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HILBERT-SPACE METHODS IN ELLIPTIC PARTIAL
DIFFERENTIAL EQUATIONS

EDWARD M. LANDESMAN

The purpose of this paper is to study, together with
applications, those aspects of the theory of Hubert Space
which are pertinent to the theory of elliptic partial differential
equations. This involves the study of an unbounded operator
A from one Hubert Space to another together with its adjoint
A*, its pseudo-inverse or generalized reciprocal A"1, and its
^-reciprocal A1 — A*~ι. In order to carry out the results,
further properties of the operators A~ι and A' are developed
in this paper.

The concept of ellipticity of a partial differential operator
is introduced via the properties of an operator in a suitably chosen
Hubert Space. This Hubert Space is the one defined by the
operator Gk, that is, the operator which maps a function into
itself and its first k derivatives. It is shown that elliptic
operators are those that behave in a topological sense the
same as closed and dense restrictions of the operator Gk.
Several other characterizations of elliptic operators and given
and their relation to each other is explained. This approach
yields existence theorems for strong solutions of elliptic partial
differential equations and provides methods for gaining strong
solutions from weak solutions.

The ^f~h spaces that arise from the so-called negative
norms and that have been used effectively by several authors
in the study of elliptic partial differential equations are
obtained by the use of the ^-reciprocal of the operator Gk.

Simple examples which illustrate the above theory are
provided.

1* Preliminaries* We will mainly be interested in Hίlbert Spaces.

We denote our Hubert Spaces by Sff, £{ff, £ίf", etc. When we write
έ%f and Sίf', they may coincide. Inner products in each Hubert Space
will be denoted as follows:

If we are concerned with an inner product in 3ί?, and xu x2 e J^7,
we denote their inner product in Sίf by: (xu x2)%?. For x^Sίf, its
norm will be denoted by | | B | | # . If no ambiguity is present, we will
omit the subscripts <§ίf in both the inner product and the norm.

Suppose that A is a linear transformation from έ%f to Sίf*. Denote
the domain of A by <grΛ, the range of A by &A and the null space
of A by ^ .

The closure of a subclass & of 3$f will be denoted by &. By
a closed subset of £ίf will be meant one that is closed relative to
strong convergence.

113



114 EDWARD M. LANDESMAN

The orthogonal complement of & in Sίf will be denoted by &L.
&L is certainly a subspace of Sff.

We will use the term operator to denote a closed, dense, linear
transformation.

2* The pseudoinverse of an operator, its adjoint, and related
results* In this section we define the concept of the "pseudo-inverse"
of an operator which is of particular interest in this paper. We then
follow with some basic results which the "pseudo-inverse" shares. In
order to define the pseudo-inverse of an operator, it is convenient to
introduce the ordered pair definition of a linear transformation. We
begin as follows:

Consider a Hilbert-Space §{f' and a Hilbert-Space £{f" and let
^f = ^ff x 3{f" be their Cartesian product. Clearly J T i s a Hubert
Space with inner product being the sum of the inner products of £if
and Sίf". Let se% = 3if' x {0}, ,%f' = {0} x Sίf". <%f and Jg?" are
isomorphic replicas of Sίf' and £ίf" respectively. Suppose Szf is a
closed linear subspace of Sίf. Denote an element of j& S ^f by:
{x, y}, where x e Sίf' and y e Sίf".

If S/ Π £ίfj' = 0, then s/ defines a linear transformation from
^f1 into 3(f"\ For, if {x, yj and {x, y2} are elements of J&, then
{0,2/i — yz\e S>f, i.e., y1 = y2. We denote this linear transformation
by A. Furthermore, since j^f is closed, the transformation A is closed.

If J ^ 1 Π ̂ f0' = 0, then A is in fact dense. For, suppose not;
then there exists {x0, 0} e Jg?', ^0 -1 i^k, ^0 ^ 0. Furthermore, {x0, 0} e

. But this contradicts the fact that j ^ 1 Π ̂  = 0.
In a like manner, J ^ 1 defines a linear transformation —A* from

" to <^\ Summarizing, we have the following: If

(2.1)

then sf defines a closed linear transformation A from 3ίf' to ^ " . If

11

then A is dense and J ^ 1 defines a dense linear transformation —A*
from J T " to 3if'.

Suppose that the relations (2.1) and (2.2) are satisfied. Let

(2.3)

which correspond to the null spaces of A and A* respectively. Then

(2.4) J ^ = J ^ + <ar, J^"- = j j ί* + 9f *

where ^ i. J ^ and ^ * 1 J^J*. Moreover,
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(2.5) &? = J ^ + J ^ 1 = (J*S + i f ) + ( J ^ * + <if *) .

Observe that when §ίf is decomposed as in (2.5), J^£ + <& com-
pletely determines the operator A and j^J* + ^ * completely determines
its adjoint A*.

Rearranging (2.5), we have

(2.6) <sr = J*' + J ^ 1 = (J*J + ΐf *)

The linear subspace J^;* + ^ defines an operator A"1 from
to ^ ^ ' called the pseudo-inverse or generalized reciprocal of A. The
linear subspace J ^ + ^ * defines the operator —A! from Sίf'lo £%*".
The operator A' is the pseudo-inverse of the adjoint, A*"1 of A. We
call A' the ^-reciprocal of A. We observe that A and A' both take
£ίf' into <%•*" while A* and A"1 both take £ίf" into ^ ' . Summarizing,
we have the following:

PROPOSITION 2.1. The domain 3fA-\ of A"1 is the direct sum of
&A and ^ ? / . The range of A"1 is the intersection of 2$^ and

PROPOSITION 2.2. A"1 is closed and dense in ^ίf" and ^f^-i is
closed. Moreover, (A"1)"1 = A. Furthermore, if A possesses an inverse,
then A"1 is the inverse of A.

PROPOSITION 2.3. The operator A' is the adjoint of the pseudo-
inverse of A and is also the pseudo-inverse of its adjoint, that is,

(2.7) A' = (A"1)* - (A*)-1 .

The operators A and A! have the same null spaces. Moreover

(2.8) (A')' = A .

PROPOSITION 2.4. Let A be an operator from ££" to Sίf". Then
A~\ A*, and A' are operators. The products A^A, A~xAr are nonnegative,
self-adjoint operators, are pseudo-inverses of each other, and have the
same null space as A. Similarly, the products AA*, AΆ"1 are non-
negative, self-adjoint operators, are pseudo-inverses of each other, and
have the same null space as A*.

The preceding representation has been suggested by M. R. Hestenes,
and the propositions above can be found in the reference [3]. For
additional work using these concepts, the reference [1] may be
consulted.

The Closed Graph Theorem immediately leads us to the following
results:
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THEOREM 2.1. Let A be an operator from £ίf to £ίf.' Then the
range &A of A is closed if and only if A*1 is bounded.

THEOREM 2.2. Suppose A and B are operators from £>ϊf to
Suppose 2$A g 3fB and Λr

A £ ^V~B. Suppose further that A"1 is
bounded. Then C = BA~γ is bounded and \\Bx\\ ^ \\C \\\\Ax\\ on

3* Theorems about an operator A and its *-reciprocal A'. In
this section we are concerned with theorems which connect an operator
A and its *-reciprocal A!. Some of the theorems will be results which
relate different norms to each other, i.e., theorems regarding the
equivalence of topologies. We also characterize the domain of the
operator A! in terms of the operator A.

We begin with the following lemma, which is a "generalized"
Schwarz inequality similar to that used by P. Lax in [5] and M.
Schechter in [6]. This will prove useful later on.

Let A be an operator from 3ίf to 3ΐff. We have &rA £ Sίf. Now,
3?* = &A* θ &A* E Sίf. Denote &rA Π Λ7 by <ĝ , the carrier of
A.

LEMMA 3.1. Let x e &rA, y e ϋ ^ , and either x or y in <yV~A

L Ξ

Λjt,. Then

(3.1) (x, y) = (Ax, A'y)

and

(3.2) \(x,y)\£\\Ax\\\\A'y\\ .

The relation (3.1) follows immediately by observing that

(x, y) = (A-1 Ax, y) = (Ax, A'y) .

Equation (3.1) can be used to define the domain of the operator A! as

those vectors y for which there is a vector z e &A such that (x, y) —

(Ax, z) for all x in ^A.
Equation (3.2) follows directly from equation (3.1) by use of the

Schwarz inequality.
The following theorem is a characterization of the domain of A!.

THEOREM 3.1. Let A be an operator from ^f to Sίf'. Then the
domain of A is the set S of vectors y for which there is a positive
constant k such that

(3.3) \(x,y)\£k\\Ax\\
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for all x in the carrier ^Λ of A.

In order to prove this, let y be in £grA, and consider the relation

\(x,y)\ = \(Ax,A'y)\£\\Ax\\\\A'y\\ .

It follows that

(3.4) I (x, y) I ^ k \\ Ax || w h e r e k=\\A'y\\.

Therefore y e S and

(3.5) ^ g S .

Suppose, conversely, that yeS. Consider the linear functional
l(x) = (χt y) for all x in <g .̂ We have

(3.6) \l(x)\ = \(x,y)\£k\\Ax\\

for every x e C^A and some constant k > 0. By (3.6), l(x) is bounded
on ^A. Let x = A~xz where z e &Λ-i. Then from (3.6) we have

(3.7) \(A~%y)\<*k\\z\\.

Therefore, by the definition of the adjoint of A~\ we get

(3.8) (A-% y) = (z, Ay) .

Hence y is in ϋ ^ , and

(3.9) S S ^ .

Combining (3.5) and (3.9), we arrive at the theorem.
The following corollary is a variation of a theorem which appears

in the reference [5]. The theorem, as it appears in [5], is a Differ-
entiability Theorem which aids in the determination of regularity of
solutions of elliptic partial differential equations. We will use these
results in § 7 to get strong solutions of elliptic differential equations
from weak solutions.

COROLLARY. Let A he an operator from <%f to 3%". Suppose
& is a subspace of the domain £&&, of A! such that the closure of
A' restricted to & is A!. If x is an element of £ίf satisfying

I (x, y) I ̂  constant || A!y \\

for every y e &r% Then x e 2$A.

The proof follows immediately, since the linear functional l(y) —
(x, y) can be extended boundedly over all of 3fA,% By Theorem 3.1,
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Our next result is a lemma that relates the norm of A' to the
norm of A.

Suppose A is an operator from ^f to §ί?f. We have srA

and 3rA, <ΞΞ ^ . Let y e 3(fm Then we have the following:

LEMMA 3.2. // sup | (x, y) |/|| Ax \\ is finite where the supremum
is taken over all x Φ 0 in &A, then y is in &ί±, and

(3.10) H AV H = sup l^y)J ,
\\Ax\\

where the supremum is taken over all x Φ 0 in C^A.

It follows from Theorem 3.1 that y is in ^ , . To obtain (3.10),
write x = A"1^, where 2 e <2f±-u Then

(3.11) «, 1/) i _ I (A-% y)\ __ \ (z, A'y)

\\Ax\\ \\z\\ \\z\\

Taking the supremum over all x e <^Λ, (3.10) follows from (3.11).

REMARK. Lemma 3.1 follows immediately from (3.10).

In the coming sections the formula (3.10) for ||A'2/II will be very
useful in defining negative norms in the theory of partial differential
equations. We continue with

THEOREM 3.2. Suppose A is an operator from <%? to £ίf' and
B is an operator from ^f to Sίf". Suppose further that &Λ gΞ £?B

and there is a constant M > 0 such that

(3.12) 0 < \\Bx\\ ^ M \\Ax\\

for all x Φ 0 in &Λ. Then &rBt £ 3rA, and

(3.13) \\A!v\\^M\\B'y\\

for all y Φ 0 in 3fB,.

Proof. From (3.1) we have

(3.14) I (x, y) I = I (Bx, B'y) \ £ \\ Bx \\ \\ B'y \\ .

Combining this result with (3.12), it follows that

(3.15) \(x,y)\£M\\Ax\\\\B'y\\

where xe <^Λ, ye &B,. Using Theorem 3.1 with k = M\\B'y\\, we
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h a v e &B, <Ξ &f±,. F u r t h e r m o r e , dividing b o t h sides of (3.15) by \\Ax\\
yields

(3.16)
II Ax

for all x Φ 0 in <g ,̂ y e &B,. Taking the supremum over all x e •
in (3.16) and using Lemma 3.2, we have

\\A!v\\^M\\B'v\\

for y e 2$B, and the theorem is established.

REMARK. The above theorem is also valid if the null spaces
and <yy~B are equal.

We are immediately led to the following

THEOREM 3.3. Suppose A is an operator from £έf to <%ff, B is
an operator from £{f to 3tftr. Suppose further that £?rA = £&B and
that there exists positive constants m, M such that

(3.17) m || Ax \\ ̂ \\Bx\\^M || Ax \\

for x Φ 0, x e &Λ = 3fB. Then £&Bt = &A, and

(3.18) m\\B'y\\ S \\A'y\\ ^M\\B'y\\

for y Φ 0, y e &A, = &B,.

Proof. This follows immediately from Theorem 3.2 and symmetry.

REMARK. The above theorem states that if A and B are non-
degenerate operators from Sίf to £(?' and from £ϊf to 3ίf" respectively,
then if A and B generate the same topology, A! and Bf generate the
same topology.

THEOREM 3.4. Let A and B be operators from ^f to Sίf' and
" respectively. Suppose that & s £%rΛ Π !2fB and let Ax and JSX be

the respective closures of A and B restricted to. £&. If there exist
positive constants m, M such that

(3.19) m\\Ax\\ g || 5a? || ^ Λ Γ | | A α | |

for x Φ 0 in &. Then 3fAχ = £&Bχ.

The proof follows immediately from (3.19) and the properties of
closure.
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4* Hubert Spaces associated with the operators A and A! and
related theorems* In this section we study the Hubert Spaces £ϊfA

and 3ifA, which are the Hubert Spaces associated with the operators
A and A' respectively. We then formulate some general theorems
which relate the spaces to each other. For simplicity we assume that
the null space ^/f^A of the operator A is zero. We proceed as follows:

Let A be an operator that takes <2ίf into £4f' and complete the
domain &A of A with respect to the norm

(4.1) IMLi = II As ||

for every x in the domain &A of A. Designate the Hubert Space
obtained by < ^ .

Consider the Hubert Space Hξt which is the closure of the range
of A, the norm being the natural norm in ̂ f\ Designate the Hubert
Space &A by 3(f. With (4.1) as norm in £ ^ , the operator A is a
norm-preserving map of 2?A onto &A. Define A to be the linear
extension of A to a unitary operator on έ%fA onto β(f%

In a like manner, complete &A, with respect to the norm

(4.2) l | s | L ' = IIA'sll

for every x in the domain £2rA, of Af. Designate this Hubert Space
by Sίf*. Alternatively, we can complete &A, with respect to the norm
sup(x, y)\\\ Ay || where the supremum is over all y in £&A because of

(3.10) IIA'all = sup i ϊ i λ
I Ay II

Let A' be the unitary operator which maps SίfA, onto &A,. Since
&A — &A,, the operator A! maps £ίfA, onto £ίfm We can now give
meaning to the "inner product" of an element in £$fA and an element
in £έfA,. For, if x is in £έfA, y is in ̂ g^,, define their "inner product"
as follows:

(4.3) O, y> = {Ax, A'y) .

Clearly, this is well defined and satisfies the requirements for an
"inner product". We observe that if x e £&A, y e 2&A,, then (x, yy =
(x, y), the ordinary inner product in ^f. We immediately obtain the
following theorems which are similar to those obtained by P. Lax in
[5].

THEOREM 4.1. {Generalized Schwarz Inequality.) If xe
then

(4.4)
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To prove this we use (4.3) and the ordinary Schwarz Inequality:

= \(Ax,A'y)\ S\\ Ax\\\\Άy \\

— i i χ \\A ii y l U '

The following theorem is a Representation Theorem and can be
used in order to obtain existence theory in Elliptic Partial Differential
Equations.

THEOREM 4.2. (Representation Theorem.) Every bounded linear
functional l(y) over 3(fA, can be represented as

(4.5) l(y) = <x, y>

where x e SίfA.

Proof. Since 3(fA, is a Hubert Space, we have by the Riesz-
Representation Theorem that

(4.6) l(y) = (z, y)*A,

where z e ^ ^ , . By the way we have constructed £lfA, we can choose
x e £ί?A such that Ax = Ά'z. Then

(z, y)*rA, = (A'z, A!y) = {Ax, A'y) = <», y> .

Therefore l(y) — ζx, yy where x e £ίfA and the theorem is complete.

5* An example* In this section we present an example that
will serve to illustrate some of the definitions and theorems from
preceding sections. Part of the example appears in the reference [3].

Let ^^ be the class of all real valued Lebesgue square integrable
functions x(tu t2) on the square 0 ^ t1 S π> 0 <g t2 ^ π. Then £ίf is a
Hubert Space over the real numbers with inner product given by

π Γπ

(5.1) (x, y)=\\ x(tlt
o Jo

Suppose that j&f is now the subclass of £έf having the following
properties:

( i ) x(tl912) is absolutely continuous in t± on 0 S tι ^ π for almost
all t2 on 0 ^ t2 ^ π and is absolutely continuous in t2 on 0 5Ξ t2 ^ π
for almost all tx on 0 g t± ̂  π.

(ii) The partial derivatives xh and xH which exist almost every-
where are in
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Let A be the gradient operator written Ax = grad x whose domain
£3?Λ consists of those x in s$f such that x(0, t2) = x(π, t2) = 0 for
almost all t2 on 0 ^ t2 ^ π and α ^ , 0) = #(ίj., π) = 0 for almost all tt

on 0 ^ ίi ^ π. Then A is a closed, dense operator from Sίf to < ^ '
where £(?' is the Hubert Space defined by the Cartesian product
£ίf x Sίf. The adjoint A* of A is given by

A*y = — divergence y

where divergence y is the closure of the divergence operator defined

on all those y in £ίf' of class C". Since the ranges of A and A* are

closed, A and A* are reciprocally bounded, i.e., A"1 and A' are bounded.

Observe that the operator

In order to derive integral representations for A"1 and A', consider
the functions

o
(5.2) α»»(*i, <2) = — sin mίx sin wί2

where m, n = 1, 2, 3, . These functions form a complete orthonormal
system in Sίf and are eigenfunctions of A*A — — Δ. If # is in Sίf,
then

oo

(5.3) x = ' Σ «»»»«* where α w u = (a;, a;ww)

and convergence is in the mean of order two. The vectors ymn in
whose components are

^ cos mtx sin nt2 ,

2n
y 2

m n sin mίx cos
πi/m 2 + ?ι2

form a complete orthonormal system in the range &Λ of A. Therefore
every vector 7/ in §ίff can be written as

oo

(5.5) y = V o + 2 bmnymn
l

2
m,n=l

where δm % = (y, ymn) and 2/0 is in ^ ? / ; i.e., A*ί/0 = 0.

We have
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a? °° b
Λ.X = 2~Λ ^mn^mnVmn j A y — J l i ^mra

CO ~ CO

4 ' Λ . — V __Ξt2L oy y4*l/ — V \ for

A*AX = Σ ^ Λ A » , X
m,n=l myn=l

(A*A)-1x=

Consider the following function

G(su s2, ίlf ί2)
/g rj\ 4 °° 1 .
v # ; = Σ sιnΣ s ι n m s ι s i n nsz s ί n m ^i s i R ^ ^ 9

π2 m,n=i ( m 2 + n2)

which converges uniformly and absolutely. This is the Green's function
for the negative of the Laplacian. When plausible, we use the condensed
notation s = (sl9 s2), t — (tu Q and (s, ί) == (su s2, ίi, ί2). We observe
that

(5.8) G(s, t) - G(ί, s); Gβ|(s, t) - G t |(ί, s)

for i — 1,2, whenever the derivatives exist. The derivatives are
given by the formulas

Gs (s, ί) = — Σ ~ cosmsj. sin ns« sin mt± sin nL
1 Tj-2 »,n=i ( m 2 + n2)

(5.9)

Gs (s, t) = Σ s i R m s i c o s nsz s i n m ^ i s i n n^
2 T̂  2 w,Λ=i (m2 + n2)

where the sums are taken in the mean of order two on the interval
0 ^ s ^ π , 0 ^ t i ^ π ; i = l,2. Define

K1(8,t) = G.ι(8,t) = Gtl(t,s)
{ } K2(s, t) = GS2(s, t) = Gti(t, s)

lίy = (Vu 1/2) e Sίf\ then by (5.2), (5.6), and (5.10),

(5.11) A-λy(t) - [K^S, t)yi(s)ds + ΓiΓ2(s, t)y2(s)ds
Jo Jo

for almost all t on 0 g t < π. Similarly, if y(t) = (j/^ί), 2/2(*))
', then
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= I Ktf, s)x(s)ds ,
(5.12) 1

yt(t) = K2(t, s)x(s)ds
Jo

for almost all t on 0 g t ^ π. Define

(5.13) H^(891)= Σi , *

where i, i = 1, 2. From (5.4) and (5.13) we have

4
iJ n(s ί)

f m,n=i + n2)2

H12(s, t) = — Σ
τr2 m,«=i (m2

(5.14)

cos ms1 sin fis2 cos mίj. sin nU

H12(s, t) = — Σ ^ ^ sin ms1 cos ns2 cos mt1 sin
τr2 i (m2 + w2)2

if21(s, ί) = --^ V cos mst sin ^s2 sin mtt cos ^ί2

7Γ2 «,«=i (m 2 + n 2 ) a

4 °° ^ 2

iJ 2 2( s t) = _ 2 sin mSi cos ns2 sm mίx cos nt2 .
TZ:2 »,n=i (m2 + n2)2

The i i i j (s, ί) are the Green's functions for the operator AA* given

by (5.6). We have for y(t) = (^(ί), %(«)) e

- [H12(s, t)y,(s)ds

(5.i5) : :
- H*\s, t)

Jo

We observe that the kernel functions K^s, t) and K2(s9 t) of the
operators A~1 and A' are related to the functions Hij(s, t) as follows:

GH{s, t) = Kfa t) - -Hl{(8, t) - H«(8, t)
( * } Gu(8, t) = ^ ( ί , 8) - -H*{8, t) - H%{8, t)

for i = 1, 2.
The one-dimensional analogue of the above example with A being

the differential operator d/dt follows similarly.

6. The operators Gk, G'k and negative norms. In order to
define ellipticity in terms of certain operators in Hubert Space it is
convenient at this time to define a new operator which we denote by
Gk. This operator has been introduced by M. R. Hestenes in his paper
[3]. We proceed as follows:

Let Ω be a bounded, connected, open set in Euclidean m-space
with boundary dΩ. Let a = (au a2, * ,α:M) where the at are non-
negative integers and | a \ = a^ + a2 + + a*. Define ^fk

n to be
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the class of all Lebesgue square integrable complex-valued functions
y i ( t ) w h e r e t = (tu • --,tm)eΩ;j = l, --,n;\a\£k. T h e c l a s s £fk*
with

(6.1) (y, z)s,* = ^yί(t)z%t)dt ,

where j ^ n, \ a \ ^ k as its inner product forms a Hubert Space over
the field of complex numbers. Henceforth, denote (y, z)^ι by (y, z)k

or, when clear, by {y, z). Furthermore, by yk(t) we will mean all
ya(t) such that | a \ = k.

Define the operator

= ^

where again a = (aly , am), cti are nonnegative integers and | a: | =
aL + + α w . For | a \ = 0, define jDα = I, the identity operator.

We now define a closed subspace £ ^ of J?fk

n as follows: Let &£
be the set of all x(t) of the form xj

a(t) in ^ J % such that if we set
xj(t) = xi(t), then xj

a{t) = Dax
j(t).

The subspace ^ f then consists of those functions and all their
derivatives up to order k which are in J2^\ Hence, a mapping is defined
from ^fQ

n to £fk

n which maps a function xo(t) into the set consisting
of xo(t) and all of its derivatives of order less than or equal to k.
We call this mapping Gk. The range &βk of Gk is &f% and the domain
3t&k of Gk is the projection of 2$% on ^ % . By the way we have
defined Gk, it is clear that Gk is a closed and dense linear transforma-
tion from ^fo

n to ^fk

n. The operator Gfc is one-to-one, i.e., the null
space of Gk is zero. We note that Go = J, the identity mapping.

In recent years several authors have introduced the "negative
norms" in order to deal with problems in Elliptic Partial-Differential
Equations. See, for example, the references [5] and [6],

P. Lax and M. Schechter have used the following definition for
the "negative norms." For x e C°°,

(6.2) \\x\\_k i ^ ^
12/11*

where the supremum is taken over all y e C°°. Here (x, y) denotes the
ordinary ^f-inner product and \\y\\k the Dirichlet norm

(6.3) 111/111= Σ ( \Va(t)\2dt.

Observe that

(6.4) \\Gky\\ = \ \ y \ \ k .



126 EDWARD M. LANDESMAN

The interesting relation between the "negative norms" and the operator
Gk is expressed in the following

THEOREM 6.1. || G[x || = || x ||_fc.

The proof follows immediately from Lemma 3.2.
We denote the Hubert Spaces which are the completions of the

C°°-f unctions under the Gk norm and Gk norm by £έfk and 3ίfLk

respectively.
Using the relations that we have derived between 3ίfA and 3(fA, in

§ 4 for an arbitrary operator A, we observe that for A = Gk and
A' = G'k, the range of the operator Gk, which is the subspace 2$k of
£fk

n, is in one-to-one correspondence with the elements of ^fk as well
as with the elements of 3ίf_k. Similarly, the closure of the range of
Gfc, which is also £&%, is in one-to-one correspondence with the elements
of ^fk as well as with the elements of ^f_k. The norm of the elements
in gffh and in §ίf_k is taken to be the ordinary Dirichlet norm.

Finally, we observe that the elements in 3ίfk are in one-to-one
correspondence with the elements in

7* Another definition of ellipticity* We begin by defining the
concept of ellipticity as is done most often in the literature. We do
this for systems of equations.

As before, let Ω be a bounded, connected, open set in Euclidean
m-space and denote its boundary by dΩ. For the present we will make
no assumptions on the boundary. Let t — (tl9 •••,*») denote a point
in Ω. Suppose a = (alf , am) where the a{ are nonnegative integers
and denote by | a | the sum | α | = ̂  + + am. Define

(7.1) Dax = . * ' * ' * ^ .

Here and elsewhere, unless otherwise indicated, repeated indices will
be summed on. Consider the system

(7.2) A°x =p

j = 1, . .-, w

σ = 1, ••-,? .

By the principal part of A°x will be meant

(7.3) Pσx = pls(t)Dax*{t) \a\ = k.

A is said to be elliptic if at each point t e Ω,

(7.4) pσJ{t)ξaV = 0 I α I = fc
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holds for nonnull complex numbers η = {η\ , ηn) and real numbers

£ = (£1, A, , £.) only in case £ = (0, 0, . . , 0) where

An example of the above for a system of m elliptic differential
operators with one function x(t) is the following

(7.5) Ax = Gradient x = ($L f£L , ...,J?L

Writing (7.5) out in terms of a system, we have

ΛΛ~ d% Λ2~ dx Λ- dx
(7.6) AH

Here

(7.7) Pιx = A*x i = 1, , m .

Now, the characteristic polynomials are ζlf •••,£„ and the condition
(7.4) implies that & = £2 = . . . = £m = 0, i.e., £ = (0, , 0). We
observe here that when one function x(t) is involved, it is unnecessary
to introduce the η = (η\ , ψ).

We now wish to define ellipticity in a different way than it was
defined above. We then proceed to explain the relationship between
this definition and the other. The following definition is advantageous
in the sense that it deals with the properties of operators in Hubert
Space. Cf. [3], page 1355. We begin as follows:

Let C be a bounded operator from 2$% (k > 0) to a Hubert Spape
Suppose that Bk is a closed and dense "restriction" of Gk in

= .2?*. The product Ak == CBk defines a dense linear transforma-
tion. We will say that Ak is an elliptic operator of order k if Ak is
closed.

An example of a "restriction" of Gk is the following: Suppose Bk

is defined to be Gk operating on the closure of the subclass of j£fk

n,
whose elements are continuous and have x£(t) = 0, | a | < k on the
boundary of Ω. We will see at the end of this section how this
particular "restriction" is in fact one which is essential in order to
relate this definition of ellipticity to the classical one.

Another example of Bk is the "restriction" of Gk to all those
functions which can be extended to be periodic functions on a given
period-parallelogram. We will have occasion to use this in Theorem
7.3.

The next theorem characterizes elliptic operators and can be used
as an equivalent definition for them. Cf. [3], page 1356.
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THEOREM 7.1. If Ak is a differential operator of order k such

that

(7.8) Bkx || ^ l Akx \ \x | <£ h2 \\ Bkx \

for constants hlf h2 > 0. Then there exists a bounded operator C such
that Ak — CBk and Ak is closed. Conversely, if Ak = CBk is closed,
then (7.8) is valid for every x in the domain 3ίB]i of Bk.

Proof. By (7.8), &Bh S &Ah and %yTBk S ^ k . The operator Bk

x

is bounded, since Gk

λ is. By Theorem 2.2, the operator AkBk

x is
bounded. Set C = AkBk\ Then CBk = AkB^Bk = Ak. We now show

Akxn-

and \\Ak(xn-xm)\\-+O

0

as m, ti —> oo. Therefore J 3 ^ converges to some element, say z, and
jβfc being closed, implies that

(7.12)

And so, Akx = C5&x = C«, i.e.,
Cz and from (7.9) we have

(7.13)

that Ak =

(7.9)

Then

(7.10)

as m,n—>

(7.H)

CBk is closed.

lla . - a . l

oo. By (7.8),

e 3ίA]c. Furthermore, Akxn — CBkxn

= Cz.

Therefore, Ak is closed.
Conversely, suppose Ak = CBk is closed. Consider the mapping of

the pairs {(x, Bkx)} in the product-space

(7.14) 1 0 C: {(x, Bkx)} - {(a?, Akx)} .

The operator 1 0 C is a bounded, one-to-one mapping of the subspace
{(x, Bkx)} onto the subspace {(x, Akx)}. Since A^ and Bk are closed,
{(a?, AA^)} and {(x, Bkx)} are complete metric spaces. By the Open-
Mapping Theorem, the inverse of / 0 C exists and is continuous, i.e.,
there exists a constant hx > 0 such that

(7.15)

Therefore
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(7.16) II Bkx || ^ || a? || + II Bkx \\ £ Λx[|| x || + || Akx ||] .

Furthermore,

(7.17) hJi\\ x\\ + \\ A k x | | ] = ^ [ | | x \\ + \\ CBkx \\] ^ h 2 1 | Bkx \\

where h2 = h,(l + | |C | | ) .

Combining (7.16) and (7.17), we obtain (7.8).
An immediate consequence of Theorem 7.1 is the following:

COROLLARY. If the null space of the elliptic operator Ak is zero,
then Ak and Bk generate the same topology.

Proof. Since the null space of Ak is zero, the first half of the
inequality (7.8) is equivalent to the statement

(7.18) H B ^ I I ^ M A ^ I I

for some constant hz greater than zero. Furthermore, since Ak = CBk

where C is bounded, we have

(7.19) H A ^ I I - \\CBkx\\ £K\\Bkx\\

where h4 — || C| | is greater than zero. Combining (7.18) and (7.19), we
obtain

(7.20) )| Bkx || £ h31| Akx || ^ h3h41| Bkx || .

The above corollary expresses the following important statement,
namely, that if Ak is an elliptic operator of order k whose null space
is zero, then ||Afc&|| and ||jBfcίc|| are equivalent norms where Bk is a
closed and dense restriction of Gk, and so the knowledge of Gk relays
much about the nature of Ak.

The following theorem illustrates the relationship between the
classical definition of ellipticity and the above definition. It is to be
found in the references [3] and [4]. For a proof of this theorem,
see [4] by M. R. Hestenes.

Consider the system

(7.21) A%x(t) = P'Blx(t) = p«J(t)Daχi{t)

where σ = 1, , q; j = 1, •, n; \ a \ ^ k. Suppose further that the
coefficients p5j(t) are continuous functions of t on the closure of the
m-dimensional region Ω. Then

THEOREM 7.2. Given a point teΩ, suppose there is no nonnull
set of real numbers ξ = (ξu , ίw) and no nonnull set of complex
numbers η = (η\ , rf) such that the relations
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5 - o
where σ = 1, , q; \ a | = k holds, and ξa = ς?1 ££». Suppose fur-
ther that Bk is the restriction of Gk defined on the closure of the
subclass of Sfk

n which consists of those elements which are continuous
and have Dax\t) = 0, | a | < k on the boundary of Ω. Then Ak is
elliptic (in our sense) and conversely.

Theorem 7.2 states that ellipticity in the classical sense is equiv-
alent to ellipticity in this "new" sense if Bk is restricted to those
functions whose derivatives up to order k vanish on the boundary of
Ω.

An application of the definition of ellipticity is that of gaining
strong solutions from "weak solutions" in elliptic partial differential
equations. First we need

DEFINITION 7.1. If A is an elliptic operator, then x is said to be
a weak solution of Ax = y if

(7.22) [x, A*u) = [y, u)

for every u in the domain &A* of A*.
Normally, the set {u} is not the whole domain of A* but is such

that the closure of the restriction of A* to {u} is A* itself. In appli-
cations, there usually exists a set of functions of class C°° of this type.

As an application of some of the preceding results we prove the
existence of strong solutions from weak solutions. We assume the
underlying domain is a period-parallelogram.

THEOREM 7.3. Let Ak be an elliptic operator of order k whose
null space is zero. If x is a weak solution of Akx — y, then x is in
fact a strong solution of Akx — y.

Proof. Since Ak is elliptic, Ak = CBk where C is bounded and Bk

is the restriction of Gk to those functions which can be extended to
be periodic functions defined on the period-parallelogram. Clearly,
&Λk = &Bk and &rΛ,k - 3fB,h.

Let v = Atu. By (7.22),

(7.23) I (x, A t u ) \ = \ ( χ , v ) \ = \ ( y , u ) \ = \ (y, Ar

kv) \ .

By the corollary to Theorem 7.1,

(7.24) \\Bkz\\Sm\\Akz\\SM\\Bkz\\

for constants m, M > 0. By Theorem 3.3, we have
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(7.25) \\Akv\\£m\\B'kv\\£M\\Akv\\ .

Using the Schwarz inequality, (7.23), and (7.25), we have:

(7.26) \(x,v)\£ || y || || A[v \\ £ m\\ y \\ \\ B'kv \\

for all v of the form v = Aϊu, that is, for all v e &A>k = &B>k. By

Theorem 3.1, %£ 2&Bk, that is, x is a strong solution of Akx = y.

As a more substantial application using the operators Gk and G'k,

one can get existence and regularity theory for certain classes of

partial differential equations by using the methods of P. Lax [6],

For a treatment of this, see [5].
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