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THE MEASURE ALGEBRA OF A LOCALLY
COMPACT SEMIGROUP

A. P. BAARTZ

Let G be a locally compact idempotent, commutative,
topological semigroup (semi-lattice). Let ^y/^iff) denote its
measure algebra, i.e., ^(G) consists of all countably additive
regular Borel-measures defined on G and has the usual Banach
algebra structure: pointwise linear operations, convolution, and
total variation norm. To understand the structure of such a
convolution algebra one studies its maximal ideals, the nature
of the Gelfand transform, the structure of the closed ideal and
the related question of spectral synthesis, etc.

In this paper G is the cartesian product of topological
semigroups Ga of the following form: Ga is a linearly ordered
set, locally compact in its order topology; multiplication in Ga

is given by xy = max (x, y). The product semigroup is assumed
locally compact in the product topology.

The main theorem of this paper gives a representation of
the space of maximal ideals Δ^€{G), for a finite product, in
terms of the dual semigroup G. The multiplicative linear
functionals of ^ff(G) are integrals of fixed semi-characters

, βeM(G).

It is shown that this integral representation does not hold
for infinite products because the semi-characters are usually
not integrable.

This paper draws heavily upon the studies of Ross [14] and Hewitt
and Zuckerman [5] in which linearly ordered semigroups of the present
type were treated. Most of Ross' results generalize to the case of
the finite product, in particular his description of the Gelf and transforms
of measures. In Theorem 3.4 [14] Ross showed that for linearly
ordered G spectral synthesis obtains in ^/f (G) even though G is not
compact (cf. 37C and 38A [8] as well as [9]). An example in this
paper shows, on the other hand, that the compactness of the semigroup
G does not imply spectral synthesis in ^/f(G) in case G is the product
of two linearly ordered semigroups.

For terminology not explained below in measure theory, topology,
and harmonic analysis, see [2], [7], and [4] and [8], respectively.

1* Preliminaries*

1.1 Let X be a partially ordered set, i.e., a set ordered by a
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transitive, antisymmetric, and reflexive order relation g . For x e X
define Lx = {z e X\ z g x} and Mx = {zeX\x ^ z}. For EczX define
L(E) = v{L9\xeE}, and M(E) = U {M, | x e £7}.

If X is linearly ordered, the following sets will be called intervals:
for x , y e X , ( x , y ) = { z e X \ x < z < y}, [x,y] = { z e X \ x ^ z ^ y } . T h e
half-open intervals are defined analogously, and the notations (— °o, #]
for Lz,(—c09χ) for X\Λfs, etc., will often be employed. The order
topology for a linearly ordered set X has for a subbase the family
{(-°°,aO}*e.rU{(α, ° o ) W

For two sets A and B, A\B = {$ | a? e A and x$B}, AAB =
(A\B) U (B\A); the void set is denoted by φ. ξΛ denotes the characteristic
function of the set A. A is the cardinal number of A. For the
cartesian product of a family {Xa}aes of sets we write PaesXa (or X s

if the Xa are all indentical). A point x = (xa)aes€ PaβsXa has xa for
its ath coordinate. πa is the ath projection function of the product

1.2. In this section G will be any T2 locally compact commutative
idempotent topological semi-group. In particular, the multiplication
(%, V) ̂ ^ in G is a continuous function ofGxG onto G. &(G)
will denote the set of all Borel subsets of G (11.1 [4]). A partial
ordering on G is introduced by

DEFINITION 1.3 For x,y eG define x ^ y to mean xy — y.

LEMMA 1.4. With the ordering of 1.3, G is a topological semi-
lattice under x V y = xy.

DEFINITION 1.5. (see [6]) A subset P of G is an ideal if PGaP.
An ideal P is prime if A = G\P is a nonvoid subsemigroup of G(A* c A).

The complement A of a prime ideal will be called a prime subsemi-
group (pssg). Note that a nonvoid subsemi-group A of G is a pssg
if and only if L(A) = A.

A semi-character of G is a bounded complex-valued function χ on
G, not identically zero, which satisfies the functional equation χ(xy) =
χ(x)χ(y) for all x,y eG. The set of all semi-characters of G is denoted
by G.

THEOREM 1.6. χeG if and only if χ is the characteristic function
of a pssg of G.

Proof. Let χeG. Since χ2(x) = χ{x~) = %(#) for all xeG,χassumes
the values 0 and 1 only. The set A = {x e G | χ(α ) = 1} is the desired
pssg. Given any pssg A, ξA(%V) = ^A^A{V)

 f o r a 1 1 ^, V e G a n d £c ^
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Ό; hence ξΛeG.

This theorem points to ξLχ, x e (?, as an example of a Borel-measurable

semi-character, because Lx is a closed pssg by Lemma 2 on page 361

•([16]).

1.7. Let ^//(G) denote the Banach space of all complex-valued
countably additive regular Borel measures on G with the usual variation
norm || μ \\ = \μ\(G). Let ^Q(G) be the Banach space of all continuous
complex-valued functions on G which are arbitrarily small outside of
compact sets, normed by the uniform norm. Then by the Riesz
Representation theorem (19.12 [4]) Λ?(G) is isometrically isomorphic
to <£fo*(G) under the mapping μ-+M, where M(f) = \ fdμ, fe ^(G).

JO

DEFINITION 1.8. For μ, v e ^ f ( G ) define the convolution μ*v in
by

•(1.8.1) μ*v(E) = \ \ ζE(xy)dμ(x)dv(y),
JOJG

With * as multiplication ^//(G) is then a commutative Banach algebra
which has an identity if G has an identity element (p. 351 [15]). The
case in which G has no identity is discussed in 3.12, below.

1.9. It follows directly from the definition that for a Borel pssg
A and for measures μ and v in

(1.9.1) μ*v(A) = μ(A) v(A).

1.10. For each xeG let δx denote the point mass a t x (1.7 [14]).
For EdG and xeG let XE denote the set XE = {y e G \ xy e E}. For
A e &(G) let μΛ be the member of ^//{G) defined by μΛ(E) = μ(EnA).
The following formulae prove useful in the subsequent sections:

LEMMA 1.11. For μ, v e ^/f(G) and x, y eG we have

(1.11.1) μ*v(E) = \ μ{xE)dv{x),
JG

(1.11.2) μ * dx(E) = μ(xE), E e

(1.11.3) δx*δv = δx1,

(1.11.4) μ*δx = μ if and only if S(μ) c Mx, where S(μ) is the support
of the measure μ (11.25 [4]).

Proof. If Ee^(G) then xEe^(G) for all xeG and so
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ξE{xy) dμ(y) = \ ξχE{y) dμ(y) = μ(xE) .

By the Fubini theorem (14.25 [4]) this function defined on G is Borel-
measurable because μ*v e ^f (G), and (1.11.1) follows from (1.8.1)..
Setting v = δx in (1.11.1) we obtain (1.11.2) and similarly (1.11.3).

Next suppose S(μ)aMx. Then μ*dx(E) = μ(xEn Mz) = μ(Ef] Mx) =
μ(E) for all Ee^(G), as XE n Mx = E Γ\ Mx; thus μ*δx = μ. If,,
conversely, μ*δx = μ and if EczG\Mx then XE = φ and μ(E)—•
μ*δx(E) = μ{xE) = 0. It follows that | μ \ (G\MX) = 0 and S(μ) c MM

as required.

2* The representation of Δ

2.1. Let ΔΛ?(G) denote the class of all algebra homomorphisms
of ^//(G) onto the complex numbers, the structure space of the algebra
^£"(G) (23A, [8]). It is the purpose of this section to show the
impossibility of representing each member τ of Δ^//{G) as an integral
of a fixed semi-character.

LEMMA 2.2. Let τ e Δ^//(G), then the function x —> z(δx) is either
a semi-character of G or is identically 0.

Proof. (1.11.3) implies that the function % —> τ(δx) is multiplicative;
and assumes the values 0 and 1 only.

DEFINITION 2.3. Let τ e Δ^//{G). If A = {x e G \ τ(δx) - 1} then r
is said to determine the set A. By 2.2 A is either a pssg of G or

2.4. If G is compact then G is a compact ordered space in the
sense of Nachbin [13], which can be embedded into a cube [i.e., a
product of closed unit intervals] by means of a homeomorphism which
also is a lattice isomorphism (see [12] and also [16]). Motivated by
this theorem we shall, from now on, restrict our attention to the
following type of semigroups:

For each a in an index set S let Ga be linearly ordered and
topologized by the order topology. Let G = PaesGa be locally compact
in the product topology. For x, y eG define xy = (max {xa, ya})aes G
will then satisfy 1.2. In particular, the Tykhonov cube G = [0, 1]̂ ,
ordered coordinatewise, is a semigroup of this type.

2.5. In an uncountable Tykhonov cube there exist examples of
semi-characters which are nonmeasurable with respect to certain product
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measures. In the countable Tykhonov cube one can show by means
of a cardinality argument that nonBorel measurable semi-characters
.abound. The method of constructing such semi-characters is employed
in the following example. We consider here the 'minimal' infinite
product space G = {0,1}8, where S = ^ 0 . G is a semigroup of the
type under discussion as well as a compact Abelian group, the so-called
Cantor group, under coordinatewise addition modulo 2. Utilizing a
theorem of Hewitt (Theorem 47 [3]) which asserts that there exist 2C

distinct ultrafilters on the countably infinite set S, we will show that
G possesses 2C nonBorel pssg's which are in fact nonmeasurable with
respect to some member of ^//(G).

2.6. Let G = {0, 1}*. For UaS define an element xπ of G by

(2.6.1) (xπ)a - 1 if a e U and (xπ)a = 0 if a e S\U .

'Given any ultrafilter <s$f on S, set

•(2.6.2) A = {xσ I Ua S,

THEOREM 2.7. For distinct ultrafilters on S, (2.6.2) defines

distinct pssg's of G. If 3 — ̂ 0 , then the set of all pssg's of G has

cardinality 2C, and hence a pssg of G is usually not a Borel set.

Proof. Let Ssf and A be as in 2.6. If %, xve A then x^Xγ —
.XjruveA, since U&S/, V$J^-+U{J 7 ί J / . Thus A is a sub-semi-
.group. Now A is a pssg because L(A) = A.

Let J ^ & be distinct ultrafilters on S and A B the corresponding
pssg's. Let Ue s^f\^. By (2.6.2) % G 5 and since j y is closed under
supersets, % g A. Therefore Aφ B. The last statement of the theorem
follows from Hewitt's theorem (Th. 47 [3]) and the fact that G has
only c Borel sets (p. 26 [2]).

EXAMPLE 2.8. Let μ be the Haar measure of the group G of
:2.5. Let s^ be a free ultrafilter on the index set S and let A be
the pssg given by (2.6.2). Consider the prime ideal P = G\A. It will
be shown that

(i ) P is dense in G;
(ii) either μ(A) = 0 or A is not //-measurable;
(iii) μ(A) Φ 0.
It follows then that A is not ^-measurable and hence A&&(G).

It was shown in 2.7 that there exist 2C distinct pssgs of this type in G.
To prove (i) let N= ΓϊaeFπάKNΌ) be any nonvoid basic open set

in G, i.e., F is a finite subset of S and φ Φ Naa{0, 1}, for aeF.
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Since s/ is a free ultraίilter, FgJϊf; hence U= S\Fes$f and x^eP,
Let x e N and let y = α% then y is in the ideal P and #α = xa for
all α e ί 1 , so that yeNΓ)P. Thus P meets every nonvoid open subset
of G.

To establish (ii), assume that A is /^-measurable and μ(A) > 0.
Then by Steinhaus' theorem (20.17 [4]) there exists a nonvoid open
set 0 c A - A = {x ~ y; x, y e A}.

Note, however, that %, xre A implies

Xjf Xy = XJJ + Xγ = XjTΔV ~ ffiff'JV ~ ^V^V ̂  ^" >

therefore 0 a A — Acz A, a contradiction since by (i) 0 Π P Φ ψ.
For (iii) we note that P — P a A, and again apply Steinhaus*'

theorem to show that μ(K) = 0 for each compact subset K of P.
Hence μ(A) Φ 0.

2.9. Suppose τ^Δ^f(G) and τ determines A as in 2.3; suppose
also that for some measure μe^/f(G), A is not ^-measurable, as in
the above example. Then there exists no semi-character ξBeG such
that the formula

(2.9.1) τ(v) = \ ξB(x)dv(x)
JG

holds for all v e ^ (G). For if B Φ A then

τ(δx) Φ \ξB(t)dδx(t) = δx(B)

for all x e AΔB\ and if B = A, then B is not ̂ -measurable and (2.9.1)
does not make sense for v = μ.

On the other hand, we will show that each pssg A of G is
determined by some τ e Λ^f(G); such a homomorphism τeJ^f(G) is
then not representable by formula (2.9.1).

DEFINITION 2.10. Let μ* denote the inner measure induced by
); i.e., for any set EaG and μ^0

(2.10.1) μ*(E) = sup {μ(K) \KaE, K is compact}

and if μ e ^(G) has the Jordan decomposition a = μ1 — μ2 + i(μ* —
(p. 123 [2]), set

(2.10.2) μ,(E) = μ\{E) - μ\{E) + i{μ\(E) -

THEOREM 2.11. Let G be as in 1.2 and A a pssg of G. Then

(2.11.1) Γ*(/J) = μ*(A) for μ e
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defines a member τ* of Δ^€(G) which determines A in the sense
of 2.3.

Proof. First let μ ^ 0. For a compact set KaG set S(K) =
\J {L(Kn) \ n = 1, 2, •••}, the smallest pssg of G which contains K.
The order relation on G is continuous (p. 359 [16]) because the multi-
plication is continuous. Thus L(Kn) is closed (p. 361 [16]), so that
S(K) is Fσ and hence a Borel pssg. Now form the family

(2.11.2) S? = {S(K) I Kcz A and K is compact} .

Then &* is a directed set (p. 65 [7]) under set inclusion and

(2.11.3) {μ(S)\Se^}

is a monotone net in the compact interval [0, μ(G)]. Set

(2.11.4) τ*{μ) =

For arbitrary μe^£f(G) we use the Jordan decomposition of μ and
define

(2.11.5) τ+{μ) = τ*(^) - τ+(μ*) + i(τ,(/£») - τ^)) .

Obviously (2.11.4) holds for arbitrary μ. By (1.9.1) τ* is multiplicative.
τ* Φ 0 since for α G A, La e Sf and therefore r*(<?a) ^ δa (Lβ) = 1. Thus

Each compact subset of A is contained in a member of S^. A
straightforward calculation shows that τ*(μ) — μ*(A). For those
μe^/Z{G) for which A happens to be /^-measurable τ*{μ) = μ(A); in
particular τ*(dx) — δx(A) for all xeG, so that the homomorphism τ*
determines the pssg A.

3* The structure space of ^f(G) for finite products*

3.1. From now on G will be a finite product, G — Pk=1Gk, satis-
fying the hypothesis of 2.4; i.e., G is a product lattice. The symbol
5g will donote the order relation on G as well as that on the coordinate
spaces Gk; likewise the meaning of Lx and Mx will vary according as
xeG or x e Gk. In context these usages will cause no confusion.

LEMMA 3.2. Let A be a pssg of G, then A has the form A =
Ph^iA-k where, for k = 1, •••,%, A*, is α pss# 0/ ί/̂ β semigroup Gk.
Thus A is a Borel set.

Proof. Set Ak — πk(A), k = 1, , n; then Afc is a sub-semigroup
of Gk and L(Afc) = Ak, so that A& is a pssg of Gfc.
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Clearly, A c P ? = Λ Given any x = (xk)l=1e Pk=1Ak we choose
yk e A, for k = 1, , n, such that πky

k = xk. Then y = yhf yn is
a member of A and x <̂  y\ hence X G A . Therefore A = Pk=1Ak; each
^4fc is either open or closed, so that A is a Borel set.

Note that in an infinite product lattice a pssg need not be of
this form.

LEMMA 3.3. Let A be a pssg of G. Let μ e ^//{G) and ε > 0 be
given. Then there exists an element ae A such that \ μ \ (A\La) < ε.

Proof. Use the regularity of μ to choose a compact set K c A
such that I μ | (A\K) < ε. If ak = sup πkK, k = 1, , n, and if a =
(ak)k=i then KdLa and akeπkKaπkA, hence by 3.2 aeA, and the
result follows.

LEMMA 3.4. Let μe ^/f(G) be such that μ^O and suppose that
τeA^f(G) determines A. If there exists a number ε > 0 and an
element y e G\A such that μ(G\My) < ε then | τ(μ) \ < ε.

Proof. Write μ = μ, + μMy (see 1.10). Then ||/Vl! = μ^G) =
μ{G\My) < ε.

By (1.11.4) we have μMy = μMy*δy, and so τ(μMy) = τ(μjuy)τ(δy) = 0,
since y e G\A. Therefore | τ(μ) | = | τ(μl) \ ̂  || τ \\ || μ, \\ < ε.

We now state the main theorem of this section.

THEOREM 3.5. The mapping τ —> ζΛ defined by

(3.5.1) τ(δβ) - ζΛ(x) for all xeG

is a one-to-one mapping of Δ^£(G) onto G. The formula

(3.5.2) τ(μ) = \u*W{x) = μ(A)

holds for all μe^/f(G) and all τe A

Proof. By 2.2 ξΛ e G provided A Φ ψ. Assuming, however, that
A — φ, i.e., τ(δa) = 0 for all aeG, we shall conclude that τ(μ) — 0 for
all μe^(G), contradicting the hypothesis that τ e z L ^ ( G ) . For,
given μe^€(G) and ε > 0, there exists a compact set KaG such
that I μ I (G\K) < ε; hence || μσ\K || < ε. Since K is compact there
exists yeG such that KaMy, and (1.11.4) implies that τ(μκ) =
rG"**#y) = 0. Thus I τ(μ) \ = \ τ{μGXK) | ^ || μGχκ\\ < ε, and since ε was
arbitrary, τ(μ) = 0.

To prove (3.5.2) let μ ^ 0 and consider the sets
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{3.5.3) P = G\A and, for k = 1, , n, Pk = Gk\Ak .

We show that τ(μP) — 0 by expressing P as in the union of the
pairwise disjoint Borel sets Tk = π^PiWJ^ zl π^Pj, and applying 3.4
to the measures μTk. It follows that τ(μ) — τ(μΛ).

Next, let ε > 0 be given and let xe A be such that μ(A\Lx) < ε
(by 3.3). By (1.11.2) there exists a measure v e ^ f ( G ) such that
μΛ*δx(E) = μΛ(Lx)δx(E) + v(E) and such that | | ^ | | < ε . It follows,
.since xeA, t h a t τ(μ) = τ(μΛ) = τ(μA*δx) = μΛ{Lx) + τ(v), and so

I τ(μ) - μ(A) \ £ \ μΛ(Lx) - μ(A) | + | τ{v) \ £ \ μ(A\Lx) \ + \\v | | < 2ε ,

and (3.5.2) holds for μ >̂ 0. For arbitrary μe ^(G) it holds because
of the linearity of τ.

THEOREM 3.6. The Banach-algebra ^-/ίf{G) is semi-simple.

In view of (3.5.2) we need only show that if μ(A) = 0 for all
pssgs A then μ = 0. This is most efficiently accomplished if one uses
the machinery developed in §4 and adapts the proof of 2.4 [14].

3.7. Having identified ΔΛ?(G) with G in 3,5, we will from now
•on use the notation

(3.7.1) G = {τΛ I A is a pssg of G} ,

where τΛ(μ) — μ(A) for all μe ^//(G). A partial order ^ o n G is
given by

<3.7.2) τΛ ^ τB if and only if A c B .

Setting τo(μ) = μ(^) = 0 for all μe ^/f(G) we write

<3.7.3) Go = G U {τ0}, and τ0 < τA for all τ 4 e G .

τ0 is the zero homomorphism on ^//(G) and is taken to correspond to
the zero semi-character on G. G is further identified with Pk=1Gk via
the map

<3.7.4) τA-+{τAι)l=1

where Ak = πkA is a pssg of Gk and τ4 ; k is regarded as a member of
the structure space Δ^f(Gk). Following Ross' notation (2.5 [14]) we
write

<3.7.5) τak) for τ ( _, α f c ) and τakl for τ (_,α ; f c ] .

Then (G, ^ ) and (Go, ^ ) are lattices since the mapping in (3.7.4) is
bi-isotone; and G is, in fact, a product lattice. We now topologize
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these lattices and obtain a characterization of

DEFINITION 3.8. For each measure μe^(G) define the Gelfand
transform μ of μ by

(3.8.1) β(τΛ) = τΛ(μ) = μ(A) for all τΛeG (respectively Go) .

The Gelfand topology on G (resp. Go) is the weakest topology making
each of the complex-valued functions μ continuous on G (Go).

THEOREM 3.9. The Gelfand topology on Go equals the interval
topology. With this topology Go is a totally disconnected compact
Hausdorff space; it is the one-point compactification of G with its
Gelfand topology.

Proof. Given a noneoid set s*f c Go, let B = f\ {A\τΛe S$f} and
C = P£= 1 {U Ak I {τA])l=1 e J^f}. Then τB = inf j y and τσ = sup jy : It
follows that Go is a complete lattice and by Theorem 9 [1] is compact
in its interval topology.

We now follow closely the proof of 2.7 [14] and thus show that
the interval topology and the Gelfand topology are identical in both
G and Go. The proof is completed by noting that a subbase for the
closed sets in the interval topology for Go is the collection

(3.9.1) {τ e Go | τ £ τA}τAβ^ and {τ e Go | τ ^ τA

From this it follows that the interval topology of G is the rela-
tivized interval topology of Go. By Theorems 3 and 4 [1] the former
is equal to the product topology of G = Pk=iGk, and is therefore
a locally compact T2-topology (2.7 [14]), having Go as its one-point
compactification. The proof that Go is totally disconnected uses again
the nature of G as a product space and Ross' result 2.8 [14].

DEFINITION 3.10. We define a multiplication in Go by the rule

(3.10.1) τAτB = inf {τA, τB}

using the lattice operation given in 3.9. This multiplication is natural
in that τAτB corresponds to the semi-character ξA ξB — ξΛnB.

THEOREM 3.11. G with the Gelfand topology and the multipli-
cation defined in (3.10.1) is a locally compact idempotent commutative
Hausdorff semigroup; in fact, G is homeomorphic and semigroup —
isomorphic with P^Gj. (viβived as a lower semilattice with the
product topology).

Proof. In view of 3.9 we need only show here that multiplication



THE MEASURE ALGEBRA OF A LOCALLY COMPACT SEMIGROUP 209

in G is continuous. This follows from Theorems 2 and 3 [1], which
assert that the lattice Pk=iGk, being distributive, is a topological lattice.

3.12. Under the present hypothesis it can now be shown that
the algebra ^(G) has an identity element if and only if G has a
least element. For if ^f(G) has an identity then Δ^f/ (G) is compact
(19B [8]), and hence G — P£=1Gk is compact in its product topology.
If τΛ is the least element of Gk, k = 1, , n, then Ak must consist
of a single element ak of Gk and the point a = (ak)l=1 is the least
element of G. The converse has already been discussed in 1.8.

That we cannot make the same claim under the more general
hypothesis of 1.2 is seen from the following simple example.

3.13. Let G = {a, b, c}, where ab = ac = be = c, and let G be
otherwise as in 1.2. Then ^f(G) = {ada + βdb + iδc I #, β, 7 are
arbitrary complex numbers}, and the measure v = δa + 3b — dc is an
identity for ^f(G). However, G itself has no identity element.

4* The Herglotz-Bochner theorem for ^f(G).

4.1. This section generalizes §4 [14]. Under the hypothesis of
3.1 we first introduce the concept of a function of finite variation
of the n variables zu , τn, defined on G. τ0 will denote the zero
functional on ^f(Gk) as well as on

DEFINITION 4.2. s^ will denote the set of all subsets R of Gy

called rectangles, which are of the form

R = Pt=Jh, w h e r e f o r e a c h ft, Ik = ( τ Λ τB], τA < τB

(4.2.1) r / Ί

or lk = (τ0, τ^J .

The points τ^ = (τΛk)k=ί, τB = (τΛjfc)ϊ=1 of G appearing in (4.2.1) are
called the endpoints of i?.

We formally adopt the notation used by Munroe in his discussion
of Stieltjes' measures (pp. 120-125 [10]) and adapt it for our purposes.

DEFINITION 4.3. Let g be any complex-valued function defined on
G = Pk=iGk, let ReSsf have its endpoints τA and τB in G, and let
1 ^ k ^ n.

Considering g as a function of the kth coordinate τk of τ eG, the
operator δΛ, depending on R} is defined by

(4.3.1) δk(g) = g(- τ ^ •) - g(- τ^A •) .

If R = PksslIk and if for some ft, Ifc = (τ0, τ Λ J, we set
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(4.3.2) ^ ) = <?(... τ ^ . . Λ

dJc(g) is thus a function defined on P^Gj.

D E F I N I T I O N 4.4. Let h e ^ ( G o ) , the space of all complex-valued
continuous functions on Go. Define the function δh on s/ as follows

{4.4.1) δh(R) = ^(S2(.. δn(h) . . . ) ) , for Re

the δk having been defined for each R by 4.3.

DEFINITION 4.5. For a subset C of G set

(4.5.1) C = {τ e G \ τ = τLa for some a e C}. For subset S of G set

<4.5.2) S - { α e G | τ Z α e S } .

Let ^ denote the set of all R e s%? whose endpoints belong to G.
i.e., all R = PJk such that for all k, Ik = (rajfc], τ6jfe]] or JΛ = (τ0, rδ

DEFINITION 4.6. A finite pairwise disjoint subcollection J of
is called a partition of G. ^ denotes the set of all partitions. For
Au At e & we say that

(4.6.1) A1 ^ A2 (At is finer than z/2) in case

( i ) U A => U ^ and
(ii) Λ G Λ , SGZ/ 2 implies i ? n S = ^ or RaS.

We also set

(4.6.2) ξ? - {Je^|z/c^} ,

^ having been defined in 4.5. With the ordering given in 4.6, Sf
and if are easily seen to be directed sets.

DEFINITION 4.7. Let h e 9f (Go). If 4 e j / , or if G\A e ^f, or if

A = G we define

(4.7.1) V(h; A) = sup {Σ*e, I SΛ(i2) || Δ e & and U Δ c A} ,

and set F(fe) = F(fe;G). The function h is said to be of finite variation
if V(h) < co.

DEFINITION 4.8. Let h e ^(G o ) and let A be as in 4.7. Define
(4.8.1) Vc(h; A) = sup {X^gj F(fe; R)\Δe &,\JA(zA, and i2 has compact
closure in G for all Re A), and set Fβ(fc) = Vc(h; G).

DEFINITION 4.9. Let h e ^(G o ) be such that δh(R) ^ 0 for all
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, and of finite variation. Let / be any complex-valued function
defined on G. For each Δe^ define

(4.9.1) S(f, Δ) = Σ f(b)δh(R) ,

where τιb is the upper endpoint of R, i.e., b = sup i?.

THEOREM 4.10. Let fe^0(G). Let he^(G0) be of finite vari-
ation and such that dh(R) Ξ> 0 for all Res/, and h(τ0) = 0. Then
{S(f, Δ)}Δe& is a Cauchy net of complex numbers. We will write

(4.10.1) L(f) = lim S(f, Δ) .

function L defined in (4.10.1) is a bounded, nonnegative linear
functional on r^0(G).

We apply the Riesz Representation theorem (19.12 [4]) to the
above functional and obtain, as an extension of 4.6 [14], a theorem
which characterizes those continuous functions on Go which are Gelfand
transforms of measures in

THEOREM 4.11. Let h e ^ (Go) have finite variation and suppose
h(τ0) = 0. Then there exists a measure μe^//(G) such that h — β
if and only if V(h) = Ve(h).

COROLLARY 4.12. Suppose G is compact and h e <^(GQ). Then h
is the Gelfand transform of some measure μe ^fZ(G) if and only if
V(h) < oo and h{τ0) = 0.

EXAMPLE 4.13. Let G = En with coordinatewise ordering and the
usual topology. Let hec^{Gϋ). Then h is the Gelfand transform of
some measure μe ^/f(G) if and only if V(h) < co and h(τ0) = 0.

Ross gives an example (4.7 [14]) of a function h e C^(GO) such
that V(h) < c>o but V(h) > Vc(h), and which is not a transform.

It is possible to show that the variation functions used by Ross
(2.9 and 4.4 [14]) for linearly ordered G are consistent, in all cases
concerning this paper, with those defined in 4.7 and 4.8, and that
Theorem 4.6 [14] is actually a corollary to our Theorem 4.11.

5* Consequences of the Herglotz-Bochner theorem*

5.1. Let / be a closed ideal in ^/Z (G). Let h(I) = {τeGQ\ μ{τ) = 0
for all μ e 1} be the hull of I and kh(I) = {μe ^//(β) \ μ(τ) = 0 for all
zeh(I)} the kernel of h(I). Spectral synthesis obtains in ^/f(G) if



212 A. P. BAARTZ

I— kh(I) for each closed ideal I in ^//(G). We show here by example
that if G is not linearly ordered (see 3.4 [14]) spectral synthesis may
not obtain, even though G is compact. In this section G satisfies the
hypotheses of 3.1.

EXAMPLE 5.2. Let G = [0,1] x [0,1] be the unit square with the
usual topology and coordinatewise order. Let L = {(t,s) e G | s = 1 — t};
let K = {(ί, s) I s ^ 1 - ί}, and let H = G\K. Let Q = {r,}Γ=i be the
set of points in H which have two rational coordinates. Let λ be
Lebesgue measure along the line segment L and define

(5.2.1)

(5.2.2) 1=

It is easy to see that τ e h(I) if and only if μ(τ) — 0. This leads
to a very simple description of h{I).

(5.2.3) h(I) = { τ Λ e Go \ A Π L ^ 1} ,

as Af] L ^ 1 if and only if An Q = φ if and only if β(τΛ) = μ(A) = 0.
Since X(τΛ) = X(A) = 0 for all τΛ e h(I), λ e kh(I). However, λ g /

and hence Iφ kh{I), for by (1.11.2) we have

μ*i>(K) = Σ (V2*)(δri*v)(K) = Σ (l/2'Mr<ίΓ) = 0 ,
ί = l 4=1

since rK = ^ for all r e Q . But λ(iί) = 0 and so λ and μ*v are
mutually singular for all ve ^//(G), It follows that the distance from
λ to I is at least as large as 1/2 11 λ 11 = τ/2/2 and that therefore λ is
not in I.

THEOREM 5.3. Let G = P%=ιGk and let μe^/f(G). Then μ is
idempotent, i.e., μ*μ = μ, if and only if μ is a discrete measure
of the form

(5.3.1) μ = Σakdtk,

where the coefficients ak are nonzero integers between —2n~~ι and 2n~1

and have the property that for each xeG

(5.3.2) Σ <*k = 0 or 1 .
tk-x

It is interesting to note that the support T = {ίft}?=1 of the idem-
potent measure μ need not be a sub-semigroup of G.
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THEOREM 5.4. ^//(β) is a symmetric algebra; i.e., if μe
then there exists a measure v e ^(G) such that v{τ) = μ(τ) for all τ e G.
Here z denotes the complex conjugate of z.

EXAMPLE 5.5. In contrast to the linearly ordered case (5.5 [14])
there exist positive measures in ^/S(G) which have no square root in
^/f{G). Let G be the unit square as in 5.2. For n = 1, 2, let
xn = (l/n, (n — l)/n) e G and define

Assume there exists a measure ve ^(G) such that (£>(τ))2 = μ(τ)
for all τ e Go, then for each integer N we can find pairwise disjoint
rectangles Rl9 , Rn e s/ such that

Hence V(v) ̂  Σί=i I δ ί W I = Σί=i (1/Λ, f o r a 1 1 N, contradiction 4.11.
We conclude that μ Φ v*v for all ve ^/f(G).
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