RECIPROCITY AND JACOBI SUMS

Joseph B. Muskat

Recently N. C. Ankeny derived a law of r th power reciprocity, where r is an odd prime:
q is an r th power residue, $\operatorname{modulo} p \equiv 1(\bmod r)$, if and only if the r th power of the Gaussian sum (or Lagrange resolvent) $\tau(\chi)$, which depends upon p and r, is an r th power in $G F\left(q^{f}\right)$, where q belongs to the exponent $f(\bmod r)$.
$\tau(\chi)^{r}$ can be written as the product of algebraic integers known as Jacobi sums. Conditions in which the reciprocity criterion can be expressed in terms of a single Jacobi sum are presented in this paper.

That the law of prime power reciprocity is a generalization of the law of quadratic reciprocity is suggested by the following formulation of the latter:

If p and q are distinct odd primes, then q is a quadratic residue $(\bmod p)$ if and only if $(-1)^{(p-1) / 2} p=\tau(\psi)^{2}$ is a quadratic residue $(\bmod q)$. Here ψ denotes the nonprincipal quadratic character modulo p (the Legendre symbol) and

$$
\tau(\psi)=\sum_{n=1}^{p-1} \psi(n) e^{2 \pi i n / p}
$$

is a Gaussian sum.
A complete statement of Ankeny's result is the following:
Let r be an odd prime. $Q\left(\zeta_{r}\right)$ will denote the cyclotomic field obtained by adjoining $\zeta_{r}=e^{2 \pi i / r}$ to the field of rationals Q.

Let p be a prime $\equiv 1(\bmod r)$. Let χ denote a fixed primitive r th power multiplicative character $(\bmod p)$. Define the Gaussian sum

$$
\tau\left(\chi^{k}\right)=\sum_{n=1}^{p-1} \chi^{k}(n) e^{2 \pi i n / p}, \quad r \nmid k .
$$

Let q be a prime distinct from r, belonging to the exponent $f(\bmod r)$. Then

$$
\tau(\chi)^{q^{\top}-1}=\left[\tau(\chi)^{r}\right]^{\left(q^{T}-1\right) / r} \equiv \chi(q)^{-\rho} \quad(\bmod q)
$$

Consequently, if \mathfrak{q} is any one of the prime ideal divisors of the ideal (q) in $Q\left(\zeta_{r}\right), q$ is an r th power $(\bmod p)$ if and only if $\tau(\chi)^{r}$ is an r th power in $Q\left(\zeta_{r}\right) / q$, a field of q^{f} elements; i.e.,

$$
\begin{equation*}
\chi(q)=1 \text { if and only if } \tau(\chi)^{r} \equiv \beta^{r}(\bmod \mathfrak{q}) \tag{1}
\end{equation*}
$$

for some $\beta \in Q\left(\zeta_{r}\right)$ [1, Th. 2].
The following properties of the Gaussian sums are well known:
Assume $k \not \equiv 0(\bmod r)$ 。

$$
\begin{gather*}
\tau\left(\chi^{k}\right) \tau\left(\chi^{-k}\right)=p \tag{2}\\
\tau\left(\chi^{k}\right) \notin Q\left(\zeta_{r}\right), \text { but } \tau\left(\chi^{k}\right)^{t} \tau\left(\chi^{k t}\right) \in Q\left(\zeta_{r}\right) .
\end{gather*}
$$

In particular,

$$
\tau\left(\chi^{k}\right)^{r} \in Q\left(\zeta_{r}\right)
$$

During the nineteenth century several people worked on special cases of the problem solved by Ankeny. C. G. J. Jacobi treated $r=3$ in [3]. Using Cauchy's result that

$$
\tau(\chi)^{q} / \tau\left(\chi^{q}\right) \equiv \chi(q)^{-q}(\bmod q), \quad[6, p .108]
$$

T. Pepin showed that if $q \equiv \pm 1(\bmod r)$, then $\chi(q)=1$ if and only if $\tau(\chi)^{r} / \tau\left(\chi^{2}\right)^{r}$ is an r th power residue $(\bmod q)$, ([6, pp. 117, 120]).

Define the Jacobi sums

$$
\pi\left(\chi^{a}, \chi^{b}\right)=\sum_{n=2}^{p-1} \chi^{a}(n) \chi^{b}(1-n)=\sum_{j=0}^{r-1} c_{j} \zeta_{r}^{j}
$$

If r does not divide a, b, or $a+b$,

$$
\pi\left(\chi^{a}, \chi^{b}\right)=\tau\left(\chi^{a}\right) \tau\left(\chi^{b}\right) / \tau\left(\chi^{a+b}\right)
$$

so by (2)

$$
\begin{equation*}
\pi\left(\chi^{a}, \chi^{b}\right) \pi\left(\chi^{-a}, \chi^{-b}\right)=p \tag{3}
\end{equation*}
$$

(For information on Jacobi sums see [2, Ch. 20])
$\tau(\chi)^{r}$ can be expressed as a product of Jacobi sums, as follows:

$$
\tau(\chi)^{r}=\tau(\chi) \tau\left(\chi^{r-1}\right) \prod_{j=1}^{r-2} \tau(\chi) \tau\left(\chi^{j}\right) / \tau\left(\chi^{j+1}\right)=p \prod_{j=1}^{r-2} \pi\left(\chi, \chi^{j}\right), \text { by }(2)
$$

For $r=3, \tau(\chi)^{r}=p \pi(\chi, \chi)$, so that knowing $\pi(\chi, \chi)$ gives complete information about reciprocity. For $r>3$, however, it is often necessary to consider products of Jacobi sums. Some cases where $\pi(\chi, \chi)$ itself gives complete information about reciprocity are described in the following two theorems:

Notation. For brevity, let $\pi[t]=\pi\left(\chi^{t}, \chi^{t}\right)$. Let $\pi[1]=\sum_{j=0}^{r-1} c_{j} \zeta_{r o}^{j}$ Then

$$
\pi[t]=\sum_{j=0}^{r-1} c_{j} \zeta_{r}^{j t}
$$

Let 2 belong to the exponent $s(\bmod r)$.
Lemma. $\quad \pi[t]^{q^{h}} \equiv \pi\left[t q^{h}\right](\bmod q)$.

Proof.

$\pi[t]^{q^{h}}=\left[\sum_{j=0}^{r-1} c_{j} \zeta_{r}^{J t}\right]^{q^{h}} \equiv \sum_{j=0}^{r-1} c_{j}^{q^{h}} \zeta_{r}^{j t q^{h}} \equiv \sum_{j=0}^{r-1} c_{j} \zeta_{r}^{j t q^{h}} \equiv \pi\left[t q^{h}\right](\bmod q)$.
Theorem 1. Assume $2^{r-1} \not \equiv 1\left(\bmod r^{2}\right)$. If there exists an integer u such that $q^{u} \equiv 2(\bmod r)$, then $\tau(\chi)^{r}$ is an r th power in $Q\left(\zeta_{r}\right) / q$ if and only if $\pi(\chi, \chi)$ is.

Proof. By an identity attributed to Cauchy, [6, p. 112]

$$
\begin{align*}
\tau(\chi)^{2^{s-1}} & =\pi[1]^{2 s-1} \pi[2]^{2^{s-2}} \pi[4]^{s^{s-3}} \cdots \pi\left[2^{s-2}\right]^{2} \pi\left[2^{s-1}\right] \\
& =\prod_{j=0}^{s-1} \pi\left[2^{j}\right]^{2 s-j-1}=\prod_{j=0}^{s-1} \pi\left[q^{u}\right]^{s-j-1} \\
& =\beta^{r} \prod_{j=0}^{s-1} \pi\left[q^{u j}\right]^{q^{u(s-j-1)}}, \quad \text { for some } \beta \in Q\left(\zeta_{r}\right) \tag{4}
\end{align*}
$$

To the j th factor of the product in (4) apply the lemma with $t=1$ and $h=u j$:

$$
\begin{aligned}
& \tau(\chi)^{2^{s}-1} \equiv \beta^{r} \prod_{j=0}^{s-1} \pi\left[q^{0}\right]^{q^{u(s-1)}} \equiv \beta^{r} \pi[1]^{s q^{\psi(s-1)}} \\
& \equiv \gamma^{r} \pi[1] 2^{s-1} s(\bmod q), \quad \text { for some } \gamma \in Q\left(\zeta_{r}\right) .
\end{aligned}
$$

Since $r^{2} \nmid 2^{r-1}-1, r \nmid\left(2^{s}-1\right) / r$. Also, $r \nmid 2^{s-1} s$. It follows that $\tau(\chi)^{r}$ is an r th power in $Q\left(\zeta_{r}\right) / q$ if and only if $\pi(\chi, \chi)$ is.

Example. $\quad r=7, q=3 . \quad s=3, u=2$.

$$
\begin{aligned}
\tau(\chi)^{7} & =\pi[1]^{4} \pi[2]^{2} \pi[4]=\beta^{7} \pi[1]^{3^{4}} \pi\left[3^{2}\right]^{3} \pi\left[3^{4}\right]^{0} \\
& \equiv \beta^{7}\left[\pi[1]^{3^{4}}\right]^{3} \equiv \beta^{7} \pi[1]^{3^{4.3}}(\bmod 3)
\end{aligned}
$$

(A different treatment of the example was given in [5, p. 351].)

Theorem 2. Assume $2^{r-1} \equiv 1\left(\bmod r^{2}\right), r>3$, and $s \equiv 2(\bmod 4)$. If there exists an integer v such that $q^{v} \equiv 4(\bmod r)$, then $\tau(\chi)^{r}$ is an r th power in $Q\left(\zeta_{r}\right) / q$ if and only if $\pi(\chi, \chi)$ is.

Proof.

$$
\tau(\chi)^{2 s-1}=\prod_{j=0}^{s / 2-1} \pi\left[2^{2^{j}}\right]^{2 s-1-2 j} \pi\left[2^{2 j+1}\right]^{2 s-2-2 j}
$$

$$
\begin{align*}
& =\prod_{j=0}^{s / 2-1} \pi\left[q^{v j}\right]^{s^{s-1-2 j}} \pi\left[2 q^{v j}\right]^{2 s-2-2 j} \\
& =\beta^{r} \prod_{j=0}^{s / 2-1} \pi\left[q^{v j}\right]^{2 q v(s / 2-1-j)} \pi\left[2 q^{v j}\right]^{v^{(s / 2-1-j)}} \tag{5}
\end{align*}
$$

for some $\beta \in Q\left(\zeta_{r}\right)$,

$$
\begin{equation*}
\equiv \beta^{r}\left[\pi\left[q^{0}\right]^{2 q^{v(s / 2-1)}} \pi\left[2 q^{0}\right]^{q^{v(s / 2-1)}}\right]^{s / 2}(\bmod q), \tag{6}
\end{equation*}
$$

by applying the Lemma with $h=v j$ and $t=1$, then 2 , to the j th factor of (5). Now apply the Lemma to the second factor of (6) with $t=2, h=v(s-2) / 4:$

$$
\begin{aligned}
\tau(\chi)^{2^{s-1}} & \equiv \beta^{r}\left[\pi[1]^{2 q^{v(s / 2-1)}} \pi\left[2 q^{v(s-2) / 4}\right]^{q^{v(s-2) / 4}}\right]^{s / 2} \\
& \equiv \beta^{r}\left[\pi[1]^{2 q^{v(s / 2-1)}} \pi\left[2 \cdot 4^{(s-2) / 4}\right]^{v(s-2) / 4}\right]^{s / 2} \\
& \equiv \gamma^{r}\left[\pi[1]^{2 s-1} \pi\left[2^{s / 2}\right]^{2 s / 2-1}\right]^{s / 2}
\end{aligned}
$$

for some $\gamma \in Q\left(\zeta_{r}\right)$,

$$
\equiv \gamma^{r}\left[\pi[1]^{2^{s-1}} \pi[-1]^{2 s / 2-1}\right]^{s / 2}(\bmod q)
$$

By (3)

$$
\tau(\chi)^{2 s-1} \equiv \gamma^{r}\left[p^{2 s / 2-1} \pi[1]^{2 s-1}-2^{2 s / 2-1}\right]^{s / 2}(\bmod q) .
$$

Since $r>3, q \not \equiv 1(\bmod r)$, so p is an r th power in $Q\left(\zeta_{r}\right) / q$.

$$
\begin{aligned}
& 2^{s-1}-2^{s / 2-1} \equiv 1(\bmod r), \text { so } \\
& \tau(\chi)^{2^{s-1}} \equiv \delta^{r} \pi[1]^{s / 2}(\bmod \mathfrak{q}),
\end{aligned}
$$

for some $\delta \in Q\left(\zeta_{r}\right) . \quad r \nmid\left(2^{s}-1\right) / r, r \nmid s / 2$, and the theorem follows.
In Theorem 3 of [5] the above results were proved for the following values of q, under the restriction $2^{r-1} \equiv \equiv 1\left(\bmod r^{2}\right)$:
(a) $q \equiv 2(\bmod r)$.
(b) $r>3, q \equiv-2(\bmod r)$.

Part (a) is included in Theorem 1. Part (b) has three cases:
If s is odd, $(-2)^{s+1}=2^{s} \cdot 2 \equiv 2(\bmod r)$. Theorem 1 applies, with $u=s+1$.

If $s \equiv 2(\bmod 4),(-2)^{2}=4$. Theorem 2 applies, with $v=2$.
If $s \equiv 0(\bmod 4),(-2)^{s / 2+1}=-(2)^{s / 2}(2) \equiv 2(\bmod r)$. Theorem 1 applies, with $u=s / 2+1$.

For certain small values of q and r it is possible to characterize when $\chi(q)=1$ in terms of the coefficients of $\pi[1](\bmod p)$. Pepin gave the following three (the first not quite correctly).

Let $r=5 . \quad \chi(3)=1$ if and only if $c_{1} \equiv c_{s}(\bmod 3)$ and

$$
c_{2} \equiv c_{3}(\bmod 3)[6, p .132]
$$

Let $r=7 . \quad \chi(3)=1$ if and only if $c_{1} \equiv c_{2} \equiv c_{\downarrow}(\bmod 3)$ and

$$
c_{3} \equiv c_{5} \equiv c_{6}(\bmod 3)[6, \mathrm{pp} .145-146]
$$

$\chi(2)=1$ if and only if c_{0} is odd [6, p. 122] .
Analogous criteria for $r=5, q=7$ and $r=7, q=5$ can be found in [5, p. 349].

A more general result, which yields only a sufficient condition, however, was suggested by Emma Lehmer [4], who proved it for $r=5$.

Theorem 3: Assume $2^{r-1} \not \equiv 1\left(\bmod r^{2}\right)$, and $r>3$. Let g be a primitive root, modulo r. If $c_{g} \equiv c_{g^{3}} \equiv c_{g^{5}} \equiv \cdots \equiv c_{g^{r-2}}(\bmod q)$ and $c_{g}{ }^{2} \equiv c_{g^{4}} \equiv c_{g^{6}} \equiv \cdots \equiv c_{1}(\bmod q)$, then q is an r th power residue $(\bmod p)$.

$$
\begin{aligned}
& \text { Proof. Let } \lambda=\sum_{j=0}^{\frac{r-3}{2}} \zeta_{r}^{g^{j j}}, \mu=\sum_{j=0}^{\frac{r-3}{2}} \zeta_{r}^{g^{2 j+1}} \\
& \pi[1]=\sum_{j=0}^{r-1} c_{j} \zeta_{r}^{j}=\sum_{j=1}^{r-1}\left(c_{j}-c_{0}\right) \zeta_{r}^{j} \equiv\left(c_{1}-c_{0}\right) \lambda+\left(c_{g}-c_{0}\right) \mu(\bmod q) .
\end{aligned}
$$

Similarly,

$$
\pi[g] \equiv\left(c_{1}-c_{0}\right) \mu+\left(c_{g}-c_{0}\right) \lambda(\bmod q)
$$

If 2 is a quadratic residue, modulo r,

$$
\begin{aligned}
\tau(\chi)^{2 s \ldots 1} & =\prod_{j=0}^{s-1} \pi\left[2^{j}\right]^{2 s-j-1} \equiv \prod_{j=0}^{s-1}\left[\left(c_{1}-c_{0}\right) \lambda+\left(c_{g}-c_{0}\right) \mu\right]^{2 s-j-1} \\
& \equiv\left[\left(c_{1}-c_{0}\right) \lambda+\left(c_{g}-c_{0}\right) \mu\right]^{2 s-1}(\bmod q)
\end{aligned}
$$

If 2 is a quadratic nonresidue, modulo r,

$$
\begin{aligned}
\tau(\chi)^{2 s-1}= & \prod_{j=0}^{s / 2-1} \pi\left[2^{2 j}\right]^{2^{s-1-2 j}} \pi\left[2^{2 j+1}\right]^{2 s-2-2 j} \\
\equiv & {\left[\left(c_{1}-c_{0}\right) \lambda+\left(c_{g}-c_{0}\right) \mu\right]^{2\left(22^{s-1}\right) / 3}\left[\left(c_{1}-c_{0}\right) \mu+\left(c_{g}-c_{0}\right) \lambda\right]^{(2 s-1) / 3} } \\
& (\bmod q)
\end{aligned}
$$

In both cases $\tau(\chi)^{s^{s}-1}$ has been shown to be an r th power in $Q\left(\zeta_{r}\right) / \mathfrak{q}$. Since $r \nsucc\left(2^{s}-1\right) / r, \tau(\chi)^{r}$ is an r th power in $Q\left(\zeta_{r}\right) / \mathfrak{q}$, and applying (1) yields the theorem.

Corollary. Assume $2^{r-1} \not \equiv 1\left(\bmod \quad r^{2}\right)$. If $c_{1} \equiv c_{2} \equiv \cdots \equiv c_{r-1}$ $(\bmod q)$, then q is an r power residue $(\bmod p)$.

Proof. If $r>3$, apply Theorem 3. If $r=3, \tau(\chi)^{3} \equiv\left(c_{0}-c_{1}\right)^{3}$ $(\bmod q)$.

A computation by John Brillhart shows that 1093 and 3511 are the only primes r less than 2^{24} for which $2^{r-1} \equiv 1\left(\bmod r^{2}\right)$.

Bibliography

1. Nesmith C. Ankeny, Criterion for rth power residuacity, Pacific J. Math. 10 (1960), 1115-1124.
2. H. Hasse, Vorlesungen über Zahlentheorie, $2^{\text {nd }}$ ed., Springer Verlag, Berlin 1964.
3. C. G. J. Jacobi, De Residuis Cubicis Commentatio Numerosa, Journal für die reine und angewandte Mathematik 2 (1827), 66-69.
4. Emma Lehmer, Artiads characterized, Journal of Mathematical Analysis and Applications 15 (1966), 118-131.
5. Joseph B. Muskat, Criteria for solvability of certain congruences, Canad. J. Math. 16 (1964), 343-352.
6. T. Pepin Memoire sur les lois de réciprocité relatives aux résidues de puissances, Pontificia accademia delle scienze, Atti 31 (1877), 40-148.

Received January 19, 1966. This research was sponsored in part by the National Science Foundation under Research Grant GP-2091.

