(e) and N(e, E),

greater than some N(ε). Hence, for

(in n E)\undt - (i* n E) < 2 ε .

4: Continuity and semicontinuity> The following continuity
theorem is required for the semicontinuity theorem.

THEOREM 2. Let (un, xn) be a sequence in Γ converging to
(u*, x*) in the sense (14). Let the functions p: J5—> Ex and q; B—> Em

be uniformly continuous and bounded. Then, for every measurable
set E £ Eu

(In Π E)\\p(t, xn)

Proof. Note that, since i? is closed, conditions (14) (a), (b), (c)
ensure that (£, sc*(i)) 6 S for every t e I* .
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We express our conditions in explicit form. For any ε > 0, there
exists N(ε) such that, for n > N(ε),

I ί? - ί? l < e ,

11? - if l < s ,

and

xn(t) - x*(t)

and, for any measurable set E S -EΊ, there exists iV(ε,
for n > N(ε, E),

if £ G /* n I*

E) such that,

(I% n E)\undt - (I* n E)\u*dt
J J

< e .

r

Also, there exists λ(e) > 0 such that (M) \\un\dt < ε for all n and

for every measurable set M £ In with /^(M) < λ(ε); and there exists

a such that (In)\\ un \ dt < a for all w. In addition, there exists
δ(ε) > 0 such that | p(t, x) - p(tr, x') \ and | q(t, x) - q(t', x') \ < e for

t — t'\ and I x — x1 \ < δ(ε); and there exists β such that | p{t, x)
and I g(ίy χ)\<β for all (ί, x) e B.

Now

% n E)[p(t, xn)dt - (I* n J5)

ί? - *? ί)

| p(t, χn) - p(t, x*) I dt

[ - T0)e if > ^ and N(δ(ε)) .

Also,

n n E)[un-q(t, xn)dt - (Γι ΠEΠ I*)[un-q(t, x*)dt

Γ - I*)\\un\dt

U ί , χn) - q(t, χ*)]dt

< βe + as it n> N( — and iV(δ(ε)) .

By uniform continuity of x* on /*, there exists j(ε) > 0 such that
I x*(t) - x*(tF) I < ε for \t-t'\< τ(ε). Divide I* into σ intervals I,
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with lengths less than δ(ε) and j(δ(ε))9 and take qs = q(t, x*(t)) for
some te Is. Then

(ΓΓ\Ef) I*)\u* q(t, x*)dt ~ (I* Π E)\u* q(t, x*)dt

Σι(InΠE n Is)\un q(t, x*)dt - Σ (/. n J s ψ * g(ί, x*)dt

Σ?. [(in nEni8)[u*dt - (i, n #)j^W]

+ ε(I*)[\u*\dt + as

< ε + e(/*)ί| u* I dt + αε if w > max iSΓ(e/σ | <?s |, /β Π E) .

We shall use repeatedly the following semicontinuity theorem.

THEOREM 3. Let φ(t, x, u) be a real continuous function on D,
convex and linearly bounded below in u. Consider a sequence
(un, xn)eΓ converging to (u*, x*) in the sense (14). (We shall prove
m §5 that u*(t) e U for almost every tel*; and (t, x*(t)) e B for
every tel*.) Then, for every measurable set E £ Eu

(I* n E)\φ{t, x*, u*)dt S lim inf (I* n E)[φ(t, xn, un)dt .

Theorem 3 follows easily from Theorem 4 of [14]. Our con-
vergence (14) satisfies condition (10) of [14]. The discussion of § 6
of [14] applies here, since the lower bound integral is continuous.

5* A closure theorem*

THEOREM 4. Let (un, xn) be a sequence in Γ converging to
(u*,x*) in the sense (14). Then (u*,x*)eΓ.

Proof. By (14a), £* e Jo and tf e Ju

For ί0* < ί < tf, teln for all sufficiently large n, so xn(t)—>x*(t)
by (14c). Thus (£, x*(t)) e B. In addition, (14a) and (14b) give
(ίo*f a?*(ίo*)) and (tf,x*(tf))eB.

If x*(t$) were not in G0(ίf), then it would not be in the closure
Ne of some neighbourhood N of G0(A*). But G0(t) S iSΓ for £ suf-
ficiently near tf, so a^(ίo) e iV for all sufficiently large n, from which
x*(tf) e Ncl Similarly, x*(tf) e G&f).

The closed convex set U in Em is the intersection of a countable
number of half spaces {u: β + u b 5Ξ 0}. Let

E={t:tel*,β + u*(t)-b > 0} .
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Then

0 ^ (/* n E)[(β + un b)dt-^(E)[(β + u*-b)dt ^ 0 .

Thus μ(E) = 0, and so u*(t) e U for almost every tel*.
Let Ed = {t:te Γ, h3(t, x*(t), u*(t)) > 0}. Now

(In n E0)\hj(t, xn, un)dt g 0 ,

so

(Es)[h,'(t, x*, u*)dt £ 0

by Theorem 3. Consequently, μ(E3) = 0. Thus (w*, $*) satisfies (11).

By Theorem 3 with E = J571? the integral (I)l^fc(i, «, u)d!ί is lower

semicontinuous in the convergence (14). Consequently

, x*, u*)dt S Ck y

that is, condition (12) is satisfied.
Consider ί such that t* < t < £?. Theorem 3 with E = {s: s ^ t}

shows that the integral

/(s, x(s),

is continuous in the convergence (14). Also, x%(ί)—>a;*(ί)
#*(ί0*). Thus condition (1) on (un, xn) carries over to (u*, »*). For
ί = if, a similar argument applies, but with £7 = EΊ.

Thus (u*, a?*) satisfies conditions (1) and (8) through (12).

6* The existence theorem*

THEOREM 5. Let the real continuous function /0(ί, x, u) on D be
convex and linearly bounded below in u. Assume, as previously,
that Γ satisfies condition (13). Then, if Γ is not empty, C(u, x)
has a minimum on Γ.

Proof. Theorems 1 and 4 show that Γ is sequentially compact
in itself with respect to the convergence (14).

Since f0 is linearly bounded below in u and u is integrable,

fQ(t,x,u) has an integral, finite or +co. Theorem 3, with E — Eu

shows that (I)\fo(t, x, u)dt is lower semicontinuous with respect to

the convergence (14).
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A lower semicontinuous funotional on a sequentially compact
space has a minimum. Hence the result.

7* Equi absolute continuity of \\u\. Condition (13) plays the

key part in our compactness theorem. We now study conditions suf-

ficient for equi absolute continuity of \\u\ on Γ.

For example, if the set U and the functions hd are such that

U(t, x) = U Π {u: hj{t, x, u) S 0 for all j}

is bounded uniformly on B, then condition (13) is obviously satisfied.
This is the standard situation in problems of optimal control.

The following more general integral condition is quite standard
in the calculus of variations.

THEOREM 6. Let ψ(u) be a real function on Em, bounded below

and such that ψ(u)/\ u | —> oo as | u \ —> oo. If (I)\ψ(u(t))dt is bounded

S J
u [ is equi absolutely continuous.

Proof. Suppose that (I)[ψ(u)dt ^ c on Γ; ψ{u) ^ b; and, for any

ε > 0, (f(u) - b)l\ u\>lje for \u\> m ( ε ) . F o r a n y (u, x)eΓ a n d
measurable set MS I, define

M+ = M Π {ί: t e I, | u(t) \ > m(e)} , M~ = M - M+ .

Then

(M)[\u{t)\dt = (M+)\\u\dt + (M~)[\u\dt

I b \)dt + m(e)μ(M-)

^ ε(I)[(ψ(u) + I b \)dt + m(ε)μ(M)

<s(c+ \b\(Ti- Γ0) + l)

if μ(M) < ε/m(ε). Thus \\u\ is equi absolutely continuous.

For example, a "growth condition" gk(t, x, u) ^ α/r(u) on some gk

would be sufficient for the bounding of (I)\ψ(u)dt on Γ. Alterna-

tively, the bounding of (I)\ψ(u)dt, sufficiently for our purpose, would

follow from a similar growth condition on /0.

THEOREM 7. Suppose that /0(ί, x, u) ^ ψ(u), where ψ has the
properties stated in Theorem 6. Then our existence theorem,
Theorem 5, holds without the direct assumption of condition (13).
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Proof. If C(u, x) ~ oo for all (u, x) e Γ, then the result is
trivial. Otherwise, there exists (uux^)eΓ with C(uux^)<^. In
considering a minimum for C(u, x) on Γ, we can restrict consideration
to the class

Λ = Γ ί l {(u, x): C(u, x) S C(ulf x,)} .

Then (I)\ψ(u)dt is bounded on Γl9 Theorems 5 and 6 show that

C(u, x) has a minimum on Γu which is obviously also a minimum on

Γ.

8* Extension to unbounded intervals Jo, J±. If Jλ has semi-
infinite form, then our existence theorem still holds, provided f0 is
positively bounded below.

THEOREM 8. Assume that fo(t, x, u) ^ m for some positive con-
stant m. Then Theorm 5 holds also for Jx of the form [Tu oo).

Proof. If C(u, x) = oo for all (u, x) e Γ, then the existence of a
minimum for C(u, x) is trivial. Otherwise, C1 = C(uu Xί) < co for
some (ulf x±) e Γ. We can restrict consideration to the class Γ± of
those (u, x)eΓ for which C(u, x) ^ Clt

For O, x) e Γu C1 ^ C(u, x) ^ m(^ — ί0), so

ίi ^ ô + CΊ/m ̂  Γo' + Q m .

Thus the condition tte[Tu T{ + CJm] does not further restrict Γu

Then Theorem 5 shows that C(u, x) has a minimum on Γl9 which is
also a minimum on Γ.

Obviously, similar considerations apply when JQ — (— oo, Tζ\\ and,
indeed, when Jo and J x both have these semi-infinite forms.

9* Classical problems* If U = Em and the class of functions
hj is empty, then U(t, x) = Em for all (ί, #), that is, there are no
explicit restrictions (11). In this case, the fundamental condition (13)
on u could come from a growth condition on f0 or some gk, as dis-
cussed in § 7.

If we take f(t, x, u) = w, so that u = xf almost everywhere,
then we have a minimum problem for (I)\fo(t, x, xf)dt. The Tonelli
theorem [16], on the existence of a minimum for nonparametric curve
integrals, is just this problem with no explicit restrictions (11) and
no integral restrictions (12); the condition (13) comes from a growth
condition on /0.

More generally, consider curves y: I-^Eι with absolutely con-
tinuous derivatives y{r~l) of order r - 1. Take x = (x{1), xω, •••, x{r))
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with xia){t) = y(a~1](t), and u(t) = y{r){t). Then our work gives an

existence theorem for the minimum of (I)\fo(t,y,y', *- ,y{r))dt. Here

f(t, x,u) = (x{ίh x{5h . . . , x{rhu) .

The linear bounding of the components of / is implied essentially by

the bounding of (I)ί | y(r) \ dt .

Returning to first order problems, we can also consider parametric
curve integrals (J)\/o(#, x')dt with /0 positively homogeneous of degree
one in x'm In this case, a growth condition on f0 of the form previously
considered is impossible. However, if there are no explicit restrictions
(11), the functions gk are similarly independent of t and positively
homogeneous of degree one in x', Go and Gλ are constant, and B is of
the form E1 x C for some closed set C in En, then we have a system
invariant under Frechet equivalence. We can reparametrize the curves
of finite length L Φ 0 by their relative arc lengths s/L on the interval
I— [0, 1]; here s is the arc length. In terms of the new parameter,
x'\ = L almost everywhere. If the curves in Γ have bounded lengths,

then 11 xf | is equi absolutely continuous. This is trivial for curves

with L — 0. Thus condition (13) would be satisfied if the curves
have bounded lengths.

We have really proved here part of Hubert's theorem on com-
pactness of a class of parametric curves. The bounding of the curve
lengths L could come from the form of some gk

(for example, (I)\gk(x, xf)dt—> oo as L~~* «

or, effectively, from the form of /0

for example, (I)\fQ(x, xf)dt—+ oo as L—> oo j .
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