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EXTREME COPOSITIVE QUADRATIC FORMS, II

L. D. BAUMERT

A real quadratic form Q = Q(xί9 , xn) is called copositive
if Q(xi, -",Xn)^0 whenever xl9 , xn ^ 0. If we associate
each quadratic form Q — 2 QijXiXj qij = fe (i9 j — 1, , w)
with a point

of Euclidean w(w + l)/2 space, then the copositive forms con-
stitute a closed convex cone in this space. We are concerned
with the extreme points of this cone. That is, with those
copositive quadratic forms Q for which Q — Qι + Q2 (with Qi, Q2

copositive) implies Qx — aQ9 Q2 = (1 — a)Q, 0 ^ a ^ 1. In this
paper we limit ourselves almost entirely to 5-variable forms
and announce the discovery of an hitherto unknown class of
extreme copositive quadratic forms in 5 variables. In view
of the known extension process whereby extreme copositive
quadratic forms in n variables may be used to generate ex-
treme forms in n1 variables for any nf > n > 2, this new class
of forms thus provides new extreme copositive forms in any
number of variables n1 Ξ> 5.

Copositive quadratic forms arise in the theory of in-
equalities and also in the study of block designs. The paper
of Diananda [2] provides the connection with inequalities
while the paper of Hall and Newman [3] outlines the appli-
cation of copositive quadratic forms to block designs.

2* Preliminaries* As indicated above, a real quadratic form
Q — Q(xly , xn) is called copositive if Q{xu , xn) ^ 0 whenever
#i, , xn δ 0. Thus any positive semi-definite quadratic form is
copositive. Further, any quadratic form all of whose coefficients are
nonnegative in clearly copositive. Denoting these classes of forms
by S and P respectively, we see that any quadratic form expressible
as a sum of elements of P and S is necessarily copositive. In fact,
Diananda [2, Th. 2] has shown that all copositive quadratic forms in
% rg 4 variables are of this type (i.e., QeP + S if Q is copositive
and n ^ 4). On the other hand, A. Horn [3] has constructed an ex-
treme copositive quadratic form in 5 variables which does not belong
to P + S. The extreme copositive quadratic forms belonging to P + S
have been determined by Hall and Newman [3, Th. 3.2]; thus we can
restrict our attention to those outside of P + S whenever it is
desirable to do so. (Complete details of this theorem of Hall and
Newman are given in the first paragraph of § 4 below.)

If Q(xu •••,#») is an extreme copositive form so is
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for any choice of Pi > 0 (i ~ 1, , n). Hence, in dealing with forms
having qu > 0 (i — 1, , n) we may assume qu = 1 (i — 1, , w)
without loss of generality. Furthermore, note that relabeling of the
variables has no effect on extremity or copositivity either.

We state here two results which we shall use later, whose state-
ment at the time of their usage would interrupt the flow of thought.

(LEMMA 1 of Diananda). If a quadratic form is nonnegative
in some neighborhood of one of its zeros, it is positive semi-definite.

(THEOREM 4.1 of Hall and Newman). Let Q — Q(xu , xn) be an
extreme copositive quadratic form, not of the type bXiX3 . Let xr, xs

be any two of the variables xu , xn. Then upon replacing some
of %i, , xn by zero but neither xr nor xsy Q becomes a positive semi-
definite form in the remaining variables.

3* Extremes with qi3 ~ ±1* Diananda has shown [2, Lemma 2]
that a copositive quadratic form Q has qu ^ 0 (i — 1, , n) and that
if qu — 0 for some i, then for that i, qi3 Ξ> 0 (j — 1, , n). This
implies that an extreme copositive quadratic form in n ^ 3 variables
will have positive diagonal coefficients. Thus they may be scaled so
that qu = 1 (i = 1, , n). If we so scale the extremes belonging to
P -t S (see the first paragraph of § 4 for a listing of these), we
see that qi5 — ± 1 (ΐ, j — 1, , n), with the exception of the ex-
tremes of the type bx&j, b > 0. Similarly the extreme form found by
A. Horn [3], Q = (Xj — x2 + x3 + x4 — xδf + 4x2^4 + Ax3(xδ — a?4), also
has this property. In fact, Theorem 4.1 of Hall and Newman [3]
guarantees that a so-scaled extreme copositive form (not of the type
bx&jy b > 0) will satisfy — 1 <S q{ύ ^ 1 (i, j = 1, , n). Hence the
extremes mentioned above have all off-diagonal coefficients at the
limits of their range. This explains our interest in:

LEMMA 3.1. // Q is an extreme copositive quadratic form in
5,6 or 7 variables which has qί3 — ±1 (i, j — 1, •• ,w), then Q is
either positive semi-definite or Q can be derived from the Horn
form by adding variables judiciously.

Proof. Our method is simply to consider all quadratic forms
having qi3 = ± 1 (£, j = 1, , n), n = 5, 6, and 7, and discard those
which are not copositive or not extreme.

We start with n — 5. Copositivity obviously implies q^ Φ — 1,
hence q{i — 1 (ΐ = 1, , 5). We relabel the variables so that the
first row of the matrix has at least as many — Γs as any other row
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and so that g12 = = qlr = — 1, while qltr+1 = — qlδ = 1. Suppose
g12 — gI3 r= g14 = g15 = — 1, then all the remaining q{/B must be + 1 in
order to preserve copositivity. Thus Q ~ (xt — x2 — x2 — x4 — xδ)

2 which
is extreme and positive semi-definite. Suppose q12 = #13 — qu = — 1,
^15 = l then copositivity implies that g23 — qu = qM — 1 and as
(#! — x2 — x3 — #4 + xδy is extreme no other extremes will result
from the choices g25, g35, g45 = ± 1 . Suppose g12 = #13 = — 1 and #14 =
g15 = 1 then copositivity requires g23 = 1. At most one of g24, q2δ = — 1,
for otherwise row 2 would have 3 entries of —1 which violates our
assumption. Thus by relabeling the variables, if necessary, we can
insure that g24 = 1. So if qu = 1 we get a form

+ Ax,x, 4- 2(q2δ + 1) x2x5 + 2(g25 + 1) x3x5 + 2(qi5 + 1) x,x5

which is obviously not extreme for any choice of g25, #35, g45. Hence
qu = —l and counting — Γ s in row 3 yields g35 = 1. If we now
assume q25 — q45 = —1 we get a form which is equivalent under a
relabeling of the variables to the Horn form, see above. Hence any
other choice of q25i g45 yields a nonextreme form. Suppose q12 = — 1,
#13 = Qu = #iβ = 1 then g23 = g24 = g25 = 1 by the — 1 assumption. If
any other row contains a —1 we relabel the variables to make it
row 3 and to make g34 = — 1. Thus gS5 ~ g45 = 1 and so

Q(xu , x5) = Q(χly . . . , χ49 0) + x\ + 2 X ^^5

is not extreme, as Q(#x, , x4, 0) e P + S. From which it follows
that the remaining cases (1) g12 = — 1, g34 = + 1 and (2) g12 = g34 = + 1
are not extreme either. Thus the only 5-variable extremes having
q.. — πhi are equivalent to one of

or the Horn form, as was to be proved.
For n = 6, let g12 = g13 = g14 = g15 = g16 = — 1, then in order to be

copositive all others are + 1 , which is a positive semi-definite extreme.
Changing g16 to + 1 gives an extreme with g26 = g36 = g46 = g56 = — 1,
hence, any other values for these variables is nonextreme. Let g12 =
?i3 = ?i4 = ~ 1 , #i6 = #iβ = 1 t h u s g23 = g24 = g34 = 1 a n d g25, g26 c a n be

— 1, — 1 ; — 1, 1; 1, — 1; 1, 1 the second and third of which are equivalent.
If #26 = fe = — 1 then g56 = + 1 for copositivity and since g35 = g36 =
#5 = #46 = —1 ί s a positive semi-definite extreme, all other choices of
#35, #36, #45, #46 are not extreme. In the remaining cases we may assume
g56 = — 1 for qm = + 1 yields a nonextreme form depending on the previous
one. If g25 = g26 = 1 then we may assume g35 = g36 = g 5 = g β = 1 for
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otherwise a change of variable would put us into one of the other cases.
But if this is true the form is not extreme. Thus only g25, g26 = — 1, 1
remains. Here there are six essentially distinct choices for g35, g36,
g45, g46, these are:

-1 1 -1 1"

1 - 1

- I 1

1 1

1 1"

1 1

The first of these yields four — l 's in row 5 and thus was considered
previously. The permutation (56) (24) takes the fourth case into the
second. Cases 3, 5, 6 depend on Case 2 (that is, they are copositive
and not extreme if Case 2 is copositive). Thus, if we show that
Case 2 is copositive we need not consider them further. But we can
generate this matrix from the Horn form by the mapping x2 —> x2 + x6

and a renumbering of the variables. Now Theorem 3.8 of [1] states
that this kind of mapping preserves both copositivity and extremity.
Hence it is a copositive extreme. Thus at this point we have the
extremes of Figure 1 (where — stands for —1).

"X _ _ _ _ _~

- 1 1 1 1 1

- 1 1 1 1 1

- 1 1 1 1 1

- 1 1 1 1 1

- 1 1 1 1 1

"1 1"

- 1 1 1 1 -

- 1 1 1 1 -

- 1 1 1 1 -

- 1 1 1 1 -

1 1 L_

1 1 1 "

- 1 1 1 - -

- 1 1 1 - -

- 1 1 1 - -

1 1 1

1 1 1

"1 1 1 "

- 1 1 1 - 1

- 1 1 1 - 1

- 1 1 1 1 -

1 - - 1 1 -

1 1 1 - - 1

FIGURE 1. Extreme Copositive Quadratic Forms in β Variables.

If q12 = q13 = — 1, qu = q15 = q16 = 1, then q23 = 1. Either qu = - 1 or
by a change of variable we may assume qu — q25 = qm — qu = g35 =
q36 — + l # in this latter case, every copositive completion of the
matrix yields a nonextreme form. Thus we may assume qM — — 1,
and hence, g25 = q2G = 1 (for otherwise we would have three — Γs in
row 2, a previous case). For the triple qu, qm, qm we could have
— 1, 1, 1; 1, — 1 , 1; 1, 1, — 1; or 1, 1, 1. Of these, the third is equiva-
lent to the second under x5 <-• x6. Suppose qUj g35, qm are —1,1,1,
then (by the —1 count in row 4) q45 = q6 = + 1 . So the form is
nonextreme regardless of the choice of q56. Let q3i,q35, q36 be 1, —1,1
then qi5, qi6 can be — 1, 1; 1, — 1; or 1, 1. For —1,1 we have qm —
+ 1 ( — 1 count) and the form is a copositive nonextreme. If g45, q4G

is 1, — 1, then qδ6 ~ 1 is nonextreme as qm = —1 is copositive. To
see this we use the permutation (643) and note that the resulting
form is dependent on {x1 — x2 + xd — x± + x5 — xQ)2. Thus, neither
qm — + 1 is extreme. If q4δf q46 = 1, 1 we again get a form dependent
on the last one. This leaves g34 = g35 = g36 = 1, hence g45, g46 — — 1 , 1
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or 1 , - 1 as 1, 1 is not extreme. As these two are equivalent, we

may assume g45, g46 = 1 , - 1 , which is nonextreme and dependent upon

(a?! — x2 + xz — %± + x5 — XQ)2, after a change of variable.

If a t most one entry per row is —1 the form is not extreme for

the worst case has qn = qu = g56 = —1 and the rest + 1 , obviously a

copositive nonextreme. Thus, there are just the 4 extremes of Figure 1.

Three positive semi-definite and the other derived from the Horn form.

For n = 7, we have the positive semi-definite extremes

, /y» ιγ \2

/y» I /y» \ 2

*̂ 6 I "W/

and

as before and we can start with

#12 = #13 = #14 = #15 = #67

#16 = #17 = #23 = #24 ~ #25 = #35 = #45

If the remaining positions are all + 1 , then the form is not extreme,

hence, we may assume t h a t qm — — 1. If q27 = — 1, then copositivity

is violated, hence #2 7 = 1. Thus we have the 3 cases

#36,

#46,

..#56,

#37"

# 4 7

#57_

~—1

- 1

Γ

1

1_

-1 1"

-1 1

1 - 1

-1 1"

1 - 1

and those derived from these by replacing some — 1's by + Γ s . The first

of these is nonextreme depending upon (xλ — x2 —• x3 — x4 — x5 + x6 — x7f.

The second and third are extreme as they arise from the last 6-variable

extreme by adjoining a variable properly [1, Th. 3.8]. As these are

all copositive, the remaining cases cannot be extreme. Let g12 = q13 —

#i4 = - 1 , #i5 = #i6 = #i7 = + 1 , t h u s g23 = # 2 4 = # 3 4 = + 1 . H e r e q25, g26,

q27 can be —-1, — 1 , 1; — 1 , 1, 1; or 1, 1, 1. In this last case we may

assume by change of variable t h a t qSδ = q26 = g37 = q46 = g46 = g47 = 1

which yields a nonextreme form as long as the remainder is filled

out copositively. If #25, #26, #27 is — 1 , — 1 , 1 , then qm = + 1 , and we

have a number of choices for the block

#35, #36, #37

#45, #46, #47

Note t h a t this number can be significantly reduced by use of the

permutations (56) and (34). If q35 = qZ6 = q37 = —1 then there are too

many — Γ s in row 3. Similarly a t least one of #4β, #46, #47 must be
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+ 1. If this block contains two — Γs and one + 1 per row, it is
equivalent to one of

• 1 , - 1 , 1

-1,-1,

-1, -1, 1

-1, 1, -lj
• 1 , 1 , - 1

-1.1, - 1

" 1 , 1, - 1

1 , - 1 , - 1

The first of these implies (by —1 count) that qδ7 — q67 = + 1 , whence
it is a copositive nonextreme. In the second case qδ7 = + 1 necessarily,
and if q67 — —1 we have an extreme copositive form (call it A) which
is related to the Horn form. One way to see this is to take the last
6-variable extreme above and put x1 + x7 for x1 then relabel the
variables using the permutation (567). So by [1, Th. 3.8] we have
a copositive extreme, hence the other choice qm — + 1 is not extreme.
In the third case q57 — + 1 as before and if q67 = — 1 we get extreme
A if we apply (67)(243). Thus the alternate q67 = + 1 is nonextreme.
In the last case copositivity requires that qδ7 = q67 — + 1 and we get
a nonextreme depending on the form {%1 — xt — #3 — x4 + %5 + $6 +

 XΊ)2>

If two of q35, qsβ, qZ7 are — Γs and only one of q4δ, q46, q47 is —1,
then the form is equivalent to one with block

1, - 1 , 1

1, 1, IJ

-1,-1, 1] Γ-1,1, - 1 "

i, i, - iJ 'L-1,1, i

-i, i, -i

L 1 , - 1 , i

- 1 , 1 , - 1 "

1 , 1 , - 1

In the first case qδ7 = + 1 (—1 count) and the form is a copositive
nonextreme depending on extreme A above regardless of the choice
of <?67. In the second case q57 = g67 = —1 yields a copositive extreme
(call it B) related to the Horn form. (Take the last 6-variable ex-
treme above and replace xh by xδ + x7, then use the permutation (67)
and [1, Th. 3.8].) Hence the other choices for q57, qG7 yield nonextreme
forms. In the remaining cases, copositivity requires q57 = + 1 and we
get nonextreme forms related to extreme A after suitable permutation
of the subscripts.

If two of g35, g36, #37 are - Γ s and qi5 = q46 = qi7 = + 1 then q3δ,
Qsβ, 3̂7 can take only two inequivalent values, i.e., — 1, — 1, 1 or
— 1, 1, — 1 . The first of these is nonextreme depending on B. In
the second case copositivity requires q57 — + 1 and we have a non-
extreme depending on A.

The cases where g35, #86, qZ7 have at most one —1 and g45, #46, g47

have at most one —1 are all equivalent to one of

1, 1, -1"

i, i, -l

1,-1,1

1. -1.1

-i, l, i"

1,1,

i, l, -iJ'

-1, 1, 1
1, 1, IJ

i, i, -

1,1, lj'

"1, 1, 1]

.1, 1, IJ
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In the first of these we may assume that at worst (by —1 count)
one of qδ7, q67 is —1 and we may take it to be #67 without loss of
generality. Here the permutation (24)(67) shows nonextremity depend-
ing on the extreme A. In the second case g67 = + 1 necessarily ( — 1
count) and the permutation (56) shows the form is nonextreme depend-
ing on A. In the third case, we have qδ7 — qQ7 = — 1 as the worst
possibility and this is nonextreme depending on

\X1 • X% " %3 • ' X4 ~τ Xδ \ XQ X7) ,

thus the other choices for q57, q67 are nonextreme also. The remaining
cases are all nonextreme depending on B.

If ?25, ?2β, #27 is — 1, 1, 1 then we may assume that q35, qm, q37 has
at most one ~ 1 as does g45, g46, g47 thus our blocks are

-1, 1, 1

-1,1,1.

1, 1, 1] Γl, - 1 , 1

l, -1, i_|' U, 1, -1.

-1, 1, Γ

1,1, i

1, - 1 , 1Ί Γl, 1, 1

1, i_Γ U, 1.1.

all others being equivalent to one of these. The first of these has
#56 = Qδ7 — + 1 ( " 1 count) and is thus obviously nonextreme depend-
ing on {xx — x2 — x? — x4 + x5f + (x6 — x7)

2 regardless of the choice
of q%7. In the second case at least one of q5Q, q57 = + 1 (~1 count).
If qm = 1 the form is nonextreme depending on

\Xι Xz ' • $3 X4 ~r~ X$ ~τ~ XQ X7)

If q57 = 1 the form depends on B as the permutation (67) shows. In
the third case at least one of g56, qδ7, q67 is + 1 to insure copositivity
and in each of these events the form is nonextreme dependent on B
after suitable permutation. The fourth, fifth and sixth cases are
nonextreme dependent on the second, third and third respectively.

If #12 = ?i3 = - 1 a n d qu = qlδ = q16 = q17 = g23 = 1 t h e n

4? #25> #26? #27

#34, #35, #36, #3 7 J

-1 1 1 11 Γ - l 1 1 11 Γ - l 1 1 1

-1 1 1 1 Ί 1 - 1 1 1 H 1 1 1 l Γ

" 1 1 1 1 "

1 1 1 1

the last of which is not extreme for any copositive choice in the
remaining positions. In the first case q4δ = #46 = #47 = + 1 (—1 count)
and nonextremity follows. In the second case q4δ, #46, g47 can be — 1,
1, 1 or 1, — 1 , 1 or 1, 1, 1. If — 1 , 1, 1 then qm = qδ7 = + 1 and the
form is nonextreme. If 1, —1,1 then at least one of g56, qδ7 is + 1 .
If qδ7 — 1 then the permutation (34) show that the form is nonextreme
dependent on (xλ — x2 + x3 — x4 + xδ — x6 + χ7)

2. If qδ6 = 1 we apply
the permutation (472) which yields nonextremity dependent on B
above. If #4δ = qi6 = #47= + 1 the form is nonextreme and depends
on the case 1, —1,1 for these coefficients. In the third case above
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there are two choices for g45, g46, g47 either 1, —1,1 or 1, 1, 1 the last
of which is obviously nonextreme for any copositive completion. If
#45, #46> #47 a r ^ 1, —1,1 the form is again nonextreme depending on
that part of the second case above having these same values for

#45> #46y #47

Since there are no extreme forms in 7 variables with at most one
— 1 in a row we have exhausted all possibilities. Thus we have de-
termined 6 extreme copositive forms in 7 variables having qi5 — ± 1
(the extremes A, B are equivalent as the permutation (165)(45) shows).
These are the three positive semi-definite extremes

\Xl X2 ' «^3 ' ' ί/4 tΛ/5 ~Γ tΛ/β "T" «^7/

together with the three derived from the Horn form by the use of
[1, Th. 3.8] (see Figure 2). The only equivalences which could exist
between these would have to be between the last 3 (i.e., certainly
the positive semi-definite extremes are not equivalent to each other
or to any form which is not positive semi-definite). But there are
no equivalences between the last 3 as a tally of the — Γs in each
row clearly shows. Thus there are exactly 6 inequivalent extreme
copositive quadratic forms in 7 variables having the property qi3 =
± 1 (i, j = 1, , 7) and each of them can be derived from such a 6-
variable extreme by the use of [1, Th. 3.8]

"1 1 1 "

- 1 1 1 1 - 1

- 1 1 1 1 - 1

- 1 1 1 1 - 1

- 1 1 1 1 1 -

1 - - - 1 1

1 1 1 1 - - 1

"1 1 1 "

- 1 1 1 1 - 1

- 1 1 1 1 - 1

- 1 1 1 1 1 -

- 1 1 1 1 1 -

1 1 1 1

"1 1 1 1 "

- 1 1 1 - - 1

- 1 1 1 - - 1

- 1 1 1 - 1 -

1 1 1 1

J 1 1 - 1 - 1_
FIGURE 2. Extreme Copositive Quadratic Forms in 7 Variables.

4. A new class of extreme forms. A conjecture. According
to Hall and Newman [3, Th. 3.2] the extreme copositive quadratic
forms in n variables which belong to P + S are of three types:

( i ) ax\, a > 0 (i = 1, , n)
(ii) bxixj,b>Q (ί Φ j ; ί, j = 1, , n)

(ϋi) (u - vγ with u = g Wi, v=%b^'

where the u's and v's are disjoint subsets of xly , xn and a{ > 0,
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bi > 0, r ^ 1, $ ^ 1. Thus, if we only consider extremes in 3 or
more variables, we note that for every index pair if j (1 ^ i, j ^ n)
the extremes have zeros u (w* > 0; i — 1, , n) where UiUj > 0. The
Horn form (see first part of § 3) also has this property. We con-
jecture that this is always true, i.e.:

CONJECTURE 4.1. If Q(xu , xn), n Ξg 3 is an extreme copositive
quadratic form, then for every index pair ί, j (1 ^ i, j ^ ri), Q has a
nonnegative component zero u with uiui > 0.

Note that the special case i — j has been established [1, Th. 3.4],
If we consider only those extreme copositive forms in 5 variables

for which the conjecture is valid, and scale them so that qu = 1
(i — 1, •••,5), we can say quite a bit about their nonnegative com-
ponent zeros. In fact, assuming these forms are not positive semi-
definite, we have:

( i ) Each zero has at least two nonzero components (since q{i = 1,
i = l, - . . , 5 ) .

(ii) Each zero has at least two zero components. (Lemma 1,
Diananda, and [1, Corollary 3.7].)

(iii) For every index pair i, j (1 S i, j ^ 5), Q has a zero u with
UiUj > 0. (Conjecture 4.1).

(iv) Q has at most six 2-variable zeros.
This follows because each 2-variable zero implies that a different off-
diagonal coefficient is — 1 (since qH — 1, i — 1, , 5) and because
— 1 ^ Qij ^ 1 (Theorem 4.1, Hall and Newman); thus, if Q had more
than 6 such zeros, then Q(l, 1, 1, 1, 1) < 0, which contradicts coposi-
tivity. Since all 10 pairs (i Φ j) appear together in some zero (by
iii), we have

( v ) Q has at least two 3-variable zeros.
Note that by relabeling the variables1 we can insure that the required
3-variable zeros are (uu u2, us, 0, 0) and one of (vu 0, 0, v4, vδ), (wu w2,
0, w4, 0).

This information on their nonnegative component zeros allows us
to specify the structure of these zeros completely, if we remember
that we are considering only extreme copositive forms in 5 variables
which are not positive semi-definite, which have qu — 1 (i ~ 1, , 5)
and for which Conjecture 4.1 is valid. In order to do this we in-
troduce some terminology.

DEFINITION 4.2. A quadratic form Q(xl9 •••,#*) has A*(n) or
Qe A*(n), if (1) Q is copositive and (2) if for all i, j (i, j = 1, , n)
the form Q — sx^j is not copositive for any ε > 0.

We note that every extreme copositive quadratic form in n ^ 3
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variables has A*(n)m Further, if Q is any copositive quadratic form
and if Q has a nonnegative component zero u with uu u2 > 0, then
Q — exλx2 is not copositive for any ε > 0. Thus, one way of establish-
ing Q 6 A*(n) is by examining its nonnegative component zeros. We
use this extensively below.

DEFINITION 4.3. The pattern of an ^-dimensional vector v =
(vu , vn) is the vector obtained by replacing its nonzero com-
ponents with Γs. Thus (3, - 2 , 0, 4, -971) has pattern (1, 1, 0, 1, 1).

Our principle tool in determining the zero structure is the fol-
lowing lemma:

LEMMA 4.4. // Q has A*(5) and some ^.-variable sub-form Q4

has A*(4), then Q is positive semi-definite.

Proof. Q4 has A*(4) implies that Q is positive semi-definite
(Theorem 2, Diananda). But Theorem 4 of Diananda states that if
Qn is a positive semi-definite quadratic form having A*(ri), then Qn

has a zero with all components positive. Thus Q, has a zero with 4
positive components. Hence, so does Q, and thus [1, Corollary 3.7]
Q is positive semi-definite.

In what follows we shall only be interested in nonnegative com-
ponent zeros and then for the most part only in their patterns. Thus
any zero pattern mentioned will be the pattern of a nonnegative com-
ponent zero. We prove:

LEMMA 4.5. If Q is an extreme copositive quadratic form in 5
variables which is not positive semi-definite and which satisfies
Conjecture 4.1., then Q has 5 nonnegative component zeros which
have the patterns (11100), (OHIO), (00111), (10011) and (11001). Further
if Q is not the Horn form (see § 3), then Q has no further non-
negative component zeros.

Proof. Lemma 2 of Diananda insures qu > 0 (i = 1, , 5),
whence without loss of generality we may assume qu = 1 (ί =
1, •••, 5). According to (i), •••, (v) above, there are two main cases
depending on the 3-variable zeros which occur. Case a has zeros
(11100), (10011) and Case b has zeros (11100), (11010). We shall often use
Lemma 4.4 to show that the form we are considering is positive semi-
definite. One should be careful to realize that more explicitly this
means the form is positive semi-definite if it is copositive at all.

CASE a. The zero u2u4 Φ 0 can appear with patterns (01010),
(11010), (OHIO), (01011) and calling these a.l, a.2, a.3, a.4 respectively,
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we see that a.4 is equivalent to a.3 under a relabeling of the variables.
Hence we need not consider it further. The zero u2u5 Φ 0 may be
added to case a.l as (01001), (11001), (01101), (01011) which we call
a.l.a, a.l.b, a.l.c, a.l.d. Here a.l.b is positive semi-definite by Lemma
4.4 above, since Q, = Q(xl9 x2, 0, xB, x4) has zero patterns (1011), (0110),
(1101) and thus clearly has A*(4). So we need not consider a.l.b
further. Adding the zero u3u4 Φ 0 to case a.l.a in all possible ways
yields cases a.l.a.l, a.l.a.2, a.l.a.3, a.l.a.4 with additional patterns
(00110), (10110), (OHIO), (00111). In case a.l.a.2, Q4 = Q(xlf x2, xz, x4, 0)
and Lemma 4.4 make Q positive semi-definite, so we delete that case.
The zero uzu5 Φ 0 adjoined to case a.l.a.l yields a.l.a.l.a. (00101),
a.l.a.l.b (10101), a.l.a.l.c (01101) and a.l.a.l.d (00111). In case
a.l.a.l.a, qu == q25 = qu = g35 = —1 and hence Q(0, x2i xs, x4, 0) coposi-
tive implies q23 — 1. Similarly ζ)(0, 0, x3, x4, xδ) copositive implies q45 = 1,
thus Q(0, 1, 1, 1, 1) = 0 and so Q is positive semi-definite [1, Corollary
3.7]. Case a.l.a.l.b yields Q positive semi-definite also, since Q4 =
Q(Xj, x2y xs, 0, x5) has A*(4). Cases a.l.a.l.c and a.l.a.l.d are contained
in a.l.a.4. At this point, all of a.l.a.l has been either eliminated or
assumed under another case, and as a.l.a.2 was previously eliminated
we consider a.l.a.3. Adding u<όu5 Φ 0 yields a.l.a.3.a (00101), a.l.a.3.b
(10101), a.l.a.3.c (01101) and finally a.l.a.3.d (00111). Now a.l.a.3.b
and a.l.a.3.d are positive semi-definite by the lemma, so we discard
them. Further a.l.a.3.a is equivalent to a.l.a.l.c and thus contained
in a.l.a.4 as was that case. Thus we are left for the moment with
a.l.a.3.c and a.l.a.4 both of which are contained in future cases as
we shall see.

Having thus accounted for all of a.l.a, and eliminated a.l.b, we
turn to a.l.c. Adding u3u4 Φ 0 yields a.l.c.l (00110), a.l.c.2. (10110),
a.l.c.3 (OHIO) and a.l.c.4 (00111). Here a.l.c.l is equivalent to
a.l.a.4; a.l.c.2 and a.l.c,4 are positive semi-definite by the lemma
and a.l.c.3 remains—actually it is contained in a future case. We
note that a.l.a.3.c is a sub-case of a.l.c.3, hence we discard a.l.a.3.c.
Adding u2u, Φ 0 to a.l.d yields a.l.d.l (00110), a.l.d.2 (10110), a.l.d.3
(OHIO) and a.l.d.4 (00111). Now a.l.d.2 is positive semi-definite by
the lemma and a.l.d.4 is equivalent to a.l.c.3. We now add u3u5φ 0
to a.l.d.l giving a.l.d.l.a (00101), a.l.d.l.b (10101), a.l.d.l.c (01101)
and a.l.d.l.d (00111). Of these a.l.d.l.b and a.l.d.l.c are positive
semi-definite by the lemma, and a.l.d.l.a is included in a.l.a.4 while
a.l.d.l.d is a sub-case of a.l.c.3. Adding uzu5 Φ 0 to the remaining
case a.l.d.3 yields a.l.d.3.a (00101), a.l.d.3.b (10101), a.l.d.3.c (01101)
and a.l.d.3.d (00111). Here a.l.d.3.b is included in a future case
and the others are positive semi-definite. Thus we have a.l.a.4,
a.l.c.3 and a.l.d.3.b as the only patterns remaining from a.l (and
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these all will appear as sub-cases of others).
Turning to a.2 we add u2u5 Φ 0 getting a.2.a (01001), a.2.b (11001),

a.2.c (01101) and a.2.d (01011). The other three being positive semi-
definite we consider only a.2.c. Adding uzu± Φ 0 gives a.2.c.l (00110),
a.2.c.2 (10110), a.2.c.3 (OHIO) and a.2.c.4 (00111), with a.2.c.4 provid-
ing the only solution as the three other cases are positive semi-definite.
Note that a.l.d.3.b is contained in a.2.c.4. As for a.3, we add
u2u5 Φ 0 to get a.3.a (01001), a.3.b (11001), a.3.c (01101) and a.3.d
(01011). Note that a.3.c includes a.l.c.3. It also includes a.l.a.4 for
in this case g24 = q25 — — 1 and so g45 = 1 to insure copositivity. Hence
Q(0, x2, 0, x4, xδ) — (x2 — Xi — xδf and thus a.l.a.4 has the additional
zero pattern (01011) from which we see that a.l.a.4 is indeed included
in a.3.c. Now adding u3uδ Φ 0 to a.3.a yields a.3.a.l (00101), a.3.a.2
(10101), a.3.a.3 (01101) and a.3.a.4 (00111). Of these a.3.a.2 and
a.3.a.4 are positive semi-definite and the others are included in a.3.c.
To a.3.b we adjoin u,uδ Φ 0 and get a.3.b.l (00101), a.3.b.2 (10101),
a.3.b.3 (01101) and a.3.b.4 (00111). Here a.3.b.4 is a sub-case of
a.2.c.4 and the others are positive semi-definite. Turning to a.3.d
we add u,uδ Φ 0 yielding a.3.d.l (00101), a.3.d.2 (10101), a.3.d.3 (01101)
and a.3.d.4 (00111) of which the second is a sub-case of a.2.c.4 and
the others are positive semi-definite.

Since a.4 was equivalent to a.3 we have exhausted Case a and
discovered only two possible zero patterns a.2.c.4 and a.3.c; relabeling
the variables gives

a.2.c.4 (11100), (OHIO), (00111), (10011), (11001)

a.3.c (11100), (11010), (11001), (00111) .

CASE b. Here we have (11100) and (11010) as the basic patterns
and we add uλuδ Φ 0 yielding b.l (10001), b.2 (11001), b.3 (10101) and
b.4 (10011). Now b.3 and b.4 were considered under Case a, thus
only b.l and b.2 need be investigated. Adding u2u5 Φ 0 to b.l gives
b.l.a (01001), b.l.b (11001), b.l.c (01101) and b.l.d (01011) of which
b.l.c and b.l.d are sub-cases of a. Adjoining u3Ut Φ 0 to b.l.a yields
b.l .a. l (00110), b.l.a.2 (10110), b.l.a.3 (OHIO) and b.l.a.4 (00111).
This last is a sub-case of a and the others are positive semi-definite.
Adding u3u4 Φ 0 to b.l.b gives b.l .b.l (00110), b.l.b.2 (10110), b.l.b.3
(OHIO) and b.l.b.4 (00111). Here again the last case belongs to a
and the others are positive semi-definite. Considering b.2 now, we
add u3u, Φ 0 and get b.2.a (00110), b.2.b (10110), b.2.c (OHIO) and
b.2.d (00111). Of these, the first is positive semi-definite and the
others are sub-cases of a. Hence case b adds no new solutions.

In dealing with our two solutions, a.2.c.4 and a.3.c, we shall
continuously use the facts that qu = 1 (i — 1, , 5) and hence that
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— 1 ^ Qii ̂  1 (Theorem 4.1, Hall and Newman). Let us label the
known zeros of a.3.c as follows

u = (uu u2, u3y 0, 0) ,

v = (vu v2, 0, v4, 0) ,

w = (wly w29 0, 0, w5) ,

and

z = (0, 0, z3, z4, zδ) .

Applying [2, Th. 2] to Q, — Q(xu x2 x3, x4, 0) we see that it is con-
tained in P + S9 hence zeros u, v of Q imply that Q, = Q' + δ#3ί&4

where Q' has A*(4) for 6 ^ 0 large enough. Thus ζ)' is positive semi-
definite and [2, Th. 4] has a zero with all components positive. So
[1, Corollary 3.7] implies that Q is positive semi-definite if 6 = 0.
Thus we may assume b > 0; but with Q' positive semi-definite this
yields qu > — 1. Similarly g35, <?45 > — 1. Since g34, g35, g45 > — 1, Q has
no zeros with patterns 00110, 00101, 00011 and any further zero pat-
terns that Q might have are equivalent to one of A(11000), 5(10100)
or C(10110) by a relabeling of the variables. In Case C, Q4 =
Q(xlf x2, x3, %4, 0) and the lemma prove that Q is positive semi-definite.
In Case B9 qiz — — 1 and Q(xu x2, %$, 0, 0) being positive semi-definite
(Lemma 1, Diananda) we see that Q(u) = 0 implies that (q12, g23) is
(1, —1) or ( — I, 1). Using the facts that Q(xly x2, 0, xi9 0) and
Q(xly x2, 0, 0, x5) are similarly positive semi-definite with zeros v and
w yields five cases.

(Bl) q12 — 1, qu ~ qlδ ~ q2S — q2i — QM = — 1

( B 2 ) qu = q15 = q2Z = 1, q12 = g 2 4 = g 2 5 = - 1

( B 3 ) qu = g 2 3 = g 2 5 = 1, g i 2 = q16 = %4 = - 1

( B 4 ) g 1 5 = g 2 8 = g 2 4 = 1, q12 = g 1 4 = g 2 5 = - 1

(B5) g23 = g24 = g25 = 1, ?i2 = ?i4 = ίiβ = - 1

For Bl we have Qί^, 0, #3, OJ4, 0) copositive, thus g34 ^ 1. But since
Q(xl9 ,x6) is extreme, Theorem 4.1 of Hall and Newman yields
— 1 S qid g 1 (i, i = 1, , 5). Thus g34 = 1 and similarly q3δ =zqAδ = l
but this contradicts the existence of the zero z. In case B2,
Q(0, x2, 0, x41 x5) copositive implies that q4δ = 1, hence Q(0, 0, x3, x4, xδ)
positive semi-definite with Q(z) = 0 and qi{ — 1 (i = 1, , 5) yields
#3i = q$6 — —1> contradicting g34 > — 1 as assumed above. Case B3
proceeds similarly using Q(xu 0, aj3, 0, x6) copositive to establish that
g35 = 1 and hence [using Q(0, 0, a;3, a?4, a?B)] that g34 = g45 = — 1, which
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violates our assumption. In case B4, we establish q3i = 1 and hence
that g35 = q4δ = —1 similarly, arriving at the same contradiction. For
B5, Q(x , 0, x3, x4, 0) copositive yields q3i — 1 and proceeding similarly
we establish that q2δ — qi5 = 1 which contradicts Q(z) = 0. Only Case
A remains, here q12 = — 1 whence one of g,3, q23 — — 1 and thus by
relabeling xly x2 if necessary we have a sub-case of B. So we con-
clude that a.3.c cannot have any further zero patterns, which implies
qi3 > —1 (i, j — 1, , 5). Further if q,ά — i for some i Φ j (i, j =
1, , 5) then at least one of

Q(x» xi9 X*, 0, 0), Q(xl9 x2, 0, x4, 0), Q{xu x2, 0, 0, xδ), Q(0, 0, x3, x4, x5)

would be of the form (x̂  + Xj — xkf which would produce an addi-
tional zero Xi — xk = 1, contradiction. Hence for a.3.c we know that
— 1 < qi3- < 1 ί Φ j (i, j = 1, , 5). Note further that if Q has two
distinct zeros in S(5) with the same pattern, say for example the
pattern u, then Q{xλ, x2, a?8, 0, 0) is (x± ± x2 ± xsf where the signs are
not both plus. That is, this also introduces a new zero pattern. But
we have ruled out such happenings, thus in the case a.3.c the only
nonnegative component zeros of Q are uyv,w,z and these are unique.

Since u is a unique zero of Q we know that

Q(α?i, α8, »8, 0, 0) = (x, + q^x* 4- ί18α8)
2 + &(— - —

V u2 u

Ic, u2, u3 > 0

and hence that
Q = Ol + g]2^2 + #13̂ 3 + QuXi + ^15^δ)2 ( = L\)

+ k(^ - ^ + ex4+ fxX k, u2, u3>0 ( = kLί)

\u2 u3 J

+ bx3xA + cx3x5 b > 0, c ^ 0

+ A^4 + .Bα;4̂ 5 + Cxi

where b ^ 0, c ^ 0 because dQ(u)/dx4 = bu3 and dQ(u)/dx5 — cu3 and
copositivity requires these slopes to be nonnegative. But [1, Corollary
3.3] states that if Q is extreme and not positive semi-definite, then at
least one of these slopes must be positive. By relabeling the variables
if necessary we may assume b > 0. (Note that if this relabeling is
done, it produces no change in the zero patterns.) A, C ^ 0 follow
from Q(v) = Q(w) = 0. Now Q(xl9 x2, 0, x4, 0) is positive semi-definite
(Lemma 1, Diananda), whence Q(v) = 0 implies A — 0. Similarly
C = 0. So Q(«) = 0 implies B < 0 since δ > 0, c ^ 0. Now let r =
v + w, then Q(r) = L2

x(r) + fcL^(r) + Br4r5 < 0 since L^w) = Lx(v) =



EXTREME COPOSITIVE QUADRATIC FORMS, II 15

L2(w) — L2(v) = 0 which contradicts the copositivity of Q, and thus
rules out pattern a.3.c.

Case a.2.c.4 remains and it certainly has solutions, since the Horn
form clearly belongs to this category. Let the known zeros of Q be

u = (uly u2, uz, 0, 0) ,

v = (0, v2, v3, v4, 0) ,

w = (0, 0, w3, wA, w6) ,

y = (yl9 0, 0, y4, y5) ,

and

z = (zu z2, 0, 0, zδ) .

Applying Theorem 2 (Diananda) to Q4 = Q(xx, #2, #3, #4, 0) we see that
it is contained in P + S, hence zeros u,v of Q imply that Q4 =
Qr + 6x^4 where Q' has A*(4) for 6 ^ 0 large enough. Thus Q' is posi-
tive semi-definite and [2, Th. 4] has a zero with all components posi-
tive. So [1, Corollary 3.7] implies that Q is positive semi-definite if
b = 0. Thus we may assume 6 > 0; hence as Q' is positive semi-
definite qu > — 1. Similarly, we see g25, g13, g24, g35 > — 1. Thus Q has
no zeros with patterns (10010), (01001), (10100), (01010), (00101). Hence
if Q has any 2-variable zeros they must involve xiy xi+ί; so without
loss of generality we may assume that q12 = — 1. Then q13 > — 1
implies Q(xu x2, xSf 0, 0) = (xλ — x2 + x3f, whence q23 = — 1. So

Q(0, x2, #3, α;4, 0) = (x2 — xz + α;4)
2 ,

and similarly

Q(0, 0, x3, x4, xδ) = (x3 — 4̂ + ^ 5) 2 ,

©(^i, 0, 0, a?4, a?5) = (a;4 - α;5 + ^ ) 2

and

Q(a?i, a?2, 0, 0, x5) = (x5 - xΊ + α;2)
2 .

That is Q is the Horn form. Thus we may assume that Q has no
2-variable zeros. If Q has an additional 3-variable zero pattern we
have a sub-case of a.3.c, which was already eliminated. Suppose Q
has two distinct nonnegative component zeros with the same pattern,
say the pattern u. Then Q(xu x2) xd, 0, 0) = (x1 ± x2 ± xzf where the
signs are not both plus, hence Q has a 2-variable zero which con-
tradicts our assumption. Hence the only nonnegative component zeros
of Q are u, v, w, y, z, and these are unique. Thus we have completed
the proof of Lemma 4.5.
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THEOREM 4.6. There exist extreme copositive quadratic forms
in 5 variables with qu — 1 (i ~ 1, , 5), which do not have qiά ~
± 1 for all i, j (1 ^ ij ^ 5).

Proof. The proof is in three parts. First we exhibit a quadratic
form in 5 variables which has the zero patterns of Lemma 4.5 and
which has q12 = —7/8. Secondly we demonstrate that this form is
indeed copositive and finally we establish its extremity.

Note that if a copositive quadratic form Q(xl9 , xδ) has the
zeros u, v, w, y, z then (Lemma 1, Diananda)

Q(xl3 x2, x3y 0, 0), Q(0, xtί xs, xA, 0), , Q(xu xi9 0, 0, x5)

are all positive semi-definite. As homogeneity allows us to assume
u3 = v4 = wδ = y1 = z2 = 1, this implies

Ui + u2q12 + g13 = 0

(4.1) uλq12 + u2 + g23 = 0

^1013 + ^2^23 + 1 = 0

with similar equations involving the t /s, « ,^/s. The determinant
of the system 4.1 being —2u±u2 < 0 we can solve for q12y g13, q23 in
terms of the zero u. Solving the other equations also we may express
all qi3 in terms of the zeros u, , z. If we specify q12, ul9 v2, w3, y±
the form is determined from these equations. Whence letting q12 —
— 7/8, ut — v2 — w3 — y4 = 1/8, we determine a solution to these equa-
tions which happens to be a new extreme copositive form. There is
nothing sacred about the values we picked for these parameters, how-
ever they are not completely free either, as we shall see.

Being a solution to the indicated equations does not of itself
guarantee either copositivity or extremity. Thus we must establish
these properties for our solution. It will be clear however, from the
way these properties are established, that any suitably small pertur-
bation of our initial parameters will likewise yield an extreme coposi-
tive quadratic form. Hence there exists a whole class of such extreme
copositive quadratic forms. The particular form of interest now is:

8g12 - - 7 , 83g13 - 7(84 - 15)1'2 - 15

894u = (88 - 15)1/2(810 - 15)1/2 - 15

= (8 4 - 15) 1 / 2 (8 6 - 15) 1 / 2 - 15

= 7(8 1 0 - 15) 1 / 2 - 15
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8 3 g 3 i - - ( δ ' - l δ ) 1 ' 2

87g35 = (86 - 15)1/2(88 - 15)1/2 - 15

84g45 = - ( 8 8 - 15)1'2

This form has zeros u, v, w, y, z where

82u - {8, 7 + (84 - 15)1/2, 82, 0, 0}

8*v = {0, 82, (84 - 15)1/2 + (86 - 15)1/2, 83, 0}

8Aw = {0, 0, 8s, (86 - 15)1/2 + (88 - 15)1/2, 84}

8% = {85, 0, 0, 84, (88 - 15)1/2 + (810 - 15)1/2}

8z = {7 + (810 - 15)1/2, 8, 0, 0, 85}

Note t h a t u1v2w?y4zδ = 1, which is characteristic of extremes of this
type. I t follows from Equations 4.1, etc.

Lett ing Qζ be the 4-variable sub-form obtained by deleting the
ith variable, we see t h a t

Qδ = tfaXt + [xλ + q12x2 + qldx3 + (qu - (l/2)tδ)x4f

+ 95[
X2 — U2X3 + ( — V2 + U^V^Xtf

where g5 — 1 — q2

12 and t5 is selected so t h a t

#12̂ 2 + 1̂3̂ 3 + (#14 - (l/2)ί5)tf4 = 0 .

Qly , Q, have similar representations and as tlt , tδ > 0 we see
that Qi e P + S (i = 1, , 5). Hence we only need establish coposi-
tivity for those vectors with xi > 0 (ί = 1, , 5). Using homogeneity,
we can ascertain this from the values of Q(x) restricted to x5 = 1.
To do this we first note that Q(x) ^ 0 for all x on the boundary of
/ — {χ: χb ~ 19 χi ^ 0 (i = 1, , 4)}. For those portions having x{ — 0
for some ί (i = 1, , 4) this follows from tl9 , t4 > 0. A typical
point on the other part of the boundary might be lim (951, M, 3, M, 1)
as M—^oo. Now let y5 be a sequence of points converging to this
part of the boundary of J. For each y5 let N3 ~ y5ί + + yάi + 1,
then by homogeneity

Q(Vj) = N&iyj/Nj)

and thus in particular Q{yβ) and Q(y3 /Nj) have the same sign for all j .
Hence in the limit they have the same sign also. But lim Q(y3 /Ns) ^ 0
since yj6/N3- —> 0 and ί6 > 0. If this limit is positive we are done,
otherwise it could happen that lim Q{y5) < 0. We shall show that
this doesn't occur.

In the case we are considering we have lim yόIN3 as a nonnegative
component zero of our form with xδ — 0. We shall show that it thus
must be a scalar multiple of our zeros u or v, as Q has no other such



18 L. D. BAUMERT

zeros with x5 = 0. Since qiά Φ — 1 (i, j = 1, , 5) and gίf = + 1
(i = 1, , 5), Q has no zeros with only one or two positive com-
ponents. If Q had a zero (Φau, a > 0) with the same three positive
components as in u then g5 would be zero (see above), a contradiction
as it implies q12 — ± 1 . Similarly for v the analogous term g1 would
be zero and hence g23 = ± 1 . If Q had a different three component
zero with x5 = 0 it would have to be (su s2, 0, si9 0) or (sly 0, s3, s4, 0)
but then Q5 would have A*(4) and thus [2, Th. 2] be positive semi-
definite. This contradicts t5 > 0. If Q had a zero (sx, sz, s3, s4, 0), s4 > 0,
then (as ζ)5 is copositive) Lemma 1 of Diananda shows that Q5 is posi-
tive semi-definite, i.e., t5 = 0, a contradiction. Thus \imyd/N3 is a
scalar multiple of u or v. As these two cases can be handled in the
same way, we assume it to be an, a > 0. Computing dQ(au)/dx5 we
see that it is greater than zero for all a > 0. Let Nε be that part
of a ε-neighborhood of an which contains the nonnegative component
vectors having x1 + + x5 = 1. If we can establish that Q ^ 0 in
Nζ and that Q > 0 in those parts of Ns where x5 > 0, then it will
follow that lim Q{yά) ^ 0 if yόINό —> au. As Qδ is copositive we need
only consider xe N2 with x5 > 0. Write x ~ au + r, where r5 > 0.
Then

+ r5(dQ(au)/dx5 + 2g15rx + + 2g45r4 + r5)

where Q(^i, , %*, 0) ^ 0 and dQ(au)/dx5 > 0 as previously determined.
Hence for sufficiently small ε > 0 we have Q(x) > 0 (for xe N2 and
x5 > 0). Thus we have shown that Q ^ 0 on the boundary of J.

Let us suppose that there exists a point s in J for which Q(s) — d<0.
(We wish to show that this implies that Q has a stationary point in J.)
Consider the set T = {x in J: Q(x) ^ (l/2)d}, clearly s € Γ and T is closed.
If T were not bounded there would exist a sequence of points of T
approaching a boundary point of / . But T is closed, thus this boundary
point must have function value ^ (l/2)d, contradiction. Thus T is
bounded. So there exists an R such that all of T lies inside the
intersection of the sphere of radius R with the set J . This is a
closed and bounded region outside of which Q > (l/2)d, thus Q has a
minimum ^ d in this region. As ζ) is continuous Q has a stationary
point in the interior of R Π J at which the minimum is taken.

In our case we apply Lagrange's method to Q(x) + λ#5 yielding
a system of linear equations involving the matrix of our form Q.
As this matrix has determinant —11.925 we solve for the vector
x - (-0.1272, -513.6, -521.6, -8.017, 1) with associated value Q(x)~
— 961.8. But as x& R Π J there is no stationary point in R Π J and
hence Q is copositive.
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Finally we show that our form Q is extreme. Suppose not, then
Q = R + T where Ry T are copositive and hence have the zeros
u, v, w, y, z of Q. We shall show that these zeros determine Q up to a
scalar multiple and hence that R — aQ, T = (1 — a)Q, 0 <; a ^ 1.

Since R has the zeros u, v, w, y, z and is copositive, we see that
Re A*(5) and thus r« > 0 (ί = 1, , 5). Thus multiplying R by a
suitable scalar we may assume r u — 1. The zero u plus copositivity
imply that J?(ajlf x2, x3, 0, 0) is positive semi-definite (Lemma 1, Diananda)
and hence

Ui + rJ2u2 + r13 = 0

r13Ui + r23^2 + r33 = 0 .

Thus, letting r12 — 6, r22 — β we can solve for r13, r23 and r33 in turn,
getting in each case a linear equation in b and e. Using these values
and the analogous equations for the zero v we determine r24, ru and ru.
Ultimately we establish all the riά as linear expressions in 6 and β.
Explicitly we have

rn = 1 ,

r 2 2 = e ,

7̂ 23 :==" " O^i

r24 = — v 2β

r33 = n\ + 2bu1u2 + eu\ ,

r3 4 = ^ ( δ ^ i + eu2) — v3(%i + 2bu1u2 + βtt|) ,

r3 5 = (v3w4 — w3)(wj + 2bu1u2 + 6^2) — v^w^bUi + eu2) ,

r44 = vie — 2v2vB(bu1 + eu2) + v\{u\ + 2 δ ^ 2 + euf) ,

r55 - (s2 + 2tox + e)/zl .

An examination of these equations would show that they were obtained
without the use of relations

n5w3 + rAbw, + r55 = 0 and ruwz + ruw4 + r4δ = 0 .

Using these and uλv2wzy^ = 1 yields
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— w4ybz\

(2u1u2v3w3w4y4zl — 2u1u2wly4zl — 2w4ybzλ + 2y,z1)b

{u\v3w3w4y4zl — u\w\yAz\ — u2v2w3w<y4zl — w4#5 + y4)e = 0

3y4zl — 2u1v2v3wiy,z2

δ + 2u1u2vlw4y4z
2

5 + 2zδ)b

— u\v3w3y4z\ + v\w4y,z\ — 2u2v2v3wAy4zξ)e

{u\v\w,y,z\ - #β)e = 0 .

For our particular values of %, •• , ^ ί these two equations have the

unique solution δ = —7/8, e — 1. Hence JR is unique and thus Q is

extreme. Thus we have established that our particular example is

an extreme copositive quadratic form, which completes the proof of

Theorem 4.6.

The existence of a large class of similar forms follows from con-

tinuity considerations applied to our argument above. Now each

member of this class of extreme copositive quadratic forms in 5

variables may be extended to an extreme form in 6, 7, variables

[1, Th. 3.8]. Hence we have new extremes Q(xl9 •••,%„) for all

n ^ 5.
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