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BIORTHOGONAL POLYNOMIALS SUGGESTED
BY THE LAGUERRE POLYNOMIALS

JOSEPH D. E. KONHAUSER

Let Yc

n(x\ k) and Z°n(x\ k), n = 0,1, , be polynomials of
degree n in x and xk, respectively, where x is real, & is a
positive integer and c > — 1, such that

c -xVcί . η\ k j fθ for i = 0,1, , n — 1

and

(2) fVβ-iJita fc^da, fa (0 f« i = 0,1, , » - 1
Jo Inot 0 for % = n .

For fe = 1, conditions (1) and (2) reduce to the orthogonality
requirement satisfied by the generalized Laguerre polynomials.

If (1) and (2) hold, then

mxiBί0^^^0'1^''^^^^
[not 0 for ^ = j

and conversely.
For both sets of polynomials, we shall establish mixed

recurrence relations from which we shall derive differential
equations of order k + 1. From these mixed recurrence rela-
tions pure recurrence relations connecting k + 2 successive
polynomials can also be obtained. For k = 1, the recurrence
relations and the differential equations for both of the poly-
nomial sets reduce to those for the generalized Laguerre
polynomials.

For k = 2, the recurrence relations and differential equations are
essentially those for polynomials introduced in 1951 by L. Spencer and
U. Fano [5] in a paper dealing with the penetration of matter by
gamma rays. For the polynomials in x2, Spencer and Fano gave
formulas, derived mixed recurrence relations, and presented a third-
order differential equation of the form

( 3 ) A(xW:f + B(x)y': + C(x)y'n = Xnyn ,

where A(x), B(x), C(x) are functions of x independent of n and Xn is
a parameter independent of x. In 1958, S. Preiser [2] showed that,
apart from real linear transformations, only for the case k = 2, and
only for the weight function xΰe~x, c > — 1, do there exist biorthogonal
polynomials in xk satisfying a third-order differential equation of the
type (3) and such that the polynomials in x satisfy the adjoint of (3).
For each set of polynomials for the case k = 2, Preiser [2, 3] established
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pure recurrence relations connecting four successive polynomials, as
well as several mixed recurrence relations. He also gave a generating
function for the polynomials in x2.

In 1965, Jβ D. E. Konhauser [1] considered biorthogonal polynomials
in real polynomials τ(x) and s(x). He discussed properties which are
analogues of properties of orthogonal polynomials. Included were
necessary and sufficient conditions for the existence of biorthogonal
polynomials, sufficient conditions which ensure the existence of pure
recurrence relations, and information on the number and location of
the real zeros of the polynomials.

II. THE POLYNOMIALS IN xk

!• Biorthogonality* The generalized Laguerre polynomials [4],
which may be written

satisfy the orthogonality condition

fθ,i = 0,1,
xce~xLc

n(x)xιdx = .
0, i = n .

Expression (4) and the results of Preiser [2, 3] for the case k — 2
suggest that we investigate the candidacy of the polynomials

(5) nv ' ' nl ^ ->\j)r(kj + c + l)

as members of one set of a biorthogonal pair.
In (2), we replace ZG

n{x\ k) by the right side of (5), then carry
out the permissible interchange of summation and integration to obtain

Γ(kn + c
nl

Γ(kn

Γ(kn

JL \IV IV

Γ(kn

+ 1) ^ (

+ c + 1)
nl

nl

nl

. (n\Γ(kj
'{jj

ιχc+i±(-iyίn)χki

j=0 \j

nl
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which is zero for ί = 0,1, , n — 1, but is different from zero for
i = n. Therefore, the polynomials (5) do satisfy orthogonality condi-
tion (2).

Before determining the other polynomial set of the biorthogonal
pair, we shall establish several relation ships satisfied by the polynomials
in x\

2* Mixed recurrence relations* We shall find it convenient to
introduce the factorial function defined by

(α)0 = 1, a 0;

(a)k = Π (a + j - 1) - Γ(a + k)/Γ(a), a Φ 0,
3=1

k ^ 1 .

The first recurrence relation we shall establish is

( 6 ) xDZc

n(x; k) = nkZc

n(x; k) - k(kn - k + c + l^Z^x; k) ,

which is suggested by, and, for k = 1, reduces to a well-known
recurrence relation for the Laguerre polynomials [4].

Considering the difference

( 7 ) nkZc

n(x; k) — k(kn — k + c +

and using (5), we obtain

(n- 1)! Ih }\j Γ(kj + c

^(x; k) ,

_ A:Γ(A:̂  + c + 1) ^

which may be written

£Γ(to + c + 1) »

establishing (6).
Alternatively, we may write (7) as

kxkΓ(k[n - 11 + [c + fc] + 1) - ./w - 1

(n-l)l h{~
_kxkΓ(k[n - 1] + [c + fc] + 1)

(n - 1)!

n ~ 1\

n — 1 γkj

Γ(kj + c + 1) '

x Σ (-I)''!
3=0 \ 3 + [c
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which, together with the preceding result, gives the relation

( 8 ) DZe

n(x; k) = -Jcx^ZϊLiix; k) ,

connecting polynomials corresponding to c and c + k. For k = 1, (8)
also reduces to a well-known relation for the generalized Laguerre
polynomials [4].

3* Differential equation* Still another way of writing the
difference (7) is

kΓjkn+ c + l)£{_ iy(n-l\ tί , which, in virtue of
(n - 1)1 &y \j-lj Γ^k3 + c + 1)

(6), equals xDZc

n{x; k). Multiplying by x° and taking the Mh deriva-
tive, we obtain

kΓ(kn + c + 1)

(n - 1)1 Uκ \3-lj Γ{kj -k + c + 1)

= -k(kn - k + c + l)kx
cZΰ

n^(x; k) .

Therefore,

( 9 ) Dk[xc+1DZc

n(x) k)] = -kxc(kn - k + c + l^Z^x; k) .

Combining (6) and (9), eliminating Zc

n_x{x\ k), we obtain the differential
equation of order k + 1

(10) Dk[xe+1DZc

n(x; k)] = xc+1DZc

n(x; k) - nkxcZc

n{x\ k)

for the polynomials in xk.
It is not difficult to verify directly that the polynomials in (5)

do satisfy (10). For k = 1, (10) reduces to the differential equation
for the generalized Laguerre polynomials [4]. For k — 2, (10) reduces
to the differential equation which was given by Spencer and Fano and
which was derived by Preiser [2, 3] by applying necessary conditions
for the existence of biorthogonal polynomial solutions to the coefficients
A(x), B(x), C(x) in (3).

For k > 2, it is not known if the polynomials Z*n(x\ k) satisfy a
differential equation of the form

Σ Ad(x)y{

n

5) - Xnyn, m < k + 1 .

Preiser [2, 3] has shown the answer to be negative for k = 2.
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4* P u r e r e c u r r e n c e re lat ion* Applying Leibniz's rule for the

ftth derivative of a product to the left side of (9), we get

k lk\

(11) Σ [Dfc-V+1J[J9ί+1^(x; ft)] = -kx\kn - ft + c + l)4Z£_i(α; k) .

The left side is a sum of derivatives of Zc

n(x; ft) from the first through
the ft + 1st. Elimination of the derivatives by repeated use of (6)
leads to a pure recurrence relation connecting ft + 2 successive poly-
nomials. An alternate method for obtaining the pure recurrence
relation is given in [1],

We now turn to the polynomials in x which satisfy orthogonality
condition (1).

III. THE POLYNOMIALS IN x

1* A suggested recurrence relation* We seek coefficients antj

such that the polynomials

(12) Σ antjx*-f

satisfy orthogonality condition (1). Taking n = 0, 1, 2, 3 and using a
method of undetermined coefficients, we obtain, each to within an
arbitrary multiplicative constant, the first four polynomials

1,
x-(c + 1),

x° - (ft + 2c + 3)x + (c + l)(ft + c + 1),

x* - (3ft + 3c + 6)x2 + [(2ft + c + 2)(ft + 2c + 3)

+ (c + l)(ft + c + l)]x - (c + l)(ft + c + l)(2ft + c + 1) .

For ft = 1, the polynomials reduce to the generalized Laguerre poly-

nomials taken to be monic, so in a sense these polynomials, as well

as the polynomials in xk, may be considered generalizations of the

Laguerre polynomials.

The pattern of coefficients suggests the following difference equation

for the coefficients

(13) an}j = -[(ft + l)n - j + (-k + c + I X K ^ , ^ + α n _ l f i ,

where αn>0 = 1 for all n and α ^ = 0 if i < j . We shall use (13) as the

basis of a conjecture for a recurrence relation for the polynomials in x.

Then we shall use the recurrence relation to show t h a t the polynomials

satisfying it satisfy (1). By uniqueness, established in [ l ] , t h e poly-

nomials we seek are the polynomials which satisfy the recurrence

relation.
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First, we shall sacrifice the monic property of the polynomials by
modifying the difference equation (13) to

(14) knbn>j = [kn + j + (-k + c + l)&Λ_lfi - bn_ltj^

where b0}0 = 1, bitj = 0 if i < j , b^^ = 0 for all i, so that the poly-
nomials in x are given by

(15) Y'n(x; k) = ± bnιίx* .

A result of the modification is that, for k = 1, (14) is a recurrence
relation for the coefficients of the generalized Laguerre polynomials.

Substituting for bn,d in (15), we get

knYc

n(x; k) = Σι[kn + j + (-k + c + l))bn_lfjx
j - Σ bn-i,j-i%j .

3=0 3=0

Replacing n by n + 1, and noting that bn,n+ί = 0, we have

k{n + l)Yen+1(x; k) = Σ[kn + j + c + l]bn>jx
j - Σ &»,i-i«y

i=o i=o

- (An + c + l)FS(aj; fe) + Σ i ^ , ^ ' - Σ K^j+1 .
3=0 3=0

The first sum on the right side is xΌYc

n{x\ k) and the second is xY&x; k);
therefore, a suggested recurrence relation for the polynomials in x is

(16) k(n + l)Y°n+1(x; k) = xDYc

n(x; k) + (kn + c + 1 - x)Y'n(x; k) .

2> Biorthogonality* To establish that the polynomials in x
satisfying (16) comprise the other set of the biorthogonal pair, we
must show that (1) is satisfied. We proceed by induction.

For n — 0, the integral in (1) has the nonzero value Γ(c + 1) for
the only permissible value of ΐ, namely ί = 0.

For n = 1, we must verify that the integral in (1) is zero for
ί = 0 and nonzero for ί = 1. For ί = 0, we have

[°xee-χYi(x; k)dx = \°xee-χk~\c + 1 - x)dx
Jo Jo

= k~\{c + l)Γ(c + 1) - Γ(c + 2)] = 0.,

where Yi(x; k) = k~\c + 1 — x) was obtained from (16) for n = 0.
For i — 1, we have

'e-VYίίa;; k)dx =
Jo

- £rx[(c + l)Γ(c + A; + 1) - Γ(c + fc + 2)]

- ~Γ(c + k + 1) Φ 0 .
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Continuing the induction argument, we assume that the polynomials
Yi(x; k), ί = 0,1, , n, obtained by repeated application of (16), satisfy
orthogonality relation (1). To complete the induction argument, we
must show that

M = 0, 1 - -
0, ̂  = n + 1 .

(17) \~x'e-* Yc

n+1(x; k)xikdx =
Jo

Substituting for Yc

n+1{x\ k), as given by (16), we obtain

k~\n + lyA™xc+ik+1e-χDYc

n{x; k)dx
Jo

+ k~\n + I)- 1 [°(kn + c + 1- x)xG+ίke-χYc

n(x; k)dx .
Jo

If we integrate the first integral by parts the sum becomes

k~\n + lyλ^lx^^1 - (c + ilc + l)xe+ik]e~xYe

n(x; k)dx
Jo

+ k~\n + l)-ι[°°{kn + c + 1 -
Jo

which may be written

(18) (n + l)-1^xc+ike~x(n - ΐ)
Jo

The integral in (18) is zero for i = n since the integrand is zero.
By hypothesis, Yc

n{x; k) is orthogonal to xik, 0 ^ i < n; therefore, for
i < n, the integral in (18) is zero.

For i = n + 1, the integral has the value

c+kn+ke-χYc

n{x) k)dx = (-l)n+1Γ(c + kn + k + 1) ,

which is different from zero, the right side having been obtained by
n applications of (16) each followed by an integration by parts.

3* Expression for YG

n(x) k). Preiser [2, 3] obtained a closed
form for the polynomials in x for the case k — 2 by applying Cauchy's
Theorem to the integral-form solution of

xB*Yn(x; 2) + (1 + c - 2x)DΎn(x; 2)

+ 2{x - 1 - c)DYn(x; 2) - 2nYn(x; 2) .

A closed form for the polynomials is desirable but is not essential,
since certain properties of the polynomials can be established without
one. By a method similar to that of Preiser, we shall find polynomials
solutions of (19) in integral form, conjecture the form of the integral



310 JOSEPH D. E. KONHAUSER

for the general case, show that the polynomials so obtained satisfy
(16), and then, using the integral form, establish recurrence relations
which will be used to derive a differential equation for the polynomials.

Equation (19) may be written

(20) x(y"> - Zy" + 2yf) + [(1 + c)y" - 2(1 + c)y' - 2ny] = 0 .

We assume a solution of the form

(21) y = \ e-*'φ(t)dt ,
JO

where the function φ(t) and the contour C are to be determined.
Differentiating successively and substituting into (20), we get

-x\ (tz + 3f + 2t)e-χtφ(t)dt
Jo

+ \ [(1 + c)t2 + 2(1 + c)t - 2n]e-χtφ(t)dt = 0 .
Jo

Integrating the first integral by parts, we obtain

0 = (t3 + 3f + 2t)φ(t)e-χt

0
\ e-*'[(3t* + 6ί + 2)φ{t)
Jo

+ (tz + 3ί2 + 2f)φ'(t)]dt + 1 [(1 + c)t2 + 2(1 + c)t - 2n]e-χtφ(t)dt .
Jo

We shall choose φ(t) so that

[(1 + c)t* + 2(1 + c)t - 2n - 3£2 - 6ί - 2]φ(t)

and the contour C such that

(23)

From (22), we have

- 0 .
o

φ'(t) __ n + 1 , c + 2n __ n + 1

φ(t) t t + 1 t + 2 '

whence 0(ί) = iΓ(ί + I)c+2n/tn+1(t + 2)Λ+1, where if is an arbitrary con-
stant which we shall take equal to kβπi.

Substituting into (23), we require the contour C to be such that

rC \C ~T~ -L) r\

— u .
2πί tn(t + 2)n

If we take C to be a closed contour encircling ί = 0, but not
t — — \ oτ t — — 2, then (23) holds and we have
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On the basis of this integral, we conjecture that the polynomials
Yn(x; k) are given by

(24) ,.<*) = JL. \ dt .
σ[(t + l)k - I f +

In view of the uniqueness established in [1], it suffices to show that
the polynomials (24) satisfy recurrence relation (16).

We have

(25) xDφn(x) - xφn(x) = - J L f β~"(* + l)0+kn+1

 d
d t

If - If+1

Integrating by parts, and applying (24), the right side of (25) becomes

- (c + kn + l)0n(α) + fe(tι + l)Φn+i(x) .

Therefore,

xDφn(x) - xφn{x) = -(c + kn + l)φn(x) + fc(w + l)^»+i(a?) ,

which is (16) with φn{x) in place of Yc

n(x\ k).
In summary, we have

(26) Yχχ; k ) = - * - \ β { t + 1 ) + d ί .
2πi )o [(t + 1)* - l ] κ + 1

Applying Cauchy's theorem to (26), we obtain the following representa-
tion for the polynomials in x:

vc+kn 11
+ k)*+1 Mt=o '+ k)

We shall use (26) to obtain mixed recurrence relations for the
polynomials Yc

n{x\ k).

4* Mixed recurrence relations* Observing that

(t + l)c+kn = (t + l)c+kn+k - (t + l)c+kn[(t + l)k - 1] ,

we write (26) as

k

= Y°n

+k(x; k) - Yc

nti(x; k) ,

which, for k — 1, reduces to a well-known relation for the Laguerre
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polynomials [4].
Next, we shall derive a recurrence relation which, together with

(16), leads to a differential equation satisfied by the polynomials in x.
We have

e"t(t + ly+kn+k dt
[(ί 1)k l r + 2

 dt

Operating on Yc

n+1(x; k) with (D — l)k — ( — l)fc, we obtain

k(-l)k f e~xt(t + l)c+^+ fc

—i '— \ ^—•—- dt ,

2πi )o [(t + 1)* - If+ 1

which is precisely the result of operating on Yc

n(x; k) with (D — l)k.
Therefore,

(27) [(D - l)k - (-iy]Y'n+ί(x; k) = (D - l)kYc

n(x; k) .

5* Differential equation* We shall now derive a differential
equation satisfied by the polynomials in x. The equation turns out
to be of order k + 1, which is the order of the differential equation
(10) satisfied by the polynomials in xk. The form of the differential
equation satisfied by the polynomials in x is simpler than (10), the
coefficients being no higher than first degree in x.

In deriving the final form of the differential equation we shall
apply the following easily established

LEMMA. If y is a differentiate function of x possessing k + 1
derivatives, then

(28) (D - l)kx(D - 1)2/ = \x(D - l)k+ί + k(D - l)k]y .

From (16)

kin + l)Y°n+1(x; k) = [x(D - 1) + c + kn + l]Yc

n(x; k) .

Substituting into (27), we get

[(D ~ l)k - (-l)k][x(D -i) + c + kn + l]Yc

n(x; Jc)

--= k(n + 1)(D - l)kYc

n(x; k) ,

which may be written

[[(D - I) 4 - ( - l)k][x(D - 1) + c + 1] - kn( -1)"] Yi(x; k)
{ ' =k(D-l)kY'n(x;k).

Applying the identity (28) to (29), we obtain, after some rearrangement
of terms, the differential equation
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(30) [[x(D - 1) + c + 1][(D - If - {-If} - (-l)kkn]Yc

n(x; fc) = 0 ,

which may be written in the form

(31) [x¥(D) + Ω(D)]y = 0 .

Equations of the form (31) are solvable by the method used to solve
(20), the solutions being of the form (26).

For k — 2, (30) reduces to the equation for the polynomials in x
of Spencer and Fano [5, 2, 3].

For k = 1, (30) reduces to the equation for the generalized Laguerre
polynomials [4], as did equation (10).

6* Pure recurrence relation* By eliminating the derivatives
between (16) and (29), using (28), one can obtain a pure recurrence
relation connecting k + 2 successive polynomials in x. An alternate
method for obtaining the pure recurrence relation is given in [1],

IV. THE INTEGRALS Jn,n

We conclude our discussion of the biorthogonal polynomials Zc

n(x; k)
and Yc

n(x\ k) with an evaluation of the integral

(32) Jnιn = (Vβ-YSta k)Zi(x; k)dx .
J o

First, we shall show that bn,n = ( — l)n/knnl, n = 0, 1, 2, . We proceed
by induction. For n — 0, we have 60>0 = 1. For n = 1, from (14),
we get bul = -Ilk. We assume that hn_Un^ = {-ly-'lk^in - 1)!.
Taking j = n in (14), and noting that 6n-1,n = 0, we get

completing the induction argument.
In virtue of the orthogonality of x3' and Zc

n(x\ k) for j < n, we
have

Jn,n = \~xce-χZc

n(x; k) Σ bntjx>'dx = \~xee-*Z°u(x; k)bn,nx
ndx .

Jo i=o Jo

Substituting for 6n>n, and proceeding as in the establishment of the
biorthogonality property of the polynomials in xk, we obtain

( 1 \ n ΓΌrw -X- f* -4- 1 ^
*Jn,n r-— — -V X 1± — X )

x=lknn\ n\

Γ(kn + c + 1)

which, for k — 1, is the value of the corresponding integral for the
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generalized Laguerre polynomials [4].
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