ON A THEOREM BY HOFFMAN AND RAMSAY

STELIOS NEGREPONTIS

Hoffman and Ramsay recently constructed, using the continuum hypothesis, a proper subalgebra of the algebra $C(\beta N)$ of all complex-valued continuous functions on βN which is uniformly closed and separates points of βN . (This example settles in the negative a conjecture by Badé and Curtis). The purpose of this note is to indicate that this result does not need the continuum hypothesis.

Their construction, in [3], naturally falls into two parts, the first of which is devoted to the proof that the space X of maximal ideals of the algebra L^{∞} of all essentially bounded measurable complex-valued functions on the unit circle is homeomorphic to a subset of $\beta N - N$. It is in this part that they are forced to use the continuum hypothesis.

1. We have a simple proof of this fact without appeal to the continuum hypothesis.

THEOREM. The space X is homeomorphic to a subset of $\beta N - N$.

Proof. We first show that there is a compact separable space S in which X is embedded. This can be seen in at least two distinct ways. By a theorem in [2, p. 174] we can regard X as a subset of $\mathcal{M}(H^{\infty})$, the space of maximal ideals of H^{∞} . (For a definition of H^{∞} , the reader should consult [2]). According to the "Corona" conjecture proved by Carleson, the open unit disc is dense in $\mathcal{M}(H^{\infty})$, and thus, $\mathcal{M}(H^{\infty})$ is a separable space. Thus, we may take $S = \mathcal{M}(H^{\infty})$. An alternative, and more elementary, way is to notice that $L^{\infty} = C(X)$, a fact proved in [2, p. 170], and hence that C(X) has cardinality $C = 2^{\aleph^0}$; but this clearly implies that we can embed X in the compact "cube" [0, 1]^C, which according to [4, 3N] is separable. Thus, we may take $S = [0, 1]^{C}$.

In any case, let $\varphi: N \to S$ be any mapping onto a dense subset of S. The Stone-Cech extension of φ , denoted by $\overline{\varphi}$, provides a mapping of βN onto S. As it is well-known, using Zorn's lemma, we can find a closed subset A of $\overline{\varphi}^{-1}(X)$ such that $\overline{\varphi}: A \to X$ is irreducible, i.e. $\overline{\varphi}$ is onto, and $\overline{\varphi}(B) \neq X$ for every proper closed subset B of A. Gleason's lemma [1, 2.3], which applies since X is extremally disconnected, states that $\overline{\varphi}$ is a homeomorphism. We can embed βN into $\beta N - N$, and hence, the theorem is proved. 2. REMARKS. (i) The initial attempt to prove the above theorem, which failed, was the following: Let S^1 be the unit circle in the plane, and let $\sigma: X \to S^1$ be the natural projection (as described in [2, p. 171]). A quick proof of the theorem would follow, if it could be shown that σ were irreducible; but this is not the case.

(ii) The space X is the only example known to the author of an extremally disconnected subspace of βN which is not separable. Surely X is not a retract of βN . It follows that although the projective objects (in the category of compact spaces and continuous maps) are "the retracts of the free objects" (in the terminology of Rainwater [5]), it is not true that a projective object is a retract of every free object in which it is embedded.

References

1. A. Gleason, Projective topological spaces, Illinois J. Math. 2 (1958), 482-489.

2. K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, 1962.

3. K. Hoffman and A. Ramsay, Algebras of bounded sequences, Pacific J. Math. 15 (1965), 1239-1248.

4. J. Kelley, General Topology, Van Nostrand, New York, 1950.

5. J. Rainwater, A note on projective resolutions, Proc. Amer. Math. Soc. 10 (1959), 734-735.

Received April 5, 1966.

INDIANA UNIVERSITY AND McGill University