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POWER-SERIES AND HAUSDORFF MATRICES

PuiLip C. TONNE

The purpose of this paper is to pair classes of continuous
functions from [0, 1] to the complex numbers with classes of
complex sequences. If f is a function from [0, 1] to the com-
plex numbers and ¢ is a complex sequence, a sequence L(f,c)
is defined:

Lifon=3 f<p/n>(’;)g (" . ey

A class A of continuous functions is paired with a class B of
sequences provided that

(1) if fis in A and ¢ is in B then L(f, c) converges,

(2) if f is a continuous function and L(f,c) converges for
each ¢ in B then f is in A4, and

(3) if ¢ is a sequence and L(f,c) converges for each f in
A then ¢ is in B,
We establish the following pairings:

CONTINUOUS SEQUENCES

all continuous functions Hausdorff moment sequences

power-series absolutely

convergent at 1 bounded sequences

power-series absolutely sequences dominated by geo-
convergent at » (r < 1) metric sequences having ratio r

all sequences dominated by

entire functions geometric sequences

polynomials all sequences

Felix Hausdorff’s work [2] (see also T. H. Hildebrandt [3]) on the
moment problem for [0, 1] has been continued by J. S. Mac Nerney [5, p.
368] to provide the first pairing on the table (see Theorem B). Theorem A,
also due to Mac Nerney [6, p. 56], helps establish the last pairing.

THEOREM A. If f is a polynomial and is ¢ is a complex
sequence, then the sequence L(f,c) converges. Furthermore, if f —
Sy A I?, where I is the identity function on the complexr plane,
then L(f,c) has limit >,r_.A,c,.

THEOREM B. Suppose that ¢ is a complex sequence. Then these
are equivalent:

(1) There ts a function g of bounded wvariation from [0,1] to
the complex nuwmbers such that, for each mnon-negative integer

n, ¢, = glf"dg.
0
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(2) For each f in C|0, 1], the class of continuous functions from
[0, 1] to the complex numbers, L(f, c) converges.
Furthermore, if (1) holds and f is in C[0, 1], then L(f,c) has
Limit dea
0

DEFINITION. If each of » and % is a nonnegative integer and ¢
is a complex sequence, then 4%, =¢, and 4"*'¢, = 4"¢, — 4"Cpyi.
The following notes are helpful.

Note 1. If each of m and p is a nonnegative integer and ¢ is a
complex sequence,

d"e, = i (_1)q<m>cp+q ’
q=0 q
so that if f is a function from [0, 1] to the complex numbers then

L(f, o) = 35 ()4 e, fiom) .

DeFINITION. If each of p and k is a nonnegative integer, Y,, =
7o —1)"“(5)(1", where we interpret 0° as 1.

Note 2.
Yp+1,k+1 = (p + 1) ka + YpH»k); Yzﬂp =plh ka = 0; ka =0
for p > k.

Note 3. If f is a function from [0, 1] to the complex numbers
and c is a complex sequence and % is a positive integer, then

it o =35 (5) S 01" ; P)essatierm

=36(5) S v (P)ram,

»=0

and, in case there is a complex sequence A such that, for each num-
ber x in [0, 1], f(x) = i, 4,2, then
L(f, ¢). = pZ;

o{(p) A 5 (- 17(F)at
é ()ZAm vy, .

The following theorem is useful in a later argument and is stated
here for purposes of introduction.
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THEOREM 0. Let p be a nonnegative integer and let z be the
sequence whose value at p is 1 and whose value elsewhere 1s 0. Let
k be a function from [0, 1] to the complex numbers which s conti-
nuous at 0. Then L(k-I7,2) has limit k(0).

Indication of proof. If m is an integer greater than p, then
_(n\ & p -
Lik-T?, 2), = ( )z(—nm( >k(q/n)q1’n »
P/)i= q

= (3 ) & (= 1o B )ariam;
lim (Z)n“" =1/pLpl =Y, = j?_“ (_1)p+q<€>qp;

n—roo ¢=0

and

£ (— 1o B )arh(aim) — p! KO)|
=3 (B 1kaim) — kO) .

1. Radius of Convergence = 1, In this chapter, for each r
not less than 1, we pair functions having power-series expansions
about 0 which are absolutely convergent at » with sequences which
are dominated by geometric sequences with ratio ». In particular we
match functions with power-series expansions about 0 which are
absolutely convergent at 1 with the class of bounded sequences.

THEOREM 1. Suppose that r = 1, each of A and ¢ is a complex
sequence, >, A,|r? converges, there is a number t such that if p
18 a nonnegative integer then |c,| = t-r?, and f= >o,A,I?. Then
L(f, ¢) converges to >io, Agc,.

LEMMA 1. If g is a function from [0, 1] to the complex numbers
and % s a constant sequence, then, for each positive integer m,
L(g, u), = u,-9(1).

Proof.
_< N jn—p, n
Lig, w. = 3, ooim)( ) 4w, = gln/m)( 2 Jus .
LEMMA 2. Suppose that d > 0 and b is a complex sequence such

that >0 |b,| converges. Then there is a positive integer N such
that ©f n is an integer greater than N then

sofi- (3] <o
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Proof. We note that if p is a nonnegative integer and s is
a sequence such that, for each positive integer %, s, = (Z)n“"p!, then

s is nondecreasing with limit 1.

Let m be a positive integer such that >, |b,| < d/2. There is
an integer N greater than m such that if & is an integer in [0, m]
then, for each integer n greater than N,

1— <Z>n""k! < dfj2tm + 1)(1b, | + 1)] .
If » is an integer greater than N,

Sor- ()]
=500, [1- (3wt + Sini<d,

LEMMA 3. Let b be a positive number. Then there is a positive
integer N such that if n is an integer greater than N then

Zn‘a <n> i | Ay | r* =Y, <b.
o\ P/ ripn1

»

Proof. There is a positive integer m such that >3, | 4, r> < b/2.
Let g be >3, A4,| r?I?. Let N be an integer greater than m such
that if »n is an integer greater than N then

S04, w[l _ <Z>n”’p!] <b/2.

=0

Then, if n is an integer greater than N,
b2 > g() — 33 |4, ]

= L(g, 1 — 5 | 4,

S

2l

1

S 1A Y — (4,

3

|

(3)
(g>’n""p! - l]lA,,lr”

+3(3) 3, 1Ay,

=0 k=p+1

S0
n n oo
5(0) 3 14y,
p=0 p k=p+1

< b2 +§|Ap|w[1 _ (Z)n‘“’p!] <b.
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Proof of Theorem 1. Let ¢ be a positive number. There is a
positive integer N such that if n is an integer greater than N then

| Sy, — 3 Ay | < /2,
5(3)
3 a1 (2 )wwt]| < et

Hence, if n is an integer greater than N,

S A Y < ef(dn)

and

L7 0, — S 4,

S o) & A Y~ e,
szt Saaft— (5
§=‘,( >k§pj,1iAk[rn"‘Y

<e.

THEOREM 2. Suppose r =1 and S is the set to which f belongs
only if there is a complex sequence A such that >.5_,|A,|r? con-
verges and f = S5, A I, Suppose that ¢ is an infinite complex
sequence and, for each f is S, L(f, ¢) converges. Then ¢ is bounded
by a geometric sequence with ratio r.

Proof. TFor each nonnegative integer p let g, be »=?, and suppose
that the sequence c-g is not bounded; that is, suppose that ¢ is not
bounded by a geometric sequence with ratio .

For each f in S, let N(f) be >, 77| f*(0)|/p!. Then (S, N) is
a complete, normed, linear space.

For each positive integer n, let T, be a function from S to the
complex numbers such that if f is in S then T,(f) = L(f, ¢).. If f
is in S and n is a positive integer and | f|,,;; denotes the maximum
modulus of f on [0, 1], then

$3e( 1) 8 17742 ) stam)|
= f[ou>_4|cz>’< >Z‘<g>

=0
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so that T, is a continuous linear transformation from (S, N) to the
complex numbers.

Let m be a positive integer. N(r—™I™) =1. By Theorem A,
L(r—™I™, ¢) has limit g,c,. Hence, there is a positive integer » such
that | T,(r—™I™)| > |gncn| — 1, so that the sequence N’[T]—where,
for each positive integer n, N'(T,) is the least number b such that if
F is in S and N(F') =1 then | T,(F)| =< b—is not bounded. So, by
the “principle of uniform boundedness,” there is a member f of S
such that the sequence T(f) is not bounded, but L(f, ¢) converges
and T(f) = L(f, ¢), so the theorem is proved.

THEOREM 3. Suppose that r > 0, f is wn C[0, 1], and, for each
complex sequence ¢ which is dominated by a geometric sequence with
ratio r, L(f, ¢) converges. Then there is a complex sequence A such
that >3, A,|r" converges and, if x is in [0,1] and x < r, then

fl@) = 255, A0,

Proof. For each nonnegative-integer pair (n, ), let g, be »* and
let M,, be (;’;) 5=0(—1)P+9<€)f(q/n). Then, for each bounded com-

plex sequence ¢ and each positive integer n, L(f, c-9), = >.r_, ¢,M,,7?,
so that, by the “principle of uniform boundedness”, there is a number
D such that, for each positive integer n, > | M,,|r* < D.

For each nonnegative integer p, let z2(p) be the sequence whose
value at p is 1 and whose value elsewhere is 0. Then the sequence
M]J , ] = L(f, 2(p)), which, by hypothesis, has limit, say A4,, and
from the preceding paragraph we see that >7 .| A4,|r? converges.

For each positive integer n let B,(f) be the Bernstein polynomial
for f of order m; t.e., let B,(f) be >, M, I*. B(f) converges to f
on [0,1] [see 1, pp. 1-2; also 4, pp. 5-7]. Now, if x is a complex
number and |2z | = r, then

an(f)(%)léélxi”\Mwi <D.

By the convergence of the Bernstein polynomials on [0, 1] and the con-
vergence continuation theorem, a subsequence of B(f) has limit, say A, on
[0, 1] and the disc with center 0 and radius . h is analytic at 0.
By Theorems 0 and A we see that if p is a non-negative integer then

h®(0)/p! = lim L(h, 2(p))
= lim L(f, 2(p)) = 4, ,

and, if « is in [0, 1] and @ < », then f(x) = h(x) = i, 4,27,

The following theorem parts somewhat from the main stream of
our study but sheds additional light on the problem at hand.
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THEOREM 4. Suppose that A is a complex sequence, >.,|A4,]|
converges, and f = >z, A,I?. Then there is an unbounded number-
sequence ¢ such that L(f, ¢) converges.

Proof. For each positive integer =, let s, be

3

S (0) S A0t
=0\ D/ xZp1
By Lemma 3, s has limit 0. A has limit 0. So there is an increas-
ing, nonnegative-integer sequence u such that, for each nonnegative-
integer pair (p, q), s(u, + q) < 477 and | A(u, + q)| < 477,

For each nonnegative integer p, let ¢, be 2™ if m is a nonnega-
tive integer such that p = u,, otherwise let ¢, be 0.

If k is a nonnegative integer and n = u,, |c,4,| < 27*
S0 | A,c, | converges,

Let b be a positive number. By Lemma 2, there is a positive

integer N such that 27¥ < b/2 and if » is an integer greater than N
then

, so that

3514, [1 —_ (g)n*”p!] < b4

and

2 Ae,
p=n+1

< b/4.

Let n be an integer not less than u, and let m be the greatest
integer k& such that w, =< n. Then

|55 4,6, - Lis, o).

< b4 +

n . n n —k
54, = 5o ) S AT

> A
S b4+ 34,0, [1 - (Z)n“"pl]

+p§__306p(g> | Ay [ %Y,
<yz+ 32 ) S A nY,
=0 k=p+1

< b/24 2"s, < b/242m4T™ <D,

so L(f, c) converges to >.2,A,c,.

2. Entire functions. Following from Theorems 1 and 3 we
have:
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THEOREM 5. Suppose that f is in C[0,1]. Then the following
statements are equivalent:

1) f s a subset of an entire function.

(2) If ¢ 1s a complex sequence which 1s dominated by a geo-
metric sequence, then L(f, c) converges.

Furthermore, if (2) holds, L(f, c) converges to >, (f*(0)/pl)e,.

THEOREM 6. Suppose that c¢ 1s a complexr sequence such that
L(f, ¢c) converges for each entire function f. Then ¢ is dominated
by a geometric sequence.

Proof. Suppose that ¢ is not dominated by a geometric sequence.

LEMMA. If each of m and r is a monmegative integer, then
there is a positive integer q such that ¢, .,| >r™" " and |¢,.,| >2"|c,|
Jor each monnegative tnteger p less than m - q.

Proof of lemma. Let R be r + 2™+ >™,|¢c,|. Since no geo-
metric sequence dominates ¢, there is a positive integer k such
that |¢,.| > R™ ', Let q be the least positive integer » such that
Icm+n| > Rm+n+1.

Suppose that p is a nonnegative integer.

If p =<m, then |¢,,| > R™" = R* > 2™|¢,]|.

If m <p<m—+q, then

|Cnsg| > B™ = R-R*™ = R-|c,[ > 2" ¢, | .

Continuation of proof of Theorem 6., By the lemma, there is
an increasing interger-valued sequence wu such that w, = 0 and, if p
is a positive integer, then |e(w,)| > p*@+** and |c(u,)| = 2**~V ¢, | for
each nonnegative integer n less than wu,.
Let f be >, (1/e(u,) "™,
If N is a positive integer then, for each integer p greater than N,
l 1
c(u,)
so that f is an entire function.
For each nonnegative integer %k let A, be f*(0)/k!. Now, if »
and k are integers and 0 < p < k, then |¢,4,| < 27F,
Suppose that B > 0. By Lemma 3 and the note at the beginning
of the proof of Lemma 2, there is a positive-integer pair (n, m) such that

Hup

< pramEniwe) < p=t < 1N

Ms
N
3
N
3
L
=
3
V
o
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and 7 = w,. Then [L{/, ¢),|
. %017(7)) An'Yp,!
worppl o ()
<p)A v ;ﬁ‘é(@) L
<u,,)(u YAt e )

N S ol
=5 (M) 5 2y,
=\ D

k=p+1

3

I
0 “M;

2

Y

> B — 1, so that L(f, ¢) does not converge. Hence, ¢ is dominat-
ed by a geometric sequence.

3. A converse to Theorem A. The following theorem, together
with Theorem A, shows that the last pair on our table belongs there.

THEOREM 7. Suppose that f is in C|0, 1] and, for each complex
sequence ¢, L(f, c) converges. Then f is a subset of a polynomial.

Proof. By Theorem 3 there is a complex sequence A such that

if @ is in [0, 1] then f(x) = >i7., 4,27,
For each nonnegative-integer pair (n, p), let M,, be

(M) E v B)sam,

let w, be 1/A, if A, + 0 and w, be 0 if A, =0, andletQ be w,M,,.
Now, if = is an 1nﬁn1te complex sequence and T(x), = >, @Q,,x, for
each positive integer n, then T(x) = L{f, w-x), so that T(x) converges.
Therefore, by the “principle of uniform boundedness,” there is a number
B such that, for each positive integer =, > ,|@Q,,| < B. Now, if
p is a nonnegative integer such that A, # 0, the sequence @[, p| has
limit 1. Hence, there is a positive integer N such that if p is an
integer greater than N then A, =0, so f is a subset of a polynomial,

4. Radius of convergence less than 1. ILemma 1 tells us that
constant sequences prevent us from altering Theorem 2 to allow 7 to
be less than 1.

Theorem 3, as it is, not restricted in this way.

This leaves the question: Can we find anything like Theorem 1
with the radius of convergence for our power-series expansions about 0
less than 17

THEOREM 8. Suppose that 0 < » < 1, f is a function analytic
on the disc with center 1 and radius 1 -+ r, o, (| 2L |/p)(A + »)?
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converges, ¢ is a complex sequence, t > 0, and, for each nonnegative
integer m, |e¢,| = t-r". Then L(f,c) converges to >y, (f™(0)/pl)ec,.

Indication of proof. For each nonnegative integer n let B, be
f™(1)/n! and let d, be 4"c,. Then

= |5 (=17 )

For each complex number z such that |z| <1+ r. let g(z) be
f(1 — 2). Then for each positive integer =,

q=0

L(f, o). = 3 foim)(  )ae,

so that, by Theorem 1, L(f, ¢) = L(g, d) converges to

Ld () O o

$ 220 g, = 3, (~17B,g,

p=0 P, »=9
A 2 D
=3 (-17B, 3 (- (% ),
—_ - - _ +q p
=2 G2 (=D (q)B”
=5 e f " (0)a! .
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