POWER-SERIES AND HAUSDORFF MATRICES

Philip C. Tonne

The purpose of this paper is to pair classes of continuous functions from $[0,1]$ to the complex numbers with classes of complex sequences. If f is a function from $[0,1]$ to the complex numbers and c is a complex sequence, a sequence $L(f, c)$ is defined:

$$
L(f, c)_{n}=\sum_{p=0}^{n} f(p / n)\binom{n}{p} \sum_{q=0}^{n-p}(-1)^{q}\binom{n-p}{q} c_{p+q} .
$$

A class A of continuous functions is paired with a class B of sequences provided that
(1) if f is in A and c is in B then $L(f, c)$ converges,
(2) if f is a continuous function and $L(f, c)$ converges for each c in B then f is in A, and
(3) if c is a sequence and $L(f, c)$ converges for each f in A then c is in B.
We establish the following pairings:

CONTINUOUS	SEQUENCES
all continuous functions	Hausdorff moment sequences
power-series absolutely convergent at 1	bounded sequences
power-series absolutely convergent at $r(r<1)$	sequences dominated by geo- metric sequences having ratio r
entire functions	all sequences dominated by geometric sequences
polynomials	all sequences

Felix Hausdorff's work [2] (see also T. H. Hildebrandt [3]) on the moment problem for [0, 1] has been continued by J. S. Mac Nerney [5, p. 368] to provide the first pairing on the table (see Theorem B). Theorem A, also due to Mac Nerney [6, p. 56], helps establish the last pairing.

Theorem A. If f is a polynomial and is c is a complex sequence, then the sequence $L(f, c)$ converges. Furthermore, if $f=$ $\sum_{p=0}^{n} A_{p} I^{p}$, where I is the identity function on the complex plane, then $L(f, c)$ has limit $\sum_{p=0}^{n} A_{p} c_{p}$.

Theorem B. Suppose that c is a complex sequence. Then these are equivalent:
(1) There is a function g of bounded variation from $[0,1]$ to the complex numbers such that, for each non-negative integer $n, c_{n}=\int_{0}^{1} I^{n} d g$.
(2) For each f in $C[0,1]$, the class of continuous functions from $[0,1]$ to the complex numbers, $L(f, c)$ converges.

Furthermore, if (1) holds and f is in $C[0,1]$, then $L(f, c)$ has limit $\int_{0}^{1} f d g$.

Definition. If each of p and n is a nonnegative integer and c is a complex sequence, then $\Delta^{0} c_{p}=c_{p}$ and $\Delta^{n+1} c_{p}=\Delta^{n} c_{p}-\Delta^{n} c_{p+1}$.

The following notes are helpful.
Note 1. If each of m and p is a nonnegative integer and c is a complex sequence,

$$
\Delta^{m} c_{p}=\sum_{q=0}^{m}(-1)^{q}\binom{m}{q} c_{p+q}
$$

so that if f is a function from $[0,1]$ to the complex numbers then

$$
L(f, c)_{n}=\sum_{p=0}^{n}\binom{n}{p} \Delta^{n-p} c_{p} f(p / n)
$$

Definition. If each of p and k is a nonnegative integer, $Y_{p k}=$ $\sum_{q=0}^{p}(-1)^{p+q}\binom{p}{q} q^{k}$, where we interpret 0^{0} as 1.

Note 2.

$$
Y_{p+1, k+1}=(p+1)\left(Y_{p k}+Y_{p+1, k}\right) ; \quad Y_{p p}=p!; \quad Y_{p k} \geqq 0 ; \quad Y_{p k}=0
$$

for $p>k$.
Note 3. If f is a function from [0, 1] to the complex numbers and c is a complex sequence and n is a positive integer, then

$$
\begin{aligned}
L(f, c)_{n} & =\sum_{p=0}^{n}\binom{n}{p} \sum_{q=0}^{n-p}(-1)^{q}\binom{n-p}{q} c_{p+q} f(p / n) \\
& =\sum_{p=0}^{n} c_{p}\binom{n}{p} \sum_{q=0}^{p}(-1)^{p+q}\binom{p}{q} f(q / n)
\end{aligned}
$$

and, in case there is a complex sequence A such that, for each number x in $[0,1], f(x)=\sum_{k=0}^{\infty} A_{k} x^{k}$, then

$$
\begin{aligned}
L(f, c)_{n} & =\sum_{p=0}^{n} c_{p}\binom{n}{p} \sum_{k=0}^{\infty} A_{k} n^{-k} \sum_{q=0}^{p}(-1)^{p+q}\binom{p}{q} q^{k} \\
& =\sum_{p=0}^{n} c_{p}\binom{n}{p} \sum_{k=p}^{\infty} A_{k} n^{-k} Y_{p k} .
\end{aligned}
$$

The following theorem is useful in a later argument and is stated here for purposes of introduction.

Theorem 0. Let p be a nonnegative integer and let z be the sequence whose value at p is 1 and whose value elsewhere is 0 . Let k be a function from $[0,1]$ to the complex numbers which is continuous at 0 . Then $L\left(k \cdot I^{p}, z\right)$ has limit $k(0)$.

Indication of proof. If n is an integer greater than p, then

$$
\begin{aligned}
L\left(k \cdot I^{p}, z\right)_{n} & =\binom{n}{p} \sum_{q=0}^{p}(-1)^{p+q}\binom{p}{q} k(q / n) q^{p} n^{-p} \\
& =\binom{n}{p} n^{-p} \sum_{q=0}^{p}(-1)^{p+q}\binom{p}{q} q^{p} k(q / n) \\
\lim _{n \rightarrow \infty}\binom{n}{p} n^{-p} & =1 / p!; p!=Y_{p p}=\sum_{q=0}^{p}(-1)^{p+q}\binom{p}{q} q^{p}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|\sum_{q=0}^{p}(-1)^{p+q}\binom{p}{q} q^{p} k(q / n)-p!k(0)\right| \\
& \leqq \sum_{q=0}^{p}\binom{p}{q} q^{p}|k(q / n)-k(0)|
\end{aligned}
$$

1. Radius of Convergence $\geqq 1$. In this chapter, for each r not less than 1, we pair functions having power-series expansions about 0 which are absolutely convergent at r with sequences which are dominated by geometric sequences with ratio r. In particular we match functions with power-series expansions about 0 which are absolutely convergent at 1 with the class of bounded sequences.

Theorem 1. Suppose that $r \geqq 1$, each of A and c is a complex sequence, $\sum_{p=0}^{\infty}\left|A_{p}\right| r^{p}$ converges, there is a number t such that if p is a nonnegative integer then $\left|c_{p}\right| \leqq t \cdot r^{p}$, and $f=\sum_{p=0}^{\infty} A_{p} I^{p}$. Then $L(f, c)$ converges to $\sum_{p=0}^{\infty} A_{p} c_{p}$.

Lemma 1. If g is a function from $[0,1]$ to the complex numbers and u is a constant sequence, then, for each positive integer n, $L(g, u)_{n}=u_{0} \cdot g(1)$.

Proof.

$$
L(g, u)_{n}=\sum_{p=0}^{n} g(p / n)\binom{n}{p} \Delta^{n-p} u_{p}=g(n / n)\binom{n}{n} u_{n}
$$

Lemma 2. Suppose that $d>0$ and b is a complex sequence such that $\sum_{p=0}^{\infty}\left|b_{p}\right|$ converges. Then there is a positive integer N such that if n is an integer greater than N then

$$
\left|\sum_{p=0}^{n} b_{p}\left[1-\binom{n}{p} n^{-p} p!\right]\right|<d
$$

Proof. We note that if p is a nonnegative integer and s is a sequence such that, for each positive integer $n, s_{n}=\binom{n}{p} n^{-p} p$!, then s is nondecreasing with limit 1.

Let m be a positive integer such that $\sum_{p=m}^{\infty}\left|b_{p}\right|<d / 2$. There is an integer N greater than m such that if k is an integer in [0,m] then, for each integer n greater than N,

$$
1-\binom{n}{k} n^{-k} k!<d /\left[2(m+1)\left(\left|b_{k}\right|+1\right)\right] .
$$

If n is an integer greater than N,

$$
\begin{aligned}
& \left|\sum_{p=0}^{n} b_{p}\left[1-\binom{n}{p} n^{-p} p!\right]\right| \\
& \quad \leqq \sum_{p=0}^{m}\left|b_{p}\right|\left[1-\binom{n}{p} n^{-p} p!\right]+\sum_{p=m}^{n}\left|b_{p}\right|<d .
\end{aligned}
$$

Lemma 3. Let b be a positive number. Then there is a positive integer N such that if n is an integer greater than N then

$$
\sum_{p=0}^{n}\binom{n}{p} \sum_{k=p+1}^{\infty}\left|A_{k}\right| r^{k} n^{-k} Y_{p k}<b .
$$

Proof. There is a positive integer m such that $\sum_{p=m}^{\infty}\left|A_{p}\right| r^{p}<b / 2$. Let g be $\sum_{p=0}^{\infty}\left|A_{p}\right| r^{p} I^{p}$. Let N be an integer greater than m such that if n is an integer greater than N then

$$
\sum_{p=0}^{n}\left|A_{p}\right| r^{p}\left[1-\binom{n}{p} n^{-p} p!\right]<b / 2
$$

Then, if n is an integer greater than N,

$$
\begin{aligned}
b / 2> & g(1)-\sum_{p=0}^{n}\left|A_{p}\right| r^{p} \\
= & L(g, 1)_{n}-\sum_{p=0}^{n}\left|A_{p}\right| r^{p} \\
= & \sum_{p=0}^{n}\left[\binom{n}{p} \sum_{k=p}^{\infty}\left|A_{k}\right| r^{k} n^{-k} Y_{p k}-\left|A_{p}\right| r^{p}\right] \\
= & \left.\sum_{p=0}^{n}\left[\begin{array}{c}
n \\
p
\end{array}\right) n^{-p} p!-1\right]\left|A_{p}\right| r^{p} \\
& \quad+\sum_{p=0}^{n}\binom{n}{p} \sum_{k=p+1}^{\infty}\left|A_{k}\right| r^{k} n^{-k} Y_{p k} .
\end{aligned}
$$

so

$$
\begin{aligned}
& \sum_{p=0}^{n}\binom{n}{p} \sum_{k=p+1}^{\infty}\left|A_{k}\right| r^{k} n^{-k} Y_{p k} \\
& \quad \leqq b / 2+\sum_{p=0}^{n}\left|A_{p}\right| r^{p}\left[1-\binom{n}{p} n^{-p} p!\right]<b
\end{aligned}
$$

Proof of Theorem 1. Let ε be a positive number. There is a positive integer N such that if n is an integer greater than N then

$$
\begin{gathered}
\left|\sum_{p=0}^{\infty} A_{p} c_{p}-\sum_{p=0}^{n} A_{p} c_{p}\right|<\epsilon / 2, \\
\sum_{p=0}^{n}\binom{n}{p} \sum_{k=p+1}^{\infty}\left|A_{k}\right| r^{k} n^{-k} Y_{p k}<\varepsilon /(4 t),
\end{gathered}
$$

and

$$
\left|\sum_{p=0}^{n} A_{p} c_{p}\left[1-\binom{n}{p} n^{-p} p!\right]\right|<\varepsilon / 4
$$

Hence, if n is an integer greater than N,

$$
\begin{aligned}
& \left|L(f, c)_{n}-\sum_{p=0}^{\infty} A_{p} c_{p}\right| \\
& <\varepsilon / 2+\left|\sum_{p=0}^{n}\left[c_{p}\binom{n}{p} \sum_{k=p}^{\infty} A_{k} n^{-k} Y_{p k}-A_{p} c_{p}\right]\right| \\
& \leqq \varepsilon / 2+\left|\sum_{p=0}^{n} c_{p} A_{p}\left[1-\binom{n}{p} n^{-p} p!\right]\right| \\
& \quad+t \cdot \sum_{p=0}^{n}\binom{n}{p} \sum_{k=p+1}^{\infty}\left|A_{k}\right| r^{k} n^{-k} Y_{p k}
\end{aligned}
$$

$<\varepsilon$.

Theorem 2. Suppose $r \geqq 1$ and S is the set to which f belongs only if there is a complex sequence A such that $\sum_{p=0}^{\infty}\left|A_{p}\right| r^{p}$ converges and $f=\sum_{p=0}^{\infty} A_{p} I^{p}$. Suppose that c is an infinite complex sequence and, for each f is $S, L(f, c)$ converges. Then c is bounded by a geometric sequence with ratio r.

Proof. For each nonnegative integer p let g_{p} be r^{-p}, and suppose that the sequence $c \cdot g$ is not bounded; that is, suppose that c is not bounded by a geometric sequence with ratio r.

For each f in S, let $N(f)$ be $\sum_{p=0}^{\infty} r^{p}\left|f^{(p)}(0)\right| / p$!. Then (S, N) is a complete, normed, linear space.

For each positive integer n, let T_{n} be a function from S to the complex numbers such that if f is in S then $T_{n}(f)=L(f, c)_{n}$. If f is in S and n is a positive integer and $|f|_{[0,1]}$ denotes the maximum modulus of f on $[0,1]$, then

$$
\begin{aligned}
& \left|T_{n}(f)\right|=\left|\sum_{p=0}^{n} c_{p}\binom{n}{p} \sum_{q=0}^{p}(-1)^{p+q}\binom{p}{q} f(q / n)\right| \\
& \leqq|f|_{[0,1]} \sum_{p=0}^{n}\left|c_{p}\right|\binom{n}{p} \sum_{q=0}^{p}\binom{p}{q} \\
& \leqq N(f) \sum_{p=0}^{n}\left|c_{p}\right|\binom{n}{p} 2^{p},
\end{aligned}
$$

so that T_{n} is a continuous linear transformation from (S, N) to the complex numbers.

Let m be a positive integer. $N\left(r^{-m} I^{m}\right)=1$. By Theorem A, $L\left(r^{-m} I^{m}, c\right)$ has limit $g_{m} c_{m}$. Hence, there is a positive integer n such that $\left|T_{n}\left(r^{-m} I^{m}\right)\right|>\left|g_{m} c_{m}\right|-1$, so that the sequence $N^{\prime}[T]$-where, for each positive integer $n, N^{\prime}\left(T_{n}\right)$ is the least number b such that if F is in S and $N(F) \leqq 1$ then $\left|T_{n}(F)\right| \leqq b$-is not bounded. So, by the "principle of uniform boundedness," there is a member f of S such that the sequence $T(f)$ is not bounded, but $L(f, c)$ converges and $T(f)=L(f, \dot{c})$, so the theorem is proved.

Theorem 3. Suppose that $r>0, f$ is in $C[0,1]$, and, for each complex sequence c which is dominated by a geometric sequence with ratio $r, L(f, c)$ converges. Then there is a complex sequence A such that $\sum_{p=0}^{\infty}\left|A_{p}\right| r^{p}$ converges and, if x is in $[0,1]$ and $x \leqq r$, then $f(x)=\sum_{p=0}^{\infty} A_{p} x^{p}$.

Proof. For each nonnegative-integer pair (n, p), let g_{n} be r^{n} and let $M_{n p}$ be $\binom{n}{p} \sum_{q=0}^{p}(-1)^{p+q}\binom{p}{q} f(q / n)$. Then, for each bounded complex sequence c and each positive integer $n, L(f, c \cdot g)_{n}=\sum_{p=0}^{n} c_{n} M_{n p} r^{p}$, so that, by the "principle of uniform boundedness", there is a number D such that, for each positive integer $n, \sum_{p=0}^{n}\left|M_{n p}\right| r^{p}<D$.

For each nonnegative integer p, let $z(p)$ be the sequence whose value at p is 1 and whose value elsewhere is 0 . Then the sequence $M[, p]=L(f, z(p))$, which, by hypothesis, has limit, say A_{p}, and from the preceding paragraph we see that $\sum_{p=0}^{\infty}\left|A_{p}\right| r^{p}$ converges.

For each positive integer n let $B_{n}(f)$ be the Bernstein polynomial for f of order n; i.e., let $B_{n}(f)$ be $\sum_{p=0}^{n} M_{n p} I^{p}$. $B(f)$ converges to f on [0,1] [see 1, pp. 1-2; also 4, pp. 5-7]. Now, if x is a complex number and $|x| \leqq r$, then

$$
\left|B_{n}(f)(x)\right| \leqq \sum_{p=0}^{n}|x|^{p}\left|M_{n p}\right|<D
$$

By the convergence of the Bernstein polynomials on [0, 1] and the convergence continuation theorem, a subsequence of $B(f)$ has limit, say h, on $[0,1]$ and the disc with center 0 and radius $r . h$ is analytic at 0 . By Theorems 0 and A we see that if p is a non-negative integer then

$$
\begin{aligned}
h^{(p)}(0) / p! & =\lim L(h, z(p)) \\
& =\lim L(f, z(p))=A_{p}
\end{aligned}
$$

and, if x is in $[0,1]$ and $x \leqq r$, then $f(x)=h(x)=\sum_{p=0}^{\infty} A_{p} x^{p}$.
The following theorem parts somewhat from the main stream of our study but sheds additional light on the problem at hand.

Theorem 4. Suppose that A is a complex sequence, $\sum_{p=0}^{\infty}\left|A_{p}\right|$ converges, and $f=\sum_{p=0}^{\infty} A_{p} I^{p}$. Then there is an unbounded numbersequence c such that $L(f, c)$ converges.

Proof. For each positive integer n, let s_{n} be

$$
\sum_{p=0}^{n}\binom{n}{p} \sum_{k=p+1}^{\infty}\left|A_{k}\right| n^{-k} Y_{p k} .
$$

By Lemma $3, s$ has limit 0 . A has limit 0 . So there is an increasing, nonnegative-integer sequence u such that, for each nonnegativeinteger pair $(p, q), s\left(u_{p}+q\right)<4^{-p}$ and $\left|A\left(u_{p}+q\right)\right|<4^{-p}$.

For each nonnegative integer p, let c_{p} be 2^{m} if m is a nonnegative integer such that $p=u_{m}$, otherwise let c_{p} be 0 .

If k is a nonnegative integer and $n=u_{k},\left|c_{n} A_{n}\right|<2^{-k}$, so that $\sum_{p=0}^{\infty}\left|A_{p} c_{p}\right|$ converges.

Let b be a positive number. By Lemma 2, there is a positive integer N such that $2^{-N}<b / 2$ and if n is an integer greater than N then

$$
\sum_{p=0}^{n}\left|A_{p} c_{p}\right|\left[1-\binom{n}{p} n^{-p} p!\right]<b / 4
$$

and

$$
\left|\sum_{p=n+1}^{\infty} A_{p} c_{p}\right|<b / 4
$$

Let n be an integer not less than u_{N} and let m be the greatest integer k such that $u_{k} \leqq n$. Then

$$
\begin{aligned}
& \left|\sum_{p=0}^{\infty} A_{p} c_{p}-L(f, c)_{n}\right| \\
& <b / 4+\left|\sum_{p=0}^{n} A_{p} c_{p}-\sum_{p=0}^{n} c_{p}\binom{n}{p} \sum_{k=p}^{\infty} A_{k} n^{-k} Y_{p k}\right| \\
& \leqq \leqq / 4+\sum_{p=0}^{n}\left|A_{p} c_{p}\right|\left[1-\binom{n}{p} n^{-p} p!\right] \\
& \quad+\sum_{p=0}^{n} c_{p}\binom{n}{p} \sum_{k=p+1}^{\infty}\left|A_{k}\right| n^{-k} Y_{p k} \\
& <b / 2+\sum_{p=0}^{n} 2^{m}\binom{n}{p} \sum_{k=p+1}^{\infty}\left|A_{k}\right| n^{-k} Y_{p k} \\
& <b / 2+2^{m} s_{n}<b / 2+2^{m} \cdot 4^{-m}<b
\end{aligned}
$$

so $L(f, c)$ converges to $\sum_{p=0}^{\infty} A_{p} c_{p}$.
2. Entire functions. Following from Theorems 1 and 3 we have:

Theorem 5. Suppose that f is in $C[0,1]$. Then the following statements are equivalent:
(1) f is a subset of an entire function.
(2) If c is a complex sequence which is dominated by a geometric sequence, then $L(f, c)$ converges.

Furthermore, if (2) holds, $L(f, c)$ converges to $\sum_{p=0}^{\infty}\left(f^{(p)}(0) / p!\right) c_{p}$.
Theorem 6. Suppose that c is a complex sequence such that $L(f, c)$ converges for each entire function f. Then c is dominated by a geometric sequence.

Proof. Suppose that c is not dominated by a geometric sequence.
Lemma. If each of m and r is a nonnegative integer, then there is a positive integer q such that $\left|c_{m+q}\right|>r^{m+q+1}$ and $\left|c_{m+q}\right|>2^{m}\left|c_{p}\right|$ for each nonnegative integer p less than $m+q$.

Proof of lemma. Let R be $r+2^{m}+\sum_{p=0}^{m}\left|c_{p}\right|$. Since no geometric sequence dominates c, there is a positive integer k such that $\left|c_{m+k}\right|>R^{m+k+1}$. Let q be the least positive integer n such that $\left|c_{m+n}\right|>R^{m+n+1}$.

Suppose that p is a nonnegative integer.
If $p \leqq m$, then $\left|c_{m+q}\right|>R^{m+q+1} \geqq R^{2}>2^{m}\left|c_{p}\right|$.
If $m<p<m+q$, then

$$
\left|c_{m+q}\right|>R^{m+q+1} \geqq R \cdot R^{p+1} \geqq R \cdot\left|c_{p}\right|>2^{m}\left|c_{p}\right|
$$

Continuation of proof of Theorem 6. By the lemma, there is an increasing interger-valued sequence u such that $u_{0}=0$ and, if p is a positive integer, then $\left|c\left(u_{p}\right)\right|>p^{u(p)+1}$ and $\left|c\left(u_{p}\right)\right| \geqq 2^{u(p-1)}\left|c_{n}\right|$ for each nonnegative integer n less than u_{p}.

Let f be $\sum_{p=1}^{\infty}\left(1 / c\left(u_{p}\right)\right) I^{u(p)}$.
If N is a positive integer then, for each integer p greater than N,

$$
\left|\frac{1}{c\left(u_{p}\right)}\right|^{1 / u_{p}}<p^{-(u(p)+1) /(u(p))}<p^{-1}<1 / N
$$

so that f is an entire function.
For each nonnegative integer k let A_{k} be $f^{(k)}(0) / k!$. Now, if p and k are integers and $0 \leqq p<k$, then $\left|c_{p} A_{k}\right|<2^{-k}$.

Suppose that $B>0$. By Lemma 3 and the note at the beginning of the proof of Lemma 2, there is a positive-integer pair (n, m) such that

$$
\begin{gathered}
\sum_{p=0}^{n}\binom{n}{p} \sum_{k=p+1}^{\infty} 2^{-k} n^{-k} Y_{p k}<1 \\
\sum_{p=0}^{m}\binom{n}{u_{p}} n^{-u(p)}\left(u_{p}\right)!>B
\end{gathered}
$$

and $n \geqq u_{m}$. Then $\left|L(f, c)_{n}\right|$

$$
\begin{aligned}
& \quad-\left|\sum_{p=0}^{n} c_{p}\binom{n}{p} \sum_{k=-p}^{\infty} A_{k} n^{-k} Y_{p k}\right| \\
& \geqq \sum_{p=0}^{n} c_{p}\binom{n}{p} A_{p^{2, b}}^{-p} p!-\sum_{p-0}^{n}\binom{n}{p} \sum_{k=p+1}^{\infty}\left|c_{p} A_{k}\right| n^{-k} Y_{p / k} \\
& \geqq \sum_{p=0}^{m} c\left(u_{p}\right)\binom{n}{u_{p}} A\left(u_{p}\right) n^{-u(p)}\left(u_{p}\right)! \\
& \quad-\sum_{p=0}^{n}\binom{n}{p} \sum_{k=p+1}^{\infty} 2^{-k} n^{-k} Y_{p k}
\end{aligned}
$$

$>B-1$, so that $L(f, c)$ does not converge. Hence, c is dominated by a geometric sequence.
3. A converse to Theorem A. The following theorem, together with Theorem A, shows that the last pair on our table belongs there.

Theorem 7. Suppose that f is in $C[0,1]$ and, for each complex sequence $c, L(f, c)$ converges. Then f is a subset of a polynomial.

Proof. By Theorem 3 there is a complex sequence A such that if x is in $[0,1]$ then $f(x)=\sum_{p=0}^{\infty} A_{p} x^{p}$.

For each nonnegative-integer pair (n, p), let $M_{n p}$ be

$$
\binom{n}{p} \sum_{q=0}^{p}(-1)^{p+q}\binom{p}{q} f(q / n),
$$

let w_{p} be $1 / A_{p}$ if $A_{p} \neq 0$ and w_{p} be 0 if $A_{p}=0$, and let $Q_{n p}$ be $w_{p} M_{n p}$. Now, if x is an infinite complex sequence and $T(x)_{n}=\sum_{n=0}^{n} Q_{n p} x_{p}$ for each positive integer n, then $T(x)=L(f, w \cdot x)$, so that $T(x)$ converges. Therefore, by the "principle of uniform boundedness," there is a number B such that, for each positive integer $n, \sum_{p=0}^{n}\left|Q_{n p}\right|<B$. Now, if p is a nonnegative integer such that $A_{p} \neq 0$, the sequence $Q[, p]$ has limit 1. Hence, there is a positive integer N such that if p is an integer greater than N then $A_{p}=0$, so f is a subset of a polynomial.
4. Radius of convergence less than 1 . Lemma 1 tells us that constant sequences prevent us from altering Theorem 2 to allow r to be less than 1.

Theorem 3, as it is, not restricted in this way.
This leaves the question: Can we find anything like Theorem 1 with the radius of convergence for our power-series expansions about 0 less than 1 ?

Theorem 8. Suppose that $0<r<1, f$ is a finction analytic on the disc with center 1 and radius $1+r, \sum_{p=0}^{\infty}\left(\left|f^{(p)}(1)\right| / p!\right)(1+r)^{p}$
converges, c is a complex sequence, $t>0$, and, for each nonnegative integer $n,\left|c_{n}\right| \leqq t \cdot r^{n}$. Then $L(f, c)$ converges to $\sum_{p=0}^{\infty}\left(f^{(p)}(0) / p!\right) c_{p}$.

Indication of proof. For each nonnegative integer n let B_{n} be $f^{(n)}(1) / n!$ and let d_{n} be $\Delta^{n} c_{0}$. Then

$$
\left|d_{n}\right|=\left|\sum_{q=0}^{n}(-1)_{q}\binom{n}{q} c^{q}\right| \leqq t \cdot \sum_{q=0}^{n}\binom{n}{q} r^{q}=t \cdot(1+r)^{n} .
$$

For each complex number z such that $|z|<1+r$. let $g(z)$ be $f(1-z)$. Then for each positive integer n,

$$
\begin{aligned}
L(f, c)_{n} & =\sum_{p=0}^{n} f(p / n)\binom{n}{p} \Delta^{n-p} c_{p} \\
& =\sum_{p=0}^{n} f(1-p / n)\binom{n}{n-p} \Delta^{p} c_{n-p} \\
& =\sum_{p=0}^{n} g(p / n)\binom{n}{p} \Delta^{n-p} d_{p} \\
& =L(g, d)_{n}
\end{aligned}
$$

so that, by Theorem $1, L(f, c)=L(g, d)$ converges to

$$
\begin{aligned}
\sum_{p=0}^{\infty} \frac{g^{(p)}(0)}{p!} d_{p} & =\sum_{p=0}^{\infty}(-1)^{p} B_{p} d_{p} \\
& =\sum_{p=0}^{\infty}(-1)^{p} B_{p} \sum_{q=0}^{p}(-1)^{q}\binom{p}{q} c_{q} \\
& =\sum_{q=0}^{\infty} c_{q} \sum_{p=q}^{\infty}(-1)^{p+q}\binom{p}{q} B_{p} \\
& =\sum_{q=0}^{\infty} c_{q} f^{(q)}(0) / q!
\end{aligned}
$$

Bibliography

1. S. Bernstein, Démonstration du théorème de Weierstrass, fondeé sur le calcul des probabilités, Commun. Soc. Math. Kharkow (2) 13 (1912-13), 1-2.
2. F. Hausdorff, Summationsmethoden und momentfolge I, Math. Z. 9 (1921), 75-109. 3. T. H. Hildebrandt, On the moment problem for a finite interval, Bull. Amer. Math. Soc. 38 (1932), 269-270.
3. G. G. Lorentz, Bernstein polynomials, University of Toronto Press, Toronto, 1953.
4. J. S. Mac Nerney, Characterization of regular Hausdorff moment sequences, proc. Amer. Math. Soc. 15 (1964), 366-368.
5. - Hermitian moment sequences, Trans. Amer. Math Soc. 103 (1962), 45-81.

Received June 15, 1965.
University of North Carolina

