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ANOTHER PROOF OF A THEOREM ON
RATIONAL CROSS SECTIONS

MAXWELL ROSENLICHT

The extant proofs of the existence of a rational cross section
for a transformation space for a connected solvable linear
algebraic group either use a certain amount of algebraic curve
theory or restrict themselves to the case of a principal space,
where the question is one of galois cohomology, the result being
equivalent to the statement that H X(G, k) = 0 for G a A>solvable
linear algebraic group. The present proof of the general result
may be considered more elementary in that it depends only on
the standard facts on fields of rationality of algebraic sets.

The result in question says that if G is a k-solvable linear
algebraic group and V a transformation space for G, all rational
over a field k, then there exists a G-invariant dense k-open subset
V of V such that V'/G exists and is rational over k and a cross
section k-morphism V'/G —> V exists. This statement appears to be
somewhat stronger than the original statement [1, Th. 10], but is
exactly equivalent to it (except for the purely technical matter of the
possible reducibility of V) once one accepts the result that any algebraic
transformation space admits a quotient space, provided one restricts
to a dense open subset [2].

If V happens to be G-homogeneous the theorem says nothing more
than that V has a point rational over k. This special case also implies
the general theorem, and that without much labor (in fact the detailed
argument in [1] can be much shortened by use of the result quoted at
the end of the paragraph above). As for proving the special case just
quoted, if one assumes the case dim G = 1 there is a straightforward
induction argument on dim G (again refer for details to [1]) so the
crux of the proof is that a k-homogeneous space for Ga or Gm has a
point rational over k9 This note concentrates on the proof of this
last statement.

The proof given in [1] that a ^-homogeneous space for Ga or Gm

has a rational point over k uses some technical information from the
theory of algebraic curves, considerably out of the spirit of the present
subject. If the homogeneous space happens to be principal homogeneous
the question becomes an easy one of galois cohomology [3, pp. 170-171],
but some generality has been lost. The present proof is accomplished
by starting with a somewhat stronger version of the fact to be proved
(Lemma 3 below, which can be taken as the substitute for the Lemma
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to Theorem 10 in [1]), which is easy to prove when k is the universal
domain, at the same time retaining some nontrivial content in this
extreme case. Lemmas 1 and 2 below are well known, but convenient
to have formally stated at this point.

LEMMA 1. The factor group of Ga (Gm) by a finite subgroup is
isomorphic to Ga (Gn).

Ga (Gm) is the additive group of the universal domain Ω (multipli-
cative group of nonzero elements of Ω) with its usual structure as an
algebraic set over the prime field. Since Ga and Gm are commutative
we can use induction on the order of the finite subgroup to reduce the
proof to the case where this subgroup is cyclic. In the case where the
group is Ga and Ω has characteristic p Φ 0 the cyclic group generated
by a nonzero a e Ω is the set of zeros of the polynomial Xp — o?~xX and
the map sending any x e Ω into xp — av~1x is a separable homomorphism
of Ga onto itself whose kernel is the cyclic group generated by α,
proving the lemma in this case. In the remaining cases we do not
even need the reduction to the cyclic subgroup: if the group is Ga and
the field characteristic zero, then {0} is the only finite subgroup of Ga

and there is nothing to prove, while in the case Gm a finite subgroup
of order n consists of the nth roots of unity, hence n is prime to the
characteristic, and here the map sending each xe Ω into xn is a
separable homomorphism of Gm onto itself with the correct kernel,
completing the proof.

LEMMA 2. / / Vu F2 are homogeneous spaces for the algebraic
group G and τ: V1—> V2 is a rational map such that τ{gv^) — gτ{vj)
(in the sense of rational maps of G x VΊ into V2) then τ is a morphism.

The proof for this is the usual homogeneity argument: the domain
of definition of τ is a dense open subset of Vx that is also (x-invariant,
hence V1 itself.

LEMMA 3. Let G be the algebraic group Ga or Gm and let V be
a homogeneous space for G of dimension greater than zero, V and
the morphism G x V—> V being rational over k. Then there exists
an algebraic group G', rational over k and k-isomorphic to G, a
surjective k-homomorphism φ\G—>Gr and a k-isomorphism of algebraic
sets ψ: Gf —•» V such that for any g e G and g' e Gr we have gψ(gr) —
ψ{φ{g)g').

We first prove this in the special case where k is the universal
domain Ω. The dimension of V is one, and since G is commutative



ANOTHER PROOF OF A THEOREM ON RATIONAL CROSS SECTIONS 131

each point of V has the same finite isotropy subgroup HczG. The
composition G x F—» F, which sends (g, v) into gv, factors (a priori
in a merely set-theoretic sense) into

G x V~> (G/H) x F~-+ V

via the natural map G —>GjH. Since the if-invariant elements of
the function field Ω(G x F) can be identified with the elements of
Ω((G/H) x F), the above map (G/H) x F - * F is actually rational.
Application of Lemma 2 to the group G x G operating on (G/H) x F
and F in the appropriate manners shows the map (G/H) x V—> V to
be a morphism, so that F is homogeneous for G/H. By Lemma 1,
G/ίf is isomorphic to (?, so we are reduced to proving the result when
H = {β}, i.e. all isotropy groups are trivial. Fix a point vQ e V. Then
the morphism G —» F which sends any ^ e G into βw0 is bijective.
Identifying the function field Ω(V) with a subfield of Ω(G) via this
morphism, we see that Ω(G) is a purely inseparable extension of Ω(V).
If x is the natural coordinate function on G (so that the map sending
any g e G into x(g) gives the identification of G with Ω or β — (0)) then
i2(G) = Ω(x) and there exists a positive integer v such that χpv e Ω(V), p
being the characteristic of Ω, or 1 if the latter is zero. If v is taken
minimal then the minimal polynomials of x over Ω(V) and over Ω(χpv)
will coincide, giving

= [Ω(G):Ω(x*»)],

from which it follows that Ω(V) = Ω(χpv). We proceed to prove the
lemma in the present case (trivial isotropy groups), taking Gf to be G and
φ to be the p"-th power map. Setting y = χp% we have Ω(F) — ί2(#)
and for g e G we have 3/(0̂ 0) = (^(#))pV. If we set v = ^ 0 , with #' e G,
and denote by o the operation + or x according as G is Ga or (?m,
we have (̂flrv) = y(g(gfv0)) = y((gg')vQ) = (x(gg')y = (a;(^))^v o (^(^))pV =
(#(#))*1' o ̂ (v). 2/ i s defined on a dense open subset of F, hence, by
homogeneity, on all of F. If G — Ga then y takes on all finite values
and if G — Gm all finite values except zero, so that y gives an iso-
morphism between the algebraic set F and Ga or Gm. Everything else
we want is trivial to verify, which finishes the case when k = Ω. Now
consider the general case. By what we have just proved, there exists
a function y e Ω[ V] inducing an isomorphism (of algebraic sets) between
F and Ga or Gm and a surjective homomorphism φ from G into Ga or
Gm (identified with Ω or Ω — (0), so that φ can be regarded as a
numerical function) such that y(gv) = ψ(g) o y(v) for all geG, ve F,
and we need only show that y and φ may be taken to be rational over
Jc. So express y and φ as linear combinations with coefficients in Ω
of elements of k[V] and k[G] respectively. By linear algebra we may
write
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n n

y — 2-1 ̂ iy% t ψ — 2-1 Ciψi 9

where {cj c Ω are linearly independent over k and each y{ e k[V], each
φ{ e k[G], If G = Gα, then y(gv) = <£>(#) + 7/(7;), so

or

?i2/<(̂ ) = Σ CiΨi(9) + Σ '

Σ« - Ψi{g) - yζ(v)) = 0 .

Since G x V is rational over k, k(G x F) and Ω are linearly disjoint
over k, so Vi(gv) = φ^g) + y^v) for all i. Each y{ e Ω[y] so there exists
fi(Y)eΩ[Y] (Y an indeterminate over Ω) such that yt = f.(y)9 giving

Uφ(9) + y(v)) = Ψi(g) + Uv(v)).

Now if x e k[G] is the additive coordinate function on Ga then φi e k[G] =
k[x] has a certain degree v{ in x and φ = ^c^i has degree equal to
max; Vi > 0, so the last equation implies that the degree of each fi is
at most one. Not all //s are constant, so say fx is nonconstant, whence
fx(Y) = aY + 6, with α, h e Ω, a Φ 0. Then ^ = ay + 6. We can now
replace # by ^ as a coordinate function on V (at the same time changing
φ appropriately), i.e. we can assume that ye fc[F], Then the equation
φ(g) = y(gv) - y(v) gives φ(g) = y(g o 0) - τ/(0), so 9?€ ifc[G], completing
the proof for the Ga case. Finally let G = Gm. Then y(gv) = φ{g)y{v), so

Σ cMiigv) = Σ
ii i

But φ is a surjective homomorphism from Gw into itself, therefore
given by sending any x into xv for some nonzero integer v, in particular
φ e k[G], Thus linear disjointness implies that yi(gv) = φ{g)Vi{v) for
all i. In the present case Ω[V] = Ω[y, 1/y] so we can write yi —
Σ i aij yji where each ai5 e Ω and the index j ranges over a finite set
of integers, some possibly negative. We therefore have

Σ ai3(φ(g)y(v))ύ = <p(9) Σ <*>**&&))''
3 3

for all g e G, v e V, which implies that ai3 = 0 if j Φ 1. Thus yt = a{y;
with a{ e Ω. If ax Φ 0 we can replace y by y1 as a coordinate function
on V so as to get, once more, yek[V], and we are done.
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