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COMPLETELY RANDOM MEASURES

J. F. C. KlNGMAN

The theory of stochastic processes is concerned with random
functions defined on some parameter set. This paper is con-
cerned with the case, which occurs naturally in some practical
situations, in which the parameter set is a ^-algebra of subsets
of some space, and the random functions are all measures
on this space. Among all such random measures are
distinguished some which are called completely random, which
have the property that the values they take on disjoint subsets
are independent. A representation theorem is proved for all
completely random measures satisfying a weak finiteness condi-
tion, and as a consequence it is shown that all such measures
are necessarily purely atomic.

1. Stochastic processes X(t) whose realisation are nondecreasing
functions of a real parameter t occur in a number of applications of
probability theory. For instance, the number of events of a point
process in the interval (0, t), the 'load function' of a queue input [2],
the amount of water entering a reservoir in time t, and the local
time process in a Markov chain ([8], [7] §14), are all processes of
this type. In many applications the function X(t) enters as a convenient
way of representing a measure on the real line, the Stieltjes measure
Φ defined as the unique Borel measure for which

( 1 ) Φ(a, b] = X(b + ) - X(a + ), ( - c o < α < b< oo) .

For example, in the application to point processes, Φ(B) is just the
number of events occurring in the Borel set B. In this and other
applications, it would seem in some ways more natural to consider the
random measure Φ rather than the associated function X.

The advantage of working directly in terms of random measures
becomes more obvious when the space involved is more complicated
than the real line. For example, a point process in several dimensions,
(as considered by Bartlett [1] and others) would be difficult to work
with in terms of the analogue of X(t), but it seems easy and natural
to consider a random measure Φ such that Φ{B) is the number of
points of the process in the set B. (Such an approach is implicit in
the work of Ryll-Nardzewski [10].) Another application in which it
is reasonable to introduce a random measure is one studied by Whittle
[11], in which a model for an agricultural situation might be formul-
ated in terms of a measure Φ, with Φ(B) representing the yield from
a plot B.
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Returning now to one dimension, one of the simplest stochastic
models for the nondecreasing process X(t) is that which assumes that
X(t) has independent increments. To this model we can of course
apply the extensive theory ([3] Chapter VIII, [9] Chapter XI) of pro-
cesses with independent, but not necessarily nonnegative, increments.
This theory, however, simplifies very considerably when the increments
are required to be nonnegative, which suggests that a direct approach
might be fruitful.

In terms of the Stieltjes measure Φ associated with X by (1),
the condition that X have independent increments is just the condition
that Φ take independent values on disjoint sets. This latter condition
does not involve the special structure of the real line, and enables the
whole theory to be extended to more general spaces.

These considerations lead us to introduce the notion of a completely
random measure on a general measure space S. This is a random
measure on S with the property that the values it takes on disjoint
sets are independent. A representation theorem is obtained for the
possible distributions of Φ, and this is used to prove that a completely
random measure can be regarded as the sum of three components, one
deterministic, one concentrated on a fixed set of atoms, and one con-
centrated on a random set of atoms. Thus, except possibly for a
deterministic component, a completely random measure is purely atomic.
In case S is the real line, this reduces to known results about processes
with independent, nonnegative increments.

2> Let S be any set and @ a σ-algebra of subsets of S. To
avoid trivial complications, we assume without further comment that

( 2 ) {x} e @ f or all x e S .

By a measure on S we shall as usual mean a σ-additive function from
© into the compactified half-line R+ = [0, oo], taking the value 0 on
the empty set φ.

We shall be concerned with random measures on S, i.e., random
variables whose values are measures on S. More formally, let (Ω, g, P)
be a probability space. Then a random measure Φ defined with re-
spect to this space is a function which associates with each ω e Ω a
measure Φω on S such that, for all Ae&, the function

ω->Φω{A)

from Ω into R+ is g-measurable. In what follows, we shall suppress
all reference to the underlying probability space Ω, and write Φ(A)
for the random variable Φ. (A).

A random measure Φ will be said to be completely random if,
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for any finite collection Al9 A , , An of disjoint members of @, the
random variables Φ{AX), Φ(A2), « , Φ(An) are independent.

Let Φ be a completely random measure, and let Bu B2i , Bm

be members of @, not necessarily disjoint. Then Φ(Bj) can, for any
j , be expressed as the sum of expressions of the form

where B\ is either B{ or its complement S — Biy and these expressions
are, by hypothesis, independent of one another. It follows that the
joint distribution of Φ(Bά){j = 1, 2, , m) is determined once the dis-
tribution of Φ{A) is known for all Ae@. For this reason we shall
concentrate on the distribution of Φ{A), and the way in which it
depends on A.

3* For any t > 0, and any i e @ , define

( 3 ) xt(A) = -logE{e~ t Φ { Λ ) } ,

where 2? denotes expectation with respect to P and — log 0 — + oo.
Then clearly

( 4 )

and we have

( 5 )

( 6 )

0 g \t{A

\t(A) = 0 <=> Φ{

Xt(A) = oo « a

L) g oo ,

A) = 0 a.s. ,

>(A) = oo a.s.

(Here an expression of the form 'Z a.s/ stands for P{Z} = 1.)
If Au A,, . . . are countably many disjoint sets in @, with union

A, then

and the Φ(An) are independent and nonnegative, so that

Hence since λt(^) = 0, λ* is a measure on S. Equation (5) shows that
the measures λt (for different values of t) are mutually absolutely
continuous, while (6) shows that they are finite or infinite together.
In particular, the ideal §> of @ defined by

(7) δ = μeS;
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is independent of t, and has the alternative expression

( 8 ) § = {A e <S; P[Φ(A) < oo] > 0}

In other words, A belongs to % unless Φ(A) is almost surely infinite.
The whole discussion simplifies very considerably if we assume

that Xt is σ-finite. In view of (6), this amounts to assuming that Φ
satisfies the following condition:

<ĝ : There exists a countable collection {Cn} of sets in @ having
union S and such that

(9) P{Φ(Cn)< o o } > 0 .

Condition ^ will be assumed until § 11, where the effect of drop-
ping it will be indicated. We shall take the sets {CJ to be chosen
once for all, and we shall arrange the choice, as we clearly may, so
that they are disjoint. Certain of the constructions to be made ap-
pear to depend on the choice of {Cn}; the reader will easily verify
that this apparent dependence is illusory.

4. Let Φ be a completely random measure satisfying <g=% and let
the measures λt be as given by (3). Then, since they are mutually
absolutely continuous, they have the same set s$? of atoms;

(10) j ^ - {x e S; Xt({x}) > 0} .

In fact, (5) shows that

(11) X G J / « P[Φ({x}) > 0] > 0 ,

and we therefore call the points of s^ the fixed atoms of Φ. Because
Xt is σ-finite, the set szf is countable (and hence belongs to @).

If, for any x e j y , we write φ(x) = Φ({x}), then φ(x) is independ-
ent of the values of Φ on any collection of sets not containing x. In
particular, the random variables φ(x)(x e Ssf) are independent.

If we write

(12) Φf{A) = Φ(A Π J*O, Φi(A) - Φ(A Π (S - j * 0 ) ,

then it is clear that each of Φf and Φ1 is a completely random measure
satisfying ^ , and that Φ = Φf + Φl9 Moreover, Φf and Φλ are in-
dependent, and Φf is given by

Φf = Σ φ(x)δ, ,

where δx is the Dirac measure concentrating mass 1 at the point x.
Thus we have the following theorem.
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THEOREM 1. Let Φ be a completely random measure satisfying
<&. Then

(13) Φ = Φf+ Φl9

where
(i) Φf and Φx are independent, completely random measures

satisfying ^,
(ii) Φf is given by

(14) Φ/= Σ^<p(x)8m,

where s^f Q S is countable, and the random variables φ(x) are in-
dependent, and

(iii) Φ1 has no fixed atoms, so that, for any x e S,

(15) Φφ}) = 0 a.s.,

Thus from a completely random measure Φ, we can 'subtract off'
the fixed atomic component Φf, and we are left with a completely
random measure with no fixed atoms. For this reason we lose noth-
ing by confining attention to completely random measures without
fixed atoms, which we now do.

5* Let therefore Φ be a completely random measure satisfying
<^ and having no fixed atoms. Then each Xt is a nonatomic measure.
Let A e §, so that a = X^A) < oo. Since λx is nonatomic, it follows
from a well-known result ([5] p. 174; a special case of Lyapunov's
theorem) that, for any integer n, we can find a measurable dissection
{Anj; j = 1, 2, , n} of A for which

X1(Anj) = a/n .

Thus

E\e-Φu^\ = e~aln ,

from which,

Hence

for any OO,

P{Φ(Anj) ^
1 Λ-o/n

1 - e~c

lim max P{Φ(Anj) ^ c] = 0 ,
n-*oo j

so that the variables Φ(Anj) are uniformly asymptotically negligible.
But, for each n,
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Φ(A) = £ Φ(Anj) ,

and therefore Φ(A) must be infinitely divisible (or, in the terminology
of [9], decomposable).

Since Φ(A) is nonnegative, it follows from the Levy-Khinchin re-
presentation theorem (in the special form for nonnegative variables
given for instance, in [6]) that there exists a finite measure Γ(A, .)
on the class 33+ of Borel subsets of R+, such that, for t ^ 0,

(16) E{e-*™} = exp[- ( k(t, z)Γ(A, dz)] ,

where

(17) k(t, z) = \Ze~-l> kV> 0) = t-

In other words, when Ae$, we must have

(18) \t(A) = \ k(t, z)Γ(A, dz) .

Our next task is to examine the way in which Γ depends on A,
and to extend (18) to all i e @ .

6. Let ^ denote the class of all (finite or infinite) measures
on (R+, 95+). If μu μ2y ••• belong to Λ€, define a set function μ by

Then, for any countable dissection of E into Borel sets Em, we have

μ(E) - £ £ μΛ(EJ = £ £ μn(Em) = £ μ(Em) ,
%=1 m = 1 m = l n=l w = l

so that μe^t. Hence we can define countable sums in ^ % More-
over, it is immediate from Fubini's theorem and monotone convergence
that

(19)
m n n m

and that, for any nonnegative Borel function /,

(20) f J ( Σ ^ = Σ ( Jdμ%.
JB+ n n JR+

Now the function Γ which sends A into the measure Γ(A, •) de~
fined in the previous section is a function from % into ^ . We show
first that Γ is σ-additive, and then that it may be extended from §>
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to @ in such a way as to preserve the <7-additivity.
Let Au A2, be disjoint sets in <3 whose union A belongs to §,

so that each An necessarily belongs to S. Then, using (18) together
with the fact that xt is a measure, we have

fe(ί, z)Γ(A, <fe) = Σ ( W, *)Γ(An, dz)
R+ w=l JR +

= \ k(t, z)Γ'(A, dz) ,

where

Γ(A,dz) = ±Γ(An,dz).

Putting ί = 1 shows that Γ'(A, .) is finite. Replacing t by t + 1 and
subtracting the results (using the fact that

k(t + 1, s) - fc(ί, s) = β"ίf) ,

we get

Since this holds for all t ^ 0, it follows that Γ(A, .) = Γ'(A, .), and
hence we have proved that, if {An} is a measurable dissection of A e §,
then

(21)

For any i e @ , write

Here {Cn} is the dissection occurring in condition <g=% and the defini-
tion has meaning since A Π Cn e §. Moreover (21) shows that

Λ(A, .) = Γ(A, .)

for Ae$, so that Γx extends Γ from § to @. Again, it follows at
once from (19) that ΓΊ is σ-additive in its first argument Finally, for
any Ae&,

oo

= Σ \ +Ht, z)Γ(A Π Cn, dz)

- ( Ht, z)\jt Γ(A Π C., d
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Hence Γ1 is an extension of Γ from § to @ which preserves the
relations (18) and (21). We shall henceforth drop the suffix, and then
(18) and (21) are true for all i e ® . Notice that, because of the de-
finition of sums in ^Jέί, (21) is equivalent to

(22) Γ(A, E) = £ Γ(Ani E), (Ee®+) ,
Λ = l

so that, for fixed E, Γ(., E) is a measure on S.
Summing up these results, we obtain the following theorem.

THEOREM 2. Let Φ be a completely random measure satisfy-
ing cέ? and having no fixed atoms. Then there exists a function
Γ:& χS8+->R+ such that

( i ) for i e @ , Γ(A, .) is a measure on (Jϋ+, S5+)
(ii) for J5'GS3+, Γ(., E) is a measure on (S, @),

and (iii) for all A e @, t > 0,

(23) E {e-*φ^} = exp {- ( \ ~ e~" Γ(A, dz)\ .
I J ^ + 1 — e )

Remarks. (1) Since, for fixed ί, fc(ί, z) is bounded away from zero
and infinity, Γ(A, R+) < oo if and only if λt(<A) < ^ , i.e. if and only
if Ae$.

(2) A knowledge of Γ determines E{e~tΦU)} for all ί, and hence
determines the finite-dimensional distributions of Φ. Conversely, for
a given Φ, Γ is given uniquely by (23).

(3) Since the idea of a function of two arguments which is σ-
additive in each is perhaps unfamiliar, it may be helpful to remark
that there is a one-to-one correspondence between the class of func-
tions Γ satisfying conditions (i) and (ii) of the theorem and the
measures Γ* on the product space S x R+, given by

<24) Γ*(A x E) = Γ(A, E), (A e @, Ee 23+) .

Thus the conclusion of the theorem can be stated:
There exists a measure F * on S x R+ such that

(25) E{e-tΦU)} = exp{-1 fc(t, z)Γ*(A x dz)\ .

7. We now go on to study in more detail the function Γ which
determines (via (23)) the finite-dimensional distributions of the com-
pletely random measure Φ. We first write

(26) β(A) - Γ(A, {0});
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β is then a ^-finite measure on S. Next, for any positive integer v,
we set Iv = (1/v, 1/v — 1), and write

<27) ΔV(A, E)=\ (1 - e-y'ΓiA, dz).
JIVΠE

Then Δv is a function from @ x 33+ into i?+, σ-additive in each argu-
ment, and (since (1 — e~z)~ι is bounded on /„) ΔV(A, R+) < oo for Aeδ.
Moreover,

(28) Xt(A) = tβ(A) + Σ ( J l - β"")Λ(A, dz) .

For any zeR+, put

{29) rΛΛ Z) - Λ(A, [0, «]), πv(A) = ΔV{A, R+) .

Then πv(m, z) and τrv(.) are measures on S which are finite on 3, and
are thus σ-finite (by ^ ) , and moreover πv(., z) is absolutely continuous
with respect to 7ΓV(.). For any z in the set Q+ of finite rationals in
R+ let i^(., z) be (a version of) the Radon-Nikodym derivative of
7ΓV(., ^) with respect to ττv(.), so that

(30) π,(A, z) = \ Fv(x9 z)πv(dx), (Ae&,ze Q+) .

If z1 < z2 are rational, then πv(., zλ) Sπv(-, ^ ) , so that

for almost all x (modulo πv). Hence (since Q+ is countable) for πυ-
almost all x9 Fv(x, .) is a nondecreasing function of z e Q+. For any
z e Q+,

πv(A, z) == lim τrv(A, z + w 1 )

= lim I Fv(x, z + ^-^^

so that, for Tr^-almost all x, Fv(x, z +) = Fυ(x, z). A similar argument
shows that, for ^-almost all x,

lim Fv(x, n) = 1 .
n—>oo

Hence, by changing Fv(x, .) on a ^-null set of values of x, we can
find a function Fv: S x Q+-+R such that, for each xeS, Fυ(x, .) is
nondecreasing and right-continuous, with
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Fv(x, 0) = 0, lim Fv(x, z) = 1 ,
2—>oo

and such that (30) holds.
This function defines, for each x, a probability measure pv(x9 .)

on (Λ+, SS+) by

(31) p9(x, (zι, z2]) = Fv(x, z2) - F9(x, zj, (z, <z2e Q+) ,

which satisfies

(32) τr,(A, z) = \j>9(x, (0, z])π9(dx), (z e Q+).

Hence, by (29),

(33) J9(A, E)=[\ pv{x, dz)πv(dx), (Ae@,Ee
JΛJE

\
ΛJE

Moreover, it is clear from the way in which pΌ has been constructed
that pv(x, E) is a measurable function of x, and that

(34) pv(x, I9) = l .

Combining (28) and (33), we have

Xt(A) = tβ(A) + £ ( ( J l - e-*°)pv(x, dz)πΌ(dx)
v=l JΛJB+

= tβ(A) + Σ ( ruv(dx)\l - \ e-»p9(x, dz)] .

Hence Theorem 2 leads to the following result:

THEOREM 3. Let Φ be a completely random measure satisfying <&
and having no fixed atoms. Then there exist σ-finite measures
β, πu π2> "' o n S> and probability measures

pv(x,.)(v = l,2, . . . ;α?eS)

on R+ with pv(., E) measurable for each Ee$$+, such that, for all
t> 0,

(35) E{er*™} - exp {-tβ(A) - ± ^ [1 - p*(x, t)]πv(dx)} ,

where

(36) p*(x, t) = \ e~"pv{x, dz) .

REMARK. It may seem that we can say more about the measures
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β, 7ϋl9πi9 than that they are σ-finite, because a countable dissection
of S can be chosen on which all the measures are simultaneously
finite. Call a collection S?~ of measures on S uniformly σ-finite if
there exists a countable dissection {An} of S with μ(An) < oo for all
n and all μ e JX~. Then {β, πlf π2, •} is a uniformly σ-finite collection
of measures. However, this strengthening is only apparent, since any
countable collection of σ-finite measures is uniformly σ-finite. This
result is proved in Appendix 1.

8* If we combine Theorems 1 and 3, we see that the finite-dim-
ensional distributions of a completely random measure Φ satisfying ^
are completely described by the following characteristics :

( i ) a countable subset j^f of S (the set of fixed atoms),
(ii) for every X G J / , a probability measure q(x, .) on R + (the

distribution of φ{x)),
(iii) a nonatomic σ-finite measure β on S,
(iv) for each positive integer v, a nonatomic σ-finite measure πv

on S,
(v) for each positive integer v, and every xeS, a probability

measure pv(x, .) on R+ — {0}, with pv(., E) measurable for each Ee%$+.
In terms of these characteristics, the distribution of Φ(A) is given

by

(37) log E[e~tΦU)} =

Σ log q*(x, t) - tβ{A) - £ ( [1 - p*(χ, t)]π.(dx) ,

where

(38) q*(x, t) = \ e~tzq(x, dz) .

We now prove a result which is a converse to the theorems already
proved.

THEOREM 4. If j ^ , q, β, πVJ pv are given satisfying (i)-(v), then
there exists a completely random measure Φ satisfying ^ and having
distributions given by (37).

We prove the theorem by constructing completely random measures
Φf, Φd, Φu 02, 03, such that

(39) E{e~iφf^}= Π

(40) E{e~tΦ*U)} = e~tβU) ,

and
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(41) E{e—'«>} = exp { - j j l - p*(x, t)]π.(dx)}, v = 1, 2, ..) .

If all these measures are taken to be independent, and if

(42) Φa =

then

(43) Φ = (P, + Φd + Φo

is a completely random measure satisfying (37). Moreover, it is easily
verified (using the result of Appendix 1) that Φ satisfies <g=\

The first component Φf is obtained by taking independent random
variables φ(x)(x e sf) such that φ(x) has probability measure q(x, .),
and setting

(44) 0/ = Σ *(*)«..

Then Φf is a completely random measure satisfying (39). It is clearly
concentrated on the countable set s/ %

The second component is constructed trivially by putting

(45) Φd = β

so that Φd is purely deterministic.
To obtain Φυ (where v is a positive integer), first construct a

Poisson process Πv on S according to the measure πv (see Appendix 2).
Thus Πυ will consist of a countable number of random points of
S, the number of points in disjoint sets being independent, the
number in a set A having a Poisson distribution with mean πυ(A)
if this is finite, and otherwise being almost surely infinite. Condi-
tional on ΠV1 construct, for each x e Πv, a random variable φ(x) hav-
ing distribution pv(x,.), different φ(x) being independent. Then ele-
mentary computations show that

(46) <P = ΣΣ
χeπυ

is a completely random measure satisfying (41).
Thus the proof of the theorem is complete.
If we call two random measures equivalent if they have the same

finite-dimensional distributions, then we have proved that any comple-
tely random measure satisfying ^ is equivalent to one of the form
implied by equations (42)-(46). In particular we have the following
result.

THEOREM 5. Every completely random measure satisfying ^ is
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equivalent to the sum of two such measures, one of which is purely
deterministic and the other purely atomic.

9* If Φ is any completely random measure, then it is an
immediate consequence of the monotone convergence theorem that the
function m given by

(47) m(A) = E{Φ(A)} , (Ae@),

is a measure on S. If Φ satisfies <g% and thus has a distribution given
by (37), then

(48) m(A) = Σ ( *«(&, dz) + β(A) + Σ ( πυ(dx)\ pv(x, dz) .
SSΠA JR+ v=l JΛ JR+

Notice that, even under <g% m need not be σ-finite.
A rather more complicated set function is that given by

(49) V(A) = var {Φ(A)}f (AeS) .

Here var (X) denotes the variance of X, with var (X) = oo if
E(X2) = oo. If A and B are disjoint, the independence of Φ(A) and
Φ(B) shows that

V(A UB)= V(A) + V(B) ,

so that V is a finitely additive, but not necessarily σ-additive, set
function on S. However, it is easy to show that, if V(A) < oo f then
the restriction of V to subsets of A is σ-additive. For a discussion
of V when S = R2 we refer to [11].

There are a number of other set functions connected with Φ which
are of some interest. In particular, we leave it to the reader to verify
that

(50) λ-(A) - - log P{Φ(A) = 0}, ( 4 e S )

is a measure on S, while

(51) λo(A) = - log P{Φ(A) = oo} , (Ae&)

defines a finitely additive, but not in general σ-additive, set function
on S.

10* In the decomposition (43) of a completely random measure
satisfying <g% the fixed atomic component Φf and the deterministic
component Φd are relatively uninteresting, and we therefore concen-
trate attention on the third component Φo, which we call the
ordinary component of Φ. This is a purely atomic measure, and its
atoms form the superposition
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(52) Π = Q Πv
v=l

of the independent Poisson processes Πυ. Notice that, since the me-
asures πυ are nonatomic, the sets Πv are almost certainly disjoint.

Because a superposition of independent Poisson processes is itself
a Poisson process, it follows that the atoms of Φo follow a Poisson
process corresponding to the measure

(53) π = X πv .
lv-l

This last measure is not necessarily cr-finite. It is this fact that
necessitates the awkward splitting of Φo into its components

11. All the above analysis has been carried out using the condi-
tion ^ and it is worthwhile noting the points at which this condition
enters the argument. If it is not assumed, the measures \t can still
be defined by (3), but they no longer need be σ-finite. Thus, if σ§>
is the (/-ideal generated by % (the class of countable unions of sets in
3), σ§> may be a proper sub-σ-ideal of @.

The first application of <& occurs in § 4, where it is used to
establish the countability of the set s^f of fixed atoms. If ^ is not
assumed, j ^ may be uncountable, and indeed nonmeasurable. When
this is so, there is no obvious way of 'splitting off' the fixed atomic
component as is done in Theorem 1.

The analysis of Theorem 2 goes through, as long as we restrict
attention to sets in σ%. Thus Γ is defined for Ae%, and then ex-
tended as in § 6 to σ%. If we then set

(54) Γ(A, E) = oo, (A e σ8, E Φ ψ) ,

(23) is valid for all i e 6 .
The argument of §7, in which the structure of Γ is examined

in detail, relies heavily on the Radon-Nikodym theorem, and so requires
some sort of σ-finiteness restriction. The condition & seems to be the
simplest such restriction. Whether Theorem 5 is true if c^ is not
assumed I do not know.

Since cέ? is, in a sense, a condition of σ-finiteness on the com-
pletely random measure Φ, it is worth asking what relation it bears
to the more obvious condition,

cg"\ Φω is σ-finite for almost all ωe Ω .

The trivial example in which S has just one point s and
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0 < P{Φ({S}) = 00} < 1

shows that <g> does not imply <jg". It is also true that <g" does not
imply <g*; in fact it is possible to construct a completely random
measure Φ on the Borel subsets of R with the following properties
(m denoting Lebesgue measure):

( i ) Φω is σ-finite for all ω,
(ii) if m{A) > 0, then Φ(A) = co a.s.,
(ill) if m(A) = 0, then <P(A) = 0 a.s.

In this case 3 (and so also σ§) consists of the sets of Lebesgue me-
asure zero and so ^ is not satisfied. The details of the construction
are given in Appendix 3; the result shows the depth of pathology
which can be reached if ^ is not assumed.

Appendix 1* Uniform σ-finiteness. The concept of a uniformly
σ-finite collection of measures was defined in §7. It is trivial that
the members of such a collection must each be σ-finite, and that a
finite collection of σ-finite measures is uniformly σ-finite. Less trivial
is the corresponding result for countable collections, which is a coroll-
ary of the following theorem, which is itself related to a result of
Feldman ([4], Theorem 7.4).

THEOREM 6. If μu μ2j are σ-finite measures on a space (S, @),
there exist strictly positive numbers cu cif such that 2Γ=i cnμn is
σ-finite.

Proof. Since μn is σ-finite, it is dominated by a probability me-
asure λn, and so by the probability measure

oo

— / l " ι\>n

Hence, for some finite nonnegative function /Λ,

μn(dx) = fn{x)X(dx) .

As α—> oo, X{x;fn(x) > a}—»0, and hence we can choose an so that, if
A = {x; fn(x) > an}, then X(An) < 2~n. We now write

cn = 2~na~\ μ = £ onμn

it suffices to prove that μ is σ-finite.
If

Bn = U Ak (n = 0 , 1 , 2 , . . . ) ,
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then

Σ X(Ak) < Σ 2~k = 2~n ,
k=n+l k=n+l

and therefore, if

we have λ(βoo) = 0.
Hence μn{BJ) = 0 for all n, and so μiB^) = 0, and it suffices to

prove that μ is σ-finite on S — B^. Now

S - JBo. = 0 ( Λ - 5.)

(Λ> = S) and it thus suffices to prove that μ is σ-finite on An — Bn.
To do this, write

CO

ft — n u -U /* ft -L. . . . -i- /» n J_ ^ /» //
r=n+l

On the right hand side the first n terms are σ-finite on An — Bn, and
it suffices to show that the last is also σ-finite. It is in fact totally
fiaite on An — Bn, since

f Σ crμr)(An - B%)= Σ cr\ fr(x)Mdx)

Γ
= Σ cr \ ar\(dx)

r=n+l jΛn~Bn

oo

= Σ erar = 2~% <C oo .

This completes the proof.

COROLLARY. There exists a countable dissection {Am} of S with
μn(Am) < oo for all m, n.

Proof. Take a dissection {Am} with μ(Am) < oo. Then

< ^ oo

Appendix 2. The construction of Poisson processes. By a
Poisson process on an abstract space S we mean a random set of points
with the property that the numbers of points in disjoint sets are in-
dependent Poisson variates. More precisely, let (S, @, μ) be a measure
space, let Π be a random subset of S and let

(55)
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(Here, for any set B,%B denotes the number of points in B if B is
finite, and +00 if B is infinite.) Then we say that Π is a Poisson
process with measure μ if

( i ) whenever Au A2y , An are disjoint numbers of @,

are independent,
(ii) if μ(A) < 001 then N(A) has a Poisson distribution with mean

μ(A),
(iii) if μ(A) = oof then N(A) = 00 a.s.

Thus, in the terminology of this paper, Π is a Poisson process with
measure μ if and only if N is a completely random measure with (in
the notation of §3)

(56) Xt(A) =

It is far from obvious that, given a space (S, @, μ), there does
exist a Poisson process as described above. The object of this appendix,
which is the outcome of discussions with Professor D. G. Kendall, is
to show how, under suitable conditions, such a process can be con-
structed.

We first remark that, for a Poisson process to exist, μ must be
nonatomic. For, if x e S has μ{x} = a > 0, we have

P{N({x}) S 1} = e~a + ae~a < 1 ,

which contradicts the obvious fact that

) = # ({x} Π Π ) £ 1 .

It is, of course, possible to modify our definition to avoid this difficulty,
but this seems hardly worthwhile, and we shall be content to assume
that μ is nonatomic.

The obvious way to proceed to the construction of Π is as follows.
As in §2, the assumption that N is a completely random measure
satisfying (56) leads to a consistent family of finite-dimensional dis-
tributions for the stochastic process

{N(A);Ae&}.

Hence, by the Daniell-Kolmogorov theorem, there does exist a stochastic
process with these finite-dimensional distributions. In particular, N
is almost surely a finitely-additive, integer-valued set function satisfy-
ing (i)-(iii). The theorem is not, however, sufficiently strong to ensure
that N is σ-additive. Kendall (private communication) has shown how
this sort of difficulty may be avoided by powerful general methods,
but in the simple case of a Poisson process it is possible to proceed
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in a more elementary way. To do this we need to make a restriction
on the measure μ (apart from nonatomicity), and the result is given
in the following theorem.

THEOREM 7. Let (S, @, μ) be a nonatomic measure space, and
suppose that μ can be expressed as the sum of a countable number
of σ-finite measures. Then there exists a Poisson process Π on S
with measure μ and Π is almost certainly countable.

Proof. Consider first the case in which μ is totally finite, and
write a = μ(S). Choose independent random variables Xl9 X2, , N,
where

(i) Xn takes values in S, and has distribution given by the
measure a~~λμ, and

(ii) N has a Poisson distribution with mean a.
Write

Π — {Xu Xu , XN} .

Then elementary (if tedious) computations show that Π is a Poisson
process with measure μ. Clearly Π is almost certainly finite.

Now suppose that μ is σ-finite. Then we can find finite measures
μu μ*, such that μ = Σμό. Construct, as in the previous paragraph
Poisson processes Π3 on (S, @, μ3), and do this so that the Π3 are in-
dependent. Then easily

π = \jπJ
3

is a Poisson process with measure μ, and is almost surely countable.
An exactly similar argument extends the result to countable

sums of σ-finite measures, and preserves the countability of Π. Hence
the theorem is proved.

The Poisson processes discussed in §8 all correspond to measures
which satisfy the conditions of Theorem 7, and hence the argument
of that section is completed.

It is perhaps worth stressing that the Poisson process Π can be
countable even when the underlying measure μ is not σ-finite.

Appendix 3. A pathological example. The object of this appendix
is to give details of the completely random measure referred to at the
end of § 11. This was a measure Φ — Φ. On (R, @) with

( i ) Φω σ-finite f or-all ω,
(ii) Φ(A) = oo a.s. whenever A has positive Lebesgue measure
),
(iii) Φ(A) = 0 a.s. whenever A has zero Lebesgue measure.
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Because the distribution of Φ(A) is degenerate, this random measure
is in fact completely random.

Take the probability space Ω to be the unit interval, and P to be
Lebesgue measure on its Lebesgue subsets. Then define a random
measure Φ on (R, S3) by

(57) Φω(A) = %[Af)(ω + Q)], (A e 33).

In other words, Φω is counting measure on the translate (ω + Q) of
the rationale, and is thus o -finite.

If XΛ is the characteristic function of A, then

(58) Φω(A) = Σ XΛ(CO + r) .
req

showing that Φω(A) is a measurable function of ω. If m(A) = 0,

for almost all ω, and so Φ(A) = 0 a.s. Hence Φ is a random measure
satisfying (i) and (iii), and it remains only to prove (ii).

Thus let A have m(A) > 0. Then there exists r e Q with

m{A Π (r, r + 1)} > 0 ,

and, from (58), for any integers n, q,

ΦJLA) ^ txΛ<o + r + k/q) .

As q—>oo, the right hand side converges in !/(£?), and hence in
measure, to

n

v Ύ Afo + r) = wχ4(ω + r) .Σ
Hence

P{Φω(A) ^n}^ p\± XA(O> + T + k/q) ̂  n\
U=l J

-»P{nXjffi> + r) ^ Λ} (q

= P{ω + r 6 A}

= P{ω e A - r}

= m{(0, 1) n (A - r)}

= m{A Π (r, r + 1)},

and letting n —»• co

= 00} ^ m{A n (r, r + 1)} > 0 .
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Now let E be the set of ω for which Φω(A) = <χ>, so that m(E) > 0.
From the definition of Φ it is clear that

ωeE, reQ, ω + r e (0, l)=*ω + reE.

Hence, if G(x) = m{E n (0, a?]}, (0 < x < 1), we have

G(x + r) - G(rϊ = G(a), ( 0 < x < x + r < l , r e Q ) .

Since G is right-continuous,

G(x + y) = G(x) + G(y)

for all α?, 2/ > 0, a? + 2/ < 1, and hence

G(x) = xG(l) =

Thus, for almost all x e (0, 1),

χE(x) = G'(») -

and since χ^ =0 or 1 and m(E) > 0 it follows that m(J?) = 1. Thus

P{Φω(A) = ^} = ME) = 1 ,

and the proof of (ii) is complete.
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