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POWER-SERIES AND HAUSDORFF MATRICES

PHILIP C. TONNE

The purpose of this paper is to pair classes of continuous
functions from [0,1] to the complex numbers with classes of
complex sequences. If / is a function from [0,1] to the com-
plex numbers and c is a complex sequence, a sequence L(/, c)
is defined:

Uf, e)n = ± f(pln)(n)Σ (-iy(n ~ p)cp+q .

A class A of continuous functions is paired with a class B of
sequences provided that

(1) if / is in A and c is in B then L(/, c) converges,
(2) if / is a continuous function and L(f, c) converges for

each c in B then / i s in A, and
(3) if c is a sequence and L(/, c) converges for each / in

A then c is in B.
We establish the following pairings:

CONTINUOUS

all continuous functions

power-series absolutely
convergent at 1

power-series absolutely
convergent at r (r < 1)

entire functions

polynomials

SEQUENCES

Hausdorff moment sequences

bounded sequences

sequences dominated by geo-
metric sequences having ratio r

all sequences dominated by
geometric sequences

all sequences

Felix Hausdorff's work [2] (see also T. H. Hildebrandt [3]) on the
moment problem for [0, 1] has been continued by J. S. Mac Nerney [5, p.
368] to provide the first pairing on the table (see Theorem B). Theorem A,
also due to Mac Nerney [6, p. 56], helps establish the last pairing.

THEOREM A. If f is a polynomial and is c is a complex
sequence, then the sequence L(f, c) converges. Furthermore, if f —
2p=o API

P, where I is the identity function on the complex plane,
then L(f, c) has limit Σ%0Apcp.

THEOREM B. Suppose that c is a complex sequence. Then these
are equivalent:

(1) There is a function g of bounded variation from [0, 1] to
the complex numbers such that, for each non-negative integer
n, cn = [lndg.

Jo
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(2) For each f in C[0, 1], the class of continuous functions from
[0, 1] to the complex numbers, L(f, c) converges.

Furthermore, if (1) holds and f is in C[0, 1], then L(f, c) has

limit l fdg.
Jo

DEFINITION. If each of p and n is a nonnegative integer and c
is a complex sequence, then A°cp — cp and Δn+1cp — Δncp — Δncp+1.

The following notes are helpful.

Note 1. If each of m and p is a nonnegative integer and c is a
complex sequence,

so that if / is a function from [0, 1] to the complex numbers then

Mf, c)n =

DEFINITION. If each of p and k is a nonnegative integer, Ypk —

Σ?=o( — l)p+g(P)Qk, where we interpret 0° as 1.

Note 2.

Y _L ^ — (v + 1)(Y r 4- Y Λ. u) Y - ί ) ' Y , > O 7 , - 0

for p > fc.

JVbίβ 3. If / is a function from [0, 1] to the complex numbers
and c is a complex sequence and n is a positive integer, then

L(f, c)n = ± (I) Σ(-l){n ~ P)oP+qf(P/n)
p=0 \P/ g=0 \ V /

and, in case there is a complex sequence A such that, for each num-
ber x in [0, 1], f(x) = 2Xo At**, then

L(f, c)n = Σ c/ί) Σ

The following theorem is useful in a later argument and is stated
here for purposes of introduction.
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THEOREM 0. Let p be a nonnegative integer and let z be the
sequence whose value at p is 1 and whose value elsewhere is 0. Let
k be a function from [0, 1] to the complex numbers which is conti-
nuous at 0. Then L(k Ip,z) has limit k(0).

Indication of proof. If n is an integer greater than p, then

\ z)n =

=(;>

= Yf, =

and

1. Radius of Convergence ̂  1. In this chapter, for each r
not less than 1, we pair functions having power-series expansions
about 0 which are absolutely convergent at r with sequences which
are dominated by geometric sequences with ratio r. In particular we
match functions with power-series expansions about 0 which are
absolutely convergent at 1 with the class of bounded sequences.

THEOREM 1. Suppose that r ^ 1, each of A and c is a complex
sequence, 2,£U\Ap\rp converges, there is a number t such that if p
is a nonnegative integer then \cp\ ̂  t rp, and f— Σ^=OAPI

P. Then
L(f, c) converges to Σ?=o Apcpcp.

LEMMA 1. If g is a function from [0, 1] to the complex numbers
and u is a constant sequence, then, for each positive integer n,

Proof.

L(g, u)n = Σ

LEMMA 2. Suppose that d > 0 and b is a complex sequence such
that Σ?=o I bp I converges. Then there is a positive integer N such
that if n is an integer greater than N then
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Proof. We note that if p is a nonnegative integer and s is

( Ύl \
)n~ppl, then

s is nondecreasing with limit 1.
Let m be a positive integer such that Σ~=m | bp | < d/2. There is

an integer N greater than m such that if k is an integer in [0, m]
then, for each integer n greater than N,

1)]-kkl < d/[2(m

If n is an integer greater than N,

SΣ n~pp i]+ t bv\<d .

LEMMA 3. Let b be a positive number. Then there is a positive
integer N such that if n is an integer greater than N then

\ Λ~ / 2-J
33=0 \

Λ~ / 2-
P / Jfc=p

pk

Proof. There is a positive integer m such that < 6/2.
Let βr be Σ*=o I ^ I r2>^?) Let ΛΓ be an integer greater than m such
that if n is an integer greater than N then

Then, if n is an integer greater than N,

δ/2 > flr(l) - Σ I -4 I r '
p = 0

- L(g, i)»-ΣIΛI ^Σ
23 = 0

-I- V I \ V
P / fc

SO

Σ

^ 6/2 + +-(: l] <
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Proof of Theorem 1. Let ε be a positive number. There is a
positive integer N such that if n is an integer greater than N then

y i ApC
p=ύ

A.pCp I 6 IΔj

and

Hence, if n is an integer greater than JV,

oo

L(f, c)n — Σ Ap(

<ε/2 U.'
V

P
• pk

THEOREM 2. Suppose r ^ 1 ami S is to which f belongs

p \ rp con-only if there is a complex sequence A such that ΣΓ
verges and f — ΣP=O API

P. Suppose that c is an infinite complex
sequence and, for each f is S, L(f, c) converges. Then c is bounded
by a geometric sequence with ratio r.

Proof. For each nonnegative integer p let gp be r~p, and suppose
that the sequence c + g is not bounded; that is, suppose that c is not
bounded by a geometric sequence with ratio r.

For each / in S, let N(f) be Σ?=o rp |/(p)(0) \/pl. Then (S, N) is
a complete, normed, linear space.

For each positive integer n, let Tn be a function from S to the
complex numbers such that if / is in S then Tn(f) = L(f, c)n. If /
is in S and n is a positive integer and |/|[0,i] denotes the maximum
modulus of / on [0, 1], then

TJLf) I - Σ<
P=0

n

ιΣ n

2\
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so that Tn is a continuous linear transformation from (£, N) to the
complex numbers.

Let m be a positive integer. N(r~mIm) — 1. By Theorem A,
L(r~mIm, c) has limit gmcm. Hence, there is a positive integer n such
that I Tn(r~mIm) \ > \ gmcm | - 1, so that the sequence N'[T]—where,
for each positive integer n, N'(Tn) is the least number b such that if
F is in S and N(F) ^ 1 then | Tn(F) \ <> b—is not bounded. So, by
the "principle of uniform boundedness," there is a member / of S
such that the sequence T(f) is not bounded, but L(f, c) converges
and T(f) — L(f, c), so the theorem is proved.

THEOREM 3. Suppose that r > 0, / is in C[0, 1], and, for each
complex sequence c which is dominated by a geometric sequence with
ratio r, L(f, c) converges. Then there is a complex sequence A such
that Σ?=o IA9 I rp converges and, if x is in [0, 1] and x ^ r, then

Proof. For each nonnegative-integer pair (n, p), let gn be rn and
let Mnp be ( j)s?-o(-l) p + < r ( j)/(i?M). Then, for each bounded com-
plex sequence c and each positive integer n, L(f, c-g)n = Σ;=o cΛikfΛPr

p,
so that, by the "principle of uniform boundedness", there is a number
D such that, for each positive integer n, Σί=o I -Mnp \rp < D.

For each nonnegative integer p, let £(p) be the sequence whose
value at p is 1 and whose value elsewhere is 0. Then the sequence
M[ ,p] = L(f, z(p)), which, by hypothesis, has limit, say Ap, and
from the preceding paragraph we see that Σ?=o IA9 I rp converges.

For each positive integer n let Bn(f) be the Bernstein polynomial
for f of order n; i.e., let Bn(f) be Σ%0MnpI

p. B(f) converges to /
on [0,1] [see 1, pp. 1-2; also 4, pp. 5-7], Now, if x is a complex
number and | x | ^ r, then

\Bn(f)(x)\ £±\x\>\Mn9\ < D .

By the convergence of the Bernstein polynomials on [0, 1] and the con-
vergence continuation theorem, a subsequence of B(f) has limit, say h, on
[0, 1] and the disc with center 0 and radius r. h is analytic at 0.
By Theorems 0 and A we see that if p is a non-negative integer then

h{p)(0)/pl = lim L(λ, z{p))
= lim L(f, z(p)) = Ap ,

and, if x is in [0, 1] and x S r, then f(x) — h(x) = X"=o Apx
p.

The following theorem parts somewhat from the main stream of
our study but sheds additional light on the problem at hand.
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THEOREM 4. Suppose that A is a complex sequence, Σί=o I A* I
converges, and f — X~=o API

P. Then there is an unbounded number-
sequence c such that L(f, c) converges.

Proof. For each positive integer n, let sn be

[ n I 2-ι \Άk n x vk

p=0 \ P J k=p-τl

By Lemma 3, s has limit 0. A has limit 0. So there is an increas-
ing, nonnegative-integer sequence u such that, for each nonnegative-
integer pair (p, q), s(up + q) < 4rv and | A(up + q) \ < 4"p.

For each nonnegative integer p, let cp be 2m if m is a nonnega-
tive integer such that p — umj otherwise let cp be 0.

If fc is a nonnegative integer and n — uk1 \ cnAn \ < 2~k, so that
ΣP=o\Apcp\ converges.

Let b be a positive number. By Lemma 2, there is a positive
integer N such that 2~N < 6/2 and if n is an integer greater than N
then

[i-
and

Σ A,cf
p=n+l

<6/4.

Let w be an integer not less than uN and let m be the greatest
integer k such that % ^ n. Then

p=0
- L(f, e)n

p=0

< 6/2 + 2msn < 6/2 +

so L(f, c) converges to Σ?=o APcp.

rt/ 1 pk

2* Entire functions* Following from Theorems 1 and 3 we
have:
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THEOREM 5. Suppose that f is in C[0, 1]. Then the following
statements are equivalent:

(1) f is a subset of an entire function.
(2) If c is a complex sequence which is dominated by a geo-

metric sequence, then L(f, c) converges.
Furthermore, if (2) holds, L(f,c) converges to Σ7=o(f{p)(O)/pl)cp.

THEOREM 6. Suppose that c is a complex sequence such that
L(f, c) converges for each entire function f. Then c is dominated
by a geometric sequence.

Proof. Suppose that c is not dominated by a geometric sequence.

LEMMA. // each of m and r is a nonnegative integer, then
there is a positive integer q such that \ cm+q | > rm+g+1 and | cm+q | > 2m | cp |
for each nonnegative integer p less than m + q.

Proof of lemma. L e t R be r + 2 W + Σ%=0 \cp\. S ince no geo-
metric sequence dominates c, there is a positive integer k such
that \cm+k\ > Rm+k+1. Let q be the least positive integers such that

Suppose that p is a nonnegative integer.
If p ^ m, then | cm+g | > B»+q+1 ^ R* > 2T \ cp \.

If m < p < m + q, then

I cm+q I / Λ ^ I t ' l l ^ It \Cp I s> 4 \(sp\

Continuation of proof of Theorem 6. By the lemma, there is
an increasing interger-valued sequence u such that u0 — 0 and, if p
is a positive integer, then | c{up) | > pu^)+1 and [ c(up) \ ̂  2u{p~1} \ cn \ for
each nonnegative integer n less than up.

Let / be ΣΓ=i (1/^K))IW(?)).
If ΛΓ is a positive integer then, for each integer p greater than N,

p-

so that / is an entire function.
For each nonnegative integer k let Ak be f{k)(0)/kl. Now, if p

and k are integers and 0 ^ p < k, then | cpAk | < 2~k.
Suppose that B > 0. By Lemma 3 and the note at the beginning

of the proof of Lemma 2, there is a positive-integer pair (n, m) such that

nV ίn 1 V 9-^-^
2-1 I /yj / 2-i ^ ^
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and n ^ um. Then | L(f, c)n |

u / 72, \ °%
2-i Vp\ j ./LJ ^ic'L X pk
p-~-Q \ 1J / k -p

2 J Z Λ J pfc

> B — 1, so that L(/, c) does not converge. Hence, c is dominat-
ed by a geometric sequence.

3* A converse to Theorem A* The following theorem, together
with Theorem A, shows that the last pair on our table belongs there.

THEOREM 7. Suppose that f is in C[0y 1] and, for each complex
sequence c, L(f, c) converges. Then f is a subset of a polynomial.

Proof. By Theorem 3 there is a complex sequence A such that
if x is in [0, 1] then f(x) = ££=<> Apx*.

For each nonnegative-integer pair (n, p), let Mnp be

let wp be 1/AP if A^ ^ 0 and wp be 0 if Ap = 0, and let QW2, be wpMnp.
Now, if x is an infinite complex sequence and T(x)n •=• Σp= 0 Qnpxp for
each positive integer n, then T(x) = L(/, w a?), so that Γ(aj) converges.
Therefore, by the "principle of uniform boundedness," there is a number
B such that, for each positive integer n, Σ?=o I Q̂?> I < B Now, if
p is a nonnegative integer such that Ap Φ 0, the sequence Q[, pj has
limit 1. Hence, there is a positive integer N such that if p is an
integer greater than N then Ap — 0, so / is a subset of a polynomial.

4* Radius of convergence less than I* Lemma 1 tells US that
constant sequences prevent us from altering Theorem 2 to allow r to
be less than 1.

Theorem 3, as it is, not restricted in this way.
This leaves the question: Can we find anything like Theorem 1

with the radius of convergence for our power-series expansions about 0
less than 1?

THEOREM 8. Suppose that 0 < r < I, / is a function analytic
on the disc with center 1 and radius 1 + r, ΣΓ=o (l/(p)(l) |/p!)(l + r)p
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converges, c is a complex sequence, t > 0, and, for each nonnegatίve
integer n,\cn\^ t rn. Then L(f, c) converges to ΣΓ-o (f{p)(0)/pl)cp.

Indication of proof. For each nonnegative integer n let Bn be
fin)(l)/nl and let dn be Anc0. Then

\dn\ =

For each complex number z such that | z | < 1 + r. let g(z) be
/(I — z). Then for each positive integer n,

±
p=0

- P/n)(n

 n_ py^w

= t g(p/n)(l)j"-"dp
p=0 \ P /

= Us, d).,

so that, by Theorem 1, L(f, c) = L(g, d) converges to

Σ
p=0

i>=0 g=0

Σ
0

BIBLIOGRAPHY

1. S. Bernstein, Demonstration du theoreme de Weίerstrass, fondee sur le calcul des
probabίlites, Commun. Soc. Math. Kharkow (2) 13 (1912-13), 1-2.
2. F. Hausdorff, Summationsmethoden und momentfolge I, Math. Z. 9 (1921), 75-109.
3. T. H. Hildebrandt, On the moment problem for a finite interval, Bull. Amer.
Math. Soc. 38 (1932), 269-270.
4. G. G. Lorentz, Bernstein polynomials, University of Toronto Press, Toronto, 1953.
5. J. S. Mac Nerney, Characterization of regular Hausdorff moment sequences, proc.
Amer. Math. Soc. 15 (1964), 366-368.

6# .f Hermitian moment sequences, Trans. Amer. Math Soc. 103 (1962), 45-81.

Received June 15, 1965.

UNIVERSITY OF NORTH CAROLINA




