POWER-ASSOCIATIVE ALGEBRAS IN WHICH EVERY SUBALGEBRA IS AN IDEAL

D. L. Outcalt

By an H-algebra we mean a nonassociative algebra (not necessarily finite-dimensional) over a field in which every subalgebra is an ideal of the algebra.

In this paper we prove
Main Theorem. Let A be a power-associative algebra over a field F of characteristic not $2 . A$ is an H-algebra if and only if A is one of the following;
(1) a one-dimensional idempotent algebra;
(2) a zero algebra;
(3) an algebra with basis $u_{0}, u_{i}, i \in I$ (an index set of arbitrary cardinality) satisfying $u_{i} u_{j}=\alpha_{i j} u_{0}, \alpha_{i j} \in F, i, j \in I$, all other products zero. Moreover if J is a finite subset of I, then $\sum_{i, j \in J} \alpha_{i j} x_{i} x_{j}$ is nondegenerate in that $\sum_{i, j \in J} \alpha_{i j} \alpha_{\imath} \alpha_{j}=$ $0, \alpha_{i}, \alpha_{j} \in F, i \in J$ implies $\alpha_{i}=0, i \in J$;
(4) direct sums of algebras of types (1), (2), (3) with at most one from each.

This is an extension of a result of Liu Shao-Xue who established it for alternative and Jordan H-algebras of characteristic not 2 [1; Theorem 1].

An immediate corollary is that a power-associative H-algebra over a field of characteristic not 2 is associative [1; Cor. 1].

Some results on H-rings are also determined in this paper. By an H-ring we mean a nonassociative ring in which every subring is an ideal.

1. Preliminaries. The associator (x, y, z) is defined by $(x, y, z)=$ $(x y) z-x(y z)$. We will use the Teichmüller identity which holds in an arbitrary ring,

$$
\begin{equation*}
(w x, y, z)-(w, x y, z)+(w, x, y z)=w(x, y, z)+(w, x, y) z \tag{1.1}
\end{equation*}
$$

In a power-associative ring we have the identities $(x, x, x)=0$ and $\left(x^{2}, x, x\right)=0$ which when linearized yield, respectively,

$$
\begin{equation*}
\sum_{\sigma \in S_{3}}\left(w_{\sigma(1)}, w_{\sigma(2)}, w_{\sigma(3)}\right)=0 \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\sigma \in s_{4}}\left(w_{\sigma(1)} w_{\sigma(2)}, w_{\sigma(3)}, w_{\sigma(4)}\right)=0 \tag{1.3}
\end{equation*}
$$

providing $2 x=0$ implies $x=0$ in the ring.

Let a be an element of a ring (algebra). By $\{a\}$ is meant the subring (subalgebra) generated by a. Shao-Xue has established [1; Lemma 1]

Lemma 1.1. If a is an element of an H-algebra, then $\{a\}$ is finite-dimensional.
2. Main section. To prove the main theorem we will first show that an H-algebra with unit is associative, then that a nil power-associative H-algebra is alternative, finally that a powerassociative H-algebra is the direct sum of an H-algebra with unit and a nil H-algebra from which the theorem follows by Shao-Xue's result.

Separate statements for the ring case and the algebra case are needed where the results are also true of H-rings since there are ring ideals of an algebra which are not algebra ideals.

Theorem 2.1. If A is a ring with unit 1, and if A is an H ring or an H-algebra, then A is associative.

Proof. The nucleus N of A is defined by

$$
N=\{u \in A \mid(u, x, y)=(x, u, y)=(x, y, u)=0 \quad \forall x, y \in A\}
$$

It follows easily from (1.1) and the linearity of the associator that N is a subring or subalgebra of A, as the case may be. Hence N is an ideal of A. But then $N(A, A, A)=0$ by (1.1). The theorem follows immediately from the fact that $1 \in N$.

TheOrem 2.2. Let A be a nil power-associative ring which is either
(1) an H-ring in which $p x=0$ implies $x=0, x \in A$, if $p=2$ or if $p=k^{i}, k, i$ integers, $k \neq 0, i \geqq 2$, or
(2) an H-algebra where the characteristic of F is not 2.

Then A is alternative.
Proof. We first show as in [1; Lemma 3] that for all $a \in A$,

$$
\begin{equation*}
a^{3}=0 \tag{2.3}
\end{equation*}
$$

Suppose $a^{n}=0, a^{n-1} \neq 0$ for $n \geqq 4, a \in A$. Let $m=[(n+1) / 2]$ where $[x]$ denotes the greatest integer in x. Then $m+1 \leqq n-1$. Now, $a^{m+1}=a^{m} a \in\left\{a^{m}\right\}$, hence $a^{m+1}=j a^{m}, j$ an integer in case (1) or $j \in F$ in case (2), since $\left(a^{m}\right)^{2}=0$. If $j a^{m} \neq 0$, then a is not nilpotent (using the restriction on characteristic in case (1)), a contradiction.

Hence $j a^{m}=0$ which implies $a^{m+1}=0$, which is also a contradiction. Thus we have (2.3).

Let $b \in A$ such that $b^{2}=0$. We next establish

$$
\begin{equation*}
b A=0=A b \tag{2.4}
\end{equation*}
$$

Choose $a \neq 0$ in A. Since $a b \in\{b\}$ and $b^{2}=0, a b=k b$. Similarly, since $\alpha^{3}=0$ by (2.3) and $a b \in\{a\}, a^{2} b \in\left\{a^{2}\right\}$, we have $a b=l a+m a^{2}$, $a^{2} b=n a^{2}$. In case (1) k, l, m, n are integers, and in case (2) they are elements of F. Since $a^{2} b \in\{b\}$ and $b^{2}=0$, we have

$$
0=\left(a^{2} b\right) b=\left(n a^{2}\right) b=n^{2} a^{2}
$$

Hence $a^{2} b=0$. But then since $a b \in\{b\}$ and $b^{2}=0$

$$
0=(a b) b=\left(l a+m a^{2}\right) b=l a b=l^{2} a+l m a^{2} .
$$

Thus $l^{2} a^{2}=0$ since $a^{3}=0$, which implies $l=0$ since $a \neq 0$. Therefore

$$
0=a\left(m a^{2}\right)=a(a b)=a(k b)=k^{2} b .
$$

Hence $A b=0$.
The anti-isomorphic copy A^{\prime} of A satisfies the hypotheses of A, hence $A^{\prime} b^{\prime}=0$ where b^{\prime} is the anti-isomorphic copy of b. But then $b A=0$, and we have (2.4).

In view of (2.4), the theorem will be established if we can show that the associators $(a, a, b),(a, b, a)$, and (b, a, α) vanish whenever $a^{2} \neq 0 \neq b^{2}$. Hence assume the latter.

By (2.3) and (2.4), for all $c \in A$

$$
\begin{equation*}
c^{2} A=0=A c^{2} . \tag{2.5}
\end{equation*}
$$

Since $\{a\}$ and $\{b\}$ are ideals, $a b, b a \in\{a\}$ and $a b, b a \in\{b\}$, hence

$$
\begin{align*}
& a b=k_{1} a+l_{1} a^{2}, b a=m_{1} a+n_{1} a^{2}, \\
& a b=k_{2} b+l_{2} b^{2}, b a=m_{2} b+n_{2} b^{2} \tag{2.6}
\end{align*}
$$

by (2.3) where $k_{1}, k_{2}, l_{1}, l_{2}, m_{1}, m_{2}, n_{1}, n_{2}$ are integers in case (1) or elements of F in case (2). Computing, using (1.2) with $w_{1}=a$, $w_{2}=w_{3}=b$, the restrictions on characteristic, and (2.5),

$$
\begin{aligned}
0 & =(a, b, b)+(b, b, a)+(b, a, b) \\
& =(a b) b-b(b a)+(b a) b-b(a b) \\
& =\left(k_{1} a\right) b-b\left(m_{2} b\right)+\left(m_{\bar{z}} b\right) b-b\left(k_{\bar{z}} b\right) \\
& =k_{1}^{2} a+k_{1} l_{1} a^{2}-k_{\bar{z}} b^{2},
\end{aligned}
$$

which implies $k_{1}^{2} a^{2}=0$ by (2.5). Hence $k_{1}=0$ since $a^{2} \neq 0$. Considering the anti-isomorphic copy A^{\prime} of A similarly as before yields $m_{1}=0$. Finally, direct computation using (2.5) and (2.6) yields
$(a, a, b)=-k_{1} a^{2}, \quad(a, b, a)=\left(k_{1}-m_{1}\right) a^{2}, \quad$ and $\quad(b, a, a)=m_{1} a^{2}, \quad$ which completes the proof.

Proof of main theorem. We will show that A is alternative, from which the theorem follows by [1; Theorem 1].

If A is nil, then A is alternative by Theorem 2.2. Hence assume A is not nil. Let a be an element of A which is not nilpotent. Then $\{a\}$ is finite-dimensional by Lemma 1.1. Thus $\{a\}$ contains an idempotent e. Define

$$
A_{1}=\{x \in A \mid e x=0\}
$$

We will show that A_{1} is nil and that $A=\{e\} \oplus A_{1}$ from which the theorem follows by Theorems 2.1 and 2.2 since $\{e\}$ has unit element e.

Because $\{e\}$ is an ideal with unit element e,

$$
(x, e, e)=0=(e, e, x)
$$

for all $x \in A$, hence if we let $w_{1}=x, w_{2}=w_{3}=e$ in (1.2) we obtain the identities

$$
\begin{equation*}
0=(e, x, e)=(x, e, e)=(e, e, x) \tag{2.7}
\end{equation*}
$$

Let $x_{1} \in A_{1}$. Expanding $\left(e, x_{1}, e\right)=0$ yields

$$
\begin{equation*}
x_{1} e=0 \tag{2.8}
\end{equation*}
$$

Let $y_{1} \in A_{1} . \quad$ By (2.8),

$$
\begin{equation*}
\left(x_{1}, e, y_{1}\right)=0 \tag{2.9}
\end{equation*}
$$

In (1.3), let $w_{1}=x_{1}, w_{2}=y_{1}, w_{3}=w_{4}=e$ and use (2.7), (2.8), and (2.9) to obtain

$$
\begin{equation*}
0=\left(e, x_{1}, y_{1}\right)+\left(e, y_{1}, x_{1}\right) \tag{2.10}
\end{equation*}
$$

Now, consider $\left\{x_{1}\right\}$. Using (2.8) and (2.10), we compute for $n>1$

$$
\begin{aligned}
e x_{1}^{n} & =e\left(x_{1} x_{1}^{n-1}\right)=-\left(e, x_{1}, x_{1}^{n-1}\right)=\left(e, x_{1}^{n-1}, x_{1}\right) \\
& =\left(e x_{1}^{n-1}\right) x_{1}-e x_{1}^{n} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
2 e x_{1}^{n}=\left(e x_{1}^{n-1}\right) x_{1}, n>1 \tag{2.11}
\end{equation*}
$$

But then by an obvious induction argument we have from (2.11) that $e x_{1}^{n}=0$ which implies that $\left\{x_{1}\right\} \subset A_{1}$. Hence $x_{1} y_{1} \in A_{1}$ since $\left\{x_{1}\right\}$ is an ideal. Therefore A_{1} is a subalgebra of A.

As in the proof of [1; Lemma 2], choose $x \in A$. Then $x=$ $e x+(x-e x)$. Now, $e(x-e x)=0$ by (2.7), hence $x-e x \in A_{1}$. Since
$\{e\}$ is an ideal, $e x \in\{e\}$. Moreover, $\{e\} \cap A_{1}=0$, thus $A=\{e\} \oplus A_{1}$.
If A_{1} is not nil, then, as above, A_{1} has an idempotent e_{1}, and $A_{1}=\left\{e_{1}\right\} \oplus A_{2}$ where

$$
\mathrm{A}_{2}=\left\{x_{2} \in A_{1} \mid e_{1} x_{2}=0\right\}
$$

Hence $A=\{e\} \oplus\left\{e_{1}\right\} \oplus A_{2}$. Let $f=e+e_{1}$. Since $e=e f \in\{f\}$ and $e_{1}=f e_{1} \in\{f\}, e$ and e_{1} are linearly dependent because $\{f\}$ is one dimensional, a contradiction. Hence A_{1} is nil, which completes the proof of the theorem.
H-algebras which are not associative can be constructed. Let A be the two-dimensional algebra over a field F with basis a, b satisfying $a^{2}=a b=b^{2}=a, b a=0$. It is easy to check that every subalgebra of A is an ideal. Also, since $(b, b, b)=a, A$ is neither powerassociative nor associative.

Bibliography

1. Liu Shao-Xue (Liu Shao-Hsueh), On algebras in which every subalgebra is an ideal, Acta Math. Sinica 14 (1964), 532-537 (Chinese); translated as Chinese Math.-Acta 5 (1964), 571-577.

Received April 5, 1966. This research was supported by the U. S. Air Force under Grant No. AFOSR 698-65.

University of California, Santa Barbara

