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THE DESCRIPTIVE APPROACH TO THE DERIVATIVE
OF A SET FUNCTION WITH RESPECT

TO A ^-LATTICE

S. JOHANSEN

This paper contains a definition and a construction of a
Radon-Nikodym derivative of a <r-additive set function with
respect to a measure on a ^-lattice, that is, a family of sets
closed under countable unions and countable intersections.
This derivative is characterized in terms of its indefinite
integral, and it is shown how the conditional expectation of
an integrable random variable with respect to a <7-lattice, as
defined by Brunk, can be obtained as a Radon-Nikodym
derivative of the set function determined by the indefinite
integral of the random variable.

The so-called descriptive approach to the theory of Radon-Nikodym
derivatives tells us that if φ is a finite σ-additive set function defined
on a σ-field jzf and if μ is a positive measure, then there exists an j ^
measurable function / such that for all B e szf and C e s^f we have

φ(B Π [/ < a]) ^ aμ(B Π [/ < α]) , aeR ,

a n d

φ(C ΓΊ [/ > b]) ^ bμ(C n [/ > b]) , beR .

The inequalities easily imply that the function is unique and finite μ
almost surely.

It turns out that if ^// is a σ-lattice, and if φ is a finite σ-additive
set function defined on sets of the form B Π C, Be ^f/, Ce ^/fc

7 then
exactly the same construction can be used to give a function, which
is ^f measurable and satisfies the two inequalities above with ΰ e ^ /
and C e . / # c = { i | A c e ^ f } . The main fact we need is, that the
Hahn decomposition remains valid for the set function φ. This was
remarked already in [3], where a similar idea was used to discuss the
conditional expectation on ^-dimensional euclidian space. By means of
this approach it is easy to obtain a proof of the (closed) martingale
convergence theorem for σ-lattices and to identify the limit function;
in fact the proof by Andersen and Jessen [l] can be applied without
any change. See also [2] and [5].

1Φ The H a h n decomposition• Let Ω be an abstract space, and
let j ^ be a σ-field of subsets of Ω. Let ^ t be a σ-lattice of sets from

; such that 0 G ̂ T, Ω e ΛZ. Define j r = {A:A = BnC,Be ^ y
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C e ^fc}. Let v be a σ-additive set function defined on jβt~ with values
in [—00, +00].

A set Bz^/ί is called positive, if for all Cz.^£c, we have
v(B n C) ^ 0. A set Ce ^£c is called negative if for all ΰ e ^ / f we
have v{B n C) <£ 0. Let ^ be the family of positive sets and let ^y*
be the family of negative sets, then 0 e Λ^ Π &*, and ^ and ^/^ are
closed under countable unions. A set CQ e ^Γ is called minimal if vCQ =
mΐσe^vC and Boe^f is called maximal if vB0 = sup£ 6^ vB. It is
easily seen that there exists as well minimal as maximal sets. We
now need the following theorem.

THEOREM 1. If v < +co and if A is a maximal set then Ac is
negative, and in fact minimal.

COROLLARY (Jordan-Hahn decomposition). There exists a maxi-
mal set A+ G ̂  and a minimal set A~ e ^fc such that A~ = (A+)c

and

v(A+ f]C) ^ 0 ,

v(A~Γ)B) ^ 0 ,

Proof of Theorem 1. The proof which is given here follows in
details the proof given in Halmos [4] (p. 122), for the ordinary Hahn
decomposition. Let A be a maximal set, then v(A) < + co and we
assume that Ac is not in ^y. Then there exists a set Boe ^// such
that v(Ac Π Bo) > 0. There must be sets C e ^ c such that
v(Ac Π Bo π C) < 0, since otherwise A[J Bo would be e & and have
measure larger than A. Let therefore kL be the smallest integer such
that there exists C,e ^£c with the property v(Ac f] BQΓ\ Q ^ —l/klm

Having defined Ci9 and B{ = C\ i — 1, , n — 1, we still have

v{Ac n B0 n B1 n n B , J > o ,

but again we can find the smallest integer kn such that there exists
Cn with the property v{Ac Π Bo Π B1 n ΓΊ ̂ _ ! Π Cw) ^ -1/ΛΛ. In
this way we construct an infinite sequence Cn, n ^ 1.

From

Λ ϋ) nβπ^n n sn-1 n cj

Σ -VK
l

we get that kn-+oo. Let F = Π«= o-B«- To show that F U A is
positive we evaluate for Ce ^ Γ c



THE DESCRIPTIVE APPROACH TO THE DERIVATIVE 51

v((F u A) n C) = v(A n C) + v(Ac n F n C),

but v(A flQ^O and

v(Ac Π F n C) = lim I/AC n C n f i 5,) is lim (-l/(&» - 1)) = 0 .

Finally

nF) = J/A ns.nf|5») = v(Acns0) -

which implies that A\j F e ^ and v(A I) F) > v(A), contradicting the
maximality of A. Hence it is established that Ac e ^ί^ and it is easily
seen that Ac is minimal.

2* The derivative* Let there be given a set function φ on
such that φ is finite, cp is cr-additive and such that φ(C) ^ 0 , C e ^/fc.
Let // be a measure on ^ , i.e. /ί(A) ^ 0 , i e J ^ , /̂  cr-additive.

For each ae R let vα = φ — aμ. Then we have for a > 0 that
— oo ^ v t t < + CXD ? and if we define a positive maximal set A* then
A~ ~ {AiY is negative for va by Theorem 1. If α ^ 0 we can choose
At = Ω, A~ = 0 . Now define a function / in the following way:

f(ω) = sup {r I r rational, ω e At) .

Clearly / is defined on all of Ω and / ^ 0. Further [/ > α] =
Ur>α A+ if α ^ 0 and [/ > a] = Ω if a < 0, which proves that / is
measurable ^//.

The sets At are not in general decreasing in a but we could choose
them to be as the following proposition shows:

PROPOSITION 1. For all a the set [/ > a] is a positive set for va,
while for a Φ 0 it is maximal.

Proof. For a < 0 the assertions are trivial. Let a ^ 0, then for
r > ay Ar is positive for va, since

vα(A+ n C) ̂  vr(Ar

+ n C) ̂  o , C e ^ c .

But the system of positive sets is closed under countable unions,
which proves the first statement.

Now let a > 0, to see that [/ > a] — \Jr>aAϊ is maximal, we
first compare U?=i At. with A+n, where r t is an enumeration of the
rationale greater than a and qn = m i n ^ ^ r { J α for w —> oo. From the
inequality

o ̂  vr|(i4+ n o ^ 1 (̂4!; n < ) ^ o
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we get, t h a t μ(A+. Π A~J = 0 i = l , ,w, and hence t h a t

Therefore

o ̂  V.(JJ A- n A-) = ̂ ( J J A- n A-) ̂  o

which yields

(1) va{At) =

We now compare A%n with AJ as follows:

( 2) 0 =S yϊκ(Ar Π AtJ :£ vβ(Ar Π A+J ^ 0

and 0 fS vα(Aί) which implies that

μ(Ai Π A-) ^ //(Aί) ^ i - φ(Ao

+) = c < oo .
(X

Finally we have

^0 /
0 ^ yα(A+ Π A-) = v J A + Π A-J + (gn - α)^(Λ+ Π

Combining the evaluations (1), (2) and (3) we get

Letting n—> oo we get, that gft J α and

va{Ai) = vα(u Λ+) = vα[/ > α] ,
\r>a /

which proves that [/ > a] is not only positive but also maximal for

DEFINITION 1. If φ is a finite σ-additive set function on j ^ ~ and
if μ is a measure on ^ 7 then we call / a derivative of φ with respect
to μ on ^/ί if / is an extended real valued function defined on Ω, and
if

(1) / measurable ^f,
( 2 ) φ(Bf][f < b]) ^ bμ(B Π[f< δ ] ) , B € ^ T , δ 6 22,

( 3 ) φ ( C n [ / > α]) ^ α^(C Π [/ > α]), Ce ,///% aeR.

THEOREM 2. If φ is a finite σ-additive set function defined on
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and if μ is a measure on j^~, then there exists a derivative f of
φ with respect to μ on ^//. Any derivative is finite μ almost surely,
and if g and h are two derivatives then μ[h < a < b < g] = 0, i.e.
if μ is defined on sf then μ[h Φ g] = 0.

Proof. According to Theorem 1 we can find a maximal set At
and a minimal set A^ such that A^ = (A£)c. We define φ+ and μ+ as
the contraction of φ and μ to At, and we define φ~ and μ~ as the
contraction of — φ and μ to A^. Then we can construct a function
/ + defined on A£, and measurable ^// by means of φ+ and μ+ as
indicated in the beginning of this section. We also construct /~ from
φ~ and μ~~ such that /~ is defined on A^ and measurable ^ή?c.

Now define / as follows:

Ύ , ί f^co) , ω e At ,

{-f-(ω) , ωeAo.

We then have

r f > α l \
U 0

+ U [ / - < - α l , α < 0 ,

which proves that / is measurable ^//.
To prove (2) and (3) of Definition 1, we remark that for a ^ 0

we have [/ > a] = [/+ > a] which by Proposition 1 is positive for
φ+ — aμ+, hence

φ(C Π [/ > a]) = φ+(C Π [/+ > a]) ^ aμ+(C Π [/+ > a])

= aμ(C Π [/ > a]) .

For a > 0, we have that [/ > a] = \f+ > a] is maximal for φ+ — aμ+

and then by Theorem 1 [/+ ^ a] is negative for <p+ — aμ+, hence

φ(B ΓΊ [/ ^ a]) = 9?(5 Π Λ") + ?>(£ Π Λ+ n [/+ ^ α])

^ φ+(β Π [/+ ^ α]) ̂  aμ+(B n [/+ ^ α])

Π Λ+ Π [/ ^ α]) ̂  α/i(ΰ Π [/ ^ α]) .

For α I 6 we get (2) for b > 0. Similarly we prove (2) for b ̂  0 and
(3) for a < 0, by means of the properties of / " . This proves the
existence of a derivative. To see, that any derivative is finite we
note, that for a > 0 we have

aμ[\f\ > a] ̂  φ[f > a] - <p[/ < -α] rg ^(Λ+)

and for a —> co we get the result.
Finally, let Λ and g be any two derivatives, then
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bμ[h <a<b<g]^φ[h<a<b<g]^ aμ[h < a < 6 < g] ,

which implies, that all terms are 0.
The following theorem relates the function φ to the indefinite

integral of its derivative. Let φc, φt and φ~ be defined as follows:

φc(A) = 9>(An[-°o </<0]) + φ(AΠ[0<f<+oo])9

φt(A) =φ(AΠ[f= +co]) ,

φ7(A) = -φ(AΠ[f= - - ] ) ,

THEOREM 3. If f is a derivative of φ with respect to μ on
where μ is a measure on Jϊf, then f is integrable and

(1) φc(C)^ \ fdμ,Ce^f%
Jo

( 2 ) <?.(£) 2>[ fdμ,B&^/S,

( 3 ) φe[a < / < & ] = [ fdμ, aeR,beR,

(4) φt(C)^0,Ce^fc,

Proof. Define for k ̂  0, p < 1 and b > 0 Ak = [bpk+1 ^ / < bp%
Then

λc n io < / < &]) = Σ <p(C n Λ) ̂  Σ ̂ ^ ( C n
A;=0 /c = 0

^ |0 Σ ( fμ p\
k = 0 JOΠΛk JCn[0</<6]

For jθ I 1 we get

( 4 ) φc(Cn[0<f<b])^ \ fdμ.
Jσn[o</<δi

In the same way we prove

(5) ^ ( C n H < / < 0 ] ) ^ ( fdμ ,

( 6) φc(B Π [0 < / < b]) ̂  \ fdμ,

(7) φc(BΓ\[-b<f<0])£ \ fdμ.

From these inequalities follows the integrability of /, and the
assertions (1), (2) and (3) of the theorem.

Finally we have

φ(C ΓΊ [/ > a]) ^ aμ(C Π [/ > a]) ^ 0 , a > 0 ,
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and

φ(B Π [/ < -a]) ^ -aμ(B Π [/ < -a]) g 0 , a > 0 ,

and for a—* oo we get (4).
Notice, that nothing is said about φ on the set [/ = 0], so that

the 4 results will not characterize the derivative. (/ =Ξ 0 will always
satisfy (1) — (4).) If however // < +co5 then Theorem 4 below tells
us, that φ(B Π [/ = 0]) ^ 0, B e ^ f and φ(C Π [/ = 0]) ^ 0, Ce^%
hence we can replace φc of Theorem 3 by φ contracted to the set
[|/l < +°°] I n this case it is easily seen that if / is integrable
then (1) through (4) implies (2) and (3) of Definition 1, so that we
can characterize the derivative in terms of its indefinite integral.

THEOREM 4. // μ < + oo we can characterize a derivative of φ
with respect to μ on ^ as a function f defined on Ω such that

(1) / measurable ^€,
(2) φ(B Γ) [f ^ a]) ^ aμ(Bf][f^ α]), Be ^f, ae R,
( 3 ) φ(CΠ[f^ b]) ̂  bμ(C n [/ ^ 6]), C e Λ \ b G R.

Proof. We just apply facts of the type

[f>a\Uf^b]9 a } b

and

1/ 2: α] ΐ [/ > 61 , o I 6 .

3* The minimizing property of the derivative* We want to
prove, that the derivative constructed here has the minimizing property,
which Brunk has used as the definition. Let therefore X be a real

valued measurable function on (Ω, jzf, μ), such that I | X\ dμ < +oo.

Define φ as φ(A) — \ Xdμ, A e J ^ We can now apply the preceding

theorems to the setup (Ω, J^ μ, φ). We denote a derivative of ψ with
respect to μ on ^ by E(X \ ̂ /£), which we shall call the conditional
expectation of X given ^f/. Notice, that μ dominates φ, so that
any ^// measurable function, which is μ almost surely equal to a
derivative, is itself a derivative. It is natural in this case to denote
by E(X I ̂ ήf) the /*-equivalence class which contains the derivative
defined earlier. We have thus defined the conditional expectation as
a projection in L1 — L^Ω, s$f, μ). We want to prove the following theorem
(see Brunk [2], Theorem 3.1.)

THEOREM 5. If XeL.n L2(Ω, j ^ ; μ), then Y = E(X \ j f ) is an
-measurable function defined on Ω which is characterized by the



56 S. JOHANSEN

following conditions:
(1)

( 2 ) [xZdμ <; ί ΓZdμ, Z measurable *̂f, Z e Lλ Π I/2,

( 3 ) (XZdμ ^ ί ΓZdμ, Z measurable „-#% ZeL.Π L2,

(4) [xYdμ =
J J

Furthermore Y minimizes the expression \(X — Zfdμ among all

Z e L1O L2 which are measurable ^//.

Proof. It is easily seen by writing Z — Z+ — Z~, that it is
enough to prove (2) and (3) for Z ^ 0. It is also enough to prove
the theorem for φ such that φ(C) ̂  0, Ce „/?% that is for Y ^ 0.

It follows from Theorem 3 that Ye L1# Hence if Xe L2, we have
Y2 - E(X2\^/f)eL1.

We now prove that

(8) μ[Y>> ΓJ = 0 .

This inequality clearly implies, that YeLz. To prove (8) it is enough
to see, that for all a ^ 0 and b ̂  0 the set A = [Y > a > b > l/TΓ]
has μ measure 0. We have from the definition of Y and Y2, that
[Y>a]e^ef and [l/TΓ < b] = [Y2 < b2] e ̂ c . Hence

ί Xdμ ^ aμ(A) ,

and

1 X2dμ ^ b2μ(A) .
JA

But we also have

G Xdμ) ^ I X2dμ \ ldμ — \ J
A J JA JA JA

which imply, that μ(A) = 0.
Now let Z ^ 0, Ze Lλ Π L2, and Z measurable Λ£ m For a > 1

we define

CO

^ α — /•_! 6̂6 — a )i yzj ^> a j .

We have Zα ̂  Z ^ αZα and | Za - Z | ^ ( Z \ (1 - 1/α). Applying the
definition of Y we easily get

1 XZΛβ < δ\ ZAu < β e ^ f , beR.adμ g δί
J
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For α 1 1 we obtain

<9) ( XZdμ^bl Zdμ , B e . , / , beR.

Since both terms are finite we can let 6 j 0 and we get for B ~
[ Γ ^ O ] , that

(10) ( XZdμ ^ 0 .
J [Γ=0]

If we choose p > 1, b = ρn+\ B = [ F ̂  |OΛ], then we get from (9)
that

(11) ( XZdμ ^ (
J[F>0] J[F>0]

Now (10) and (11) implies (2), and (3) is proved analogously.
From Theorem 3 we get, that

( Xdμ = [ Ydμ .
J ίPn^Y<pn+ί] )lPn<Y<Pn+ιΊ

By multiplication with pn and summation over n we get for p [ I
that (4) holds.

The last assertion now follows from

(12) [(X -Zfdμ = [(X - Yfdμ

F - Zfdμ

since

[(X - Y){Y - Z)dμ = ~\(χ ~ Y)Zdμ ^ 0 .

Further let Zγ be any ^£ measurable function satisfying (1)

through (4) of Theorem 5, then Zγ minimizes \(X — Zfdμ and from

(12) we get for Z = Zu that Z, = E(X \ ̂ T ) and, hence, that the
conditions of Theorem 5 actually characterize E(X \
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