FIXED POINTS AND FIBRE MAPS

ROBERT F. BROWN

Let $\mathscr{F} = (E, p, B)$ be a (Hurewicz) fibre space and let λ be a lifting function for \mathscr{F} . For W a subset of B, a map $f: p^{-1}(W) \to E$ is called a fibre map if p(e) = p(e') implies p(f(e)) = p(f(e')). Define $\overline{f}: W \to B$ to be the map such that $\overline{f}p = pf$. If $[W \cup \overline{f}(W)] \subseteq V \subseteq B$ where V is pathwise connected, define $f_b^V: p^{-1}(b) \to p^{-1}(b)$, for $b \in W$, by $f_b^V(e) = \lambda(f(e), \omega)(1)$ where $\omega: I \to V$ is a path such that $\omega(0) = \overline{f}(b)$ and $\omega(1) = b$. Let i be a fixed point index defined on the category of compact ANR's and let Q denote the rationals. The main result of this paper is:

THEOREM 1. Let $\mathscr{F} = (E, p, B)$ be a fibre space such that E, B, and all the fibres are compact ANR's. Let $f: E \to E$ be a fibre map. If U is an open subset of B such that $\tilde{f}(b) \neq b$ for all $b \in bd(U)$ and $cl [U \cup \tilde{f}(U)] \subseteq V \subseteq \dot{B}$ where V is open and pathwise connected and $\mathscr{F} \mid V = (p^{-1}(V), p, V)$ is Q-orientable, then

$$i(f, p^{-1}(V)) = i(\bar{f}, U). L(f_b^V)$$

where $L(f_b^V)$ is the Lefschetz number of f_b^V for any $b \in U$.

Independence of $L(f_b^{\vee})$. For $\mathscr{F} = (E, p, B)$ a Hurewicz fibre space with lifting function λ [7] and ω a loop in B based at b, define $\varphi: p^{-1}(b) \to p^{-1}(b)$ by $\varphi(e) = \lambda(e, \omega)(1)$. The fibre space \mathscr{F} is called *Q*-orientable if

$$\varphi^*$$
: $H^*(p^{-1}(b); Q) \rightarrow H^*(p^{-1}(b); Q)$

is the identity isomorphism for all pairs (b, ω) where $b \in B$ and ω is a loop in B based at b.

LEMMA. Let $\mathscr{F} = (E, p, B)$ be a Q-orientable fibre space and let $\omega_i: I \to B, i = 1, 2$, be paths such that $\omega_i(0) = b$ and $\omega_i(1) = b'$. Define $\varphi_i: p^{-1}(b) \to p^{-1}(b')$ by $\varphi_i(e) = \lambda(e, \omega_i)(1)$, then

$$\varphi_1^* = \varphi_2^* \colon H^*(p^{-1}(b'); Q) \xrightarrow{\simeq} H^*(p^{-1}(b); Q)$$
 .

Proof. By Proposition 2 of [4], each φ_i is a homotopy equivalence with homotopy inverse $\psi_i: p^{-1}(b') \to p^{-1}(b)$ given by $\psi_i(e') = \lambda(e', \bar{\omega}_i)(1)$ where $\bar{\omega}_i(s) = \omega_i(1-s)$. Therefore, $\varphi_i^*: H^*(p^{-1}(b'); Q) \to H^*(p^{-1}(b); Q)$ is an isomorphism and $\psi_i^* = (\varphi_i^*)^{-1}$. Consider $\omega: I \to B$ defined by

$$\omega(s) = egin{cases} \omega_{\mathfrak{l}}(2s) & 0 \leq s \leq 1/2 \ ar \omega_{\mathfrak{l}}(1-2s) & 1/2 \leq s \leq 1 \end{cases}$$

then ω is a loop in *B* based at *b* and since \mathscr{F} is *Q*-orientable, for $\varphi(e) = \lambda(e, \omega)(1), \varphi^*$ is the identity isomorphism. It follows from [4] that φ is homotopic to $\psi_2 \varphi_1$ so $\varphi^* = \varphi_1^* \psi_2^*$ and $\psi_2^* = (\varphi_1^*)^{-1}$. Hence $\psi_2^* = \psi_1^*$ and $\varphi_2^* = \varphi_1^*$.

THEOREM 2. Let $\mathscr{F} = (E, p, B)$ be a Q-orientable fibre space where B is pathwise connected and $H^*(p^{-1}(b); Q)$ is finitely generated for $b \in B$. For $W \subseteq B$, let $f: p^{-1}(W) \to E$ be a fibre map, then $L(f_b) = L(f_{b'})$ for all $b, b' \in W$, where f_b means f_b^B .

Proof. Since $f_b = \varphi_i(f \mid p^{-1}(b))$, the lemma implies that

$$f_b^*: H^*(p^{-1}(b); Q) \to H^*(p^{-1}(b); Q)$$

is independent of the choice of the path ω_i from $\overline{f}(b)$ to b. Let $\omega_0, \omega_1: I \to B$ such that $\omega_0(0) = \overline{f}(b), \omega_0(1) = \omega_1(0) = b$, and $\omega_1(1) = b'$. Define $\omega_2: I \to B$ by

$$\omega_{\scriptscriptstyle 2}(s) = egin{cases} \overline{f\omega_{\scriptscriptstyle 1}}(2s) & 0 \leqq s \leqq 1/2 \ \omega_{\scriptscriptstyle 0}(2s-1) & 1/2 \leqq s \leqq 1 \; . \end{cases}$$

We first show that diagram (1) is homotopy commutative, where $\varphi_i(e) = \lambda(e, \omega_i)(1), i = 0, 1, 2.$

$$(1) \qquad \begin{array}{c} p^{-1}(b) \xrightarrow{(f \mid p^{-1}(b))} p^{-1}(\bar{f}(b)) \xrightarrow{\varphi_0} p^{-1}(b) \\ \varphi_1 \downarrow & \uparrow \varphi_2 \\ p^{-1}(b') \xrightarrow{(f \mid p^{-1}(b'))} p^{-1}(\bar{f}(b')) \end{array}$$

Define the homotopy $H: p^{-1}(b) \times I \rightarrow p^{-1}(b)$ by

$$H(e, t) = \lambda [f(\lambda(e, \omega_i)(1 - t)), \omega^t](1)$$

where

$$\omega^{t}(s) = egin{cases} ar{f}(ar{\omega}_{\scriptscriptstyle 1}(2s+t)) & 0 \leqq s \leqq rac{1-t}{2} \ \omega_{\scriptscriptstyle 0}\!\!\left(\!rac{2s+t-1}{t+1}\!
ight) & rac{1-t}{2} \leqq s \leqq 1 \;.$$

Then $H(e, 0) = \varphi_2 f \varphi_1(e)$ and $H(e, 1) = \varphi_0 f(e)$ as required. By the lemma and [4], $(f_{b'})^* = (\varphi_1 \varphi_2(f \mid p^{-1}(b')))^*$. Furthermore,

$$egin{aligned} &(\psi_1 f_{b'} arphi_1)^* = (\psi_1 arphi_1 arphi_2 (f \mid p^{-1} (b')) arphi_1)^* \ &= (arphi_2 (f \mid p^{-1} (b')) arphi_1)^* = (arphi_0 (f \mid p^{-1} (b)))^* = f_b^* \ . \end{aligned}$$

Since Q is a field, $H^*(p^{-1}(b); Q)$ and $H^*(p^{-1}(b'); Q)$ are finite dimensional

466

vector spaces and $\varphi_1^*, f_{b'}^*, \psi_1^*$ are linear transformations. Pick bases for $H^k(p^{-1}(b); Q)$ and $H^k(p^{-1}(b'); Q)$ and let \emptyset, F' , and Ψ be the matrices with respect to these bases representing $\varphi_1^{*,k}, f_b^{*,k}$, and $\psi_1^{*,k}$ respectively. Since $\psi_1^* = (\varphi_1^*)^{-1}, \Psi \emptyset = E_n$, the $n \times n$ identity matrix, where n is the dimension of $H^k(p^{-1}(b); Q)$. Therefore, trace $(\emptyset F' \Psi) =$ trace (F') which implies that $L(f_{b'}) = L(\psi_1 f_{b'} \varphi_1)$. The theorem now follows because $(\psi_1 f_{b'} \varphi_1)^* = f_b^*$ implies $L(\psi_1 f_{b'} \varphi_1) = L(f_b)$.

2. Extension of a theorem of Leray. Let B and F be topological spaces and let $(B \times F, \pi^1, B)$ be the trivial fibre space. Suppose W is a subset of B and $f: W \times F \to B \times F$ is a fibre map. Define $f_b: F \to F$ by $f_b = \pi^2 f j_b$ where $j_b: F \to W \times F$ is given by $j_b(x) = (b, x)$ and $\pi^2: B \times F \to F$ is projection. Theorem 3 is a restatement of Theorem 27 of [9] in the somewhat specialized form in which we shall use it.

THEOREM 3 (Leray). Let $(B \times F, \pi^1, B)$ be the trivial fibre space where B and F are finite polyhedra. For U an open connected subset of B, let $f: \operatorname{cl}(U) \times F \to B \times F$ be a fibre map.¹ If $\overline{f}(b) \neq b$ for all $b \in \operatorname{bd}(U)$, then

$$\overline{i}(f, U \times F) = \overline{i}(\overline{f}, U) \cdot L(f_b)$$

for all $b \in U$, where \overline{i} denotes the Leray fixed point index.

By Theorem 22 and Corollary 26-27 of [9], the Leray index [9, p. 208] satisfies the O'Neill axioms [10, p. 500]. (We will use the formulation of the axioms and the terminology of [1]). Therefore, an index *i* for the category of compact ANR's, satisfying the O'Neill axioms, may be obtained from the index i in the following manner [2, p. 20]. Let X be a compact ANR and let α be a finite open cover of X, then there exists a finite polyhedron K and maps $\varphi: X \to K$, $\psi: K \to X$ such that $\psi\varphi$ is α -homotopic to the identity map on X, i.e. there exists a map $H: X \times I \to X$ such that H(x, 0) = x, H(x, 1) = $\psi\varphi(x)$, and for each $x \in X$, the set $\{H(x, t) \mid t \in I\}$ lies in a single element of α [5, Theorem 6.1]. Write $\psi\varphi \sim_{\alpha} 1_x$. For U an open subset of X and $f: X \to X$ a map such that $f(x) \neq x$ for all $x \in bd(U)$, let

$$i_lpha(f,\,U)=i(arphi f\psi,\,\psi^{-1}(U))$$
 .

Browder [2, Theorem 2, p. 20] showed that there exists a finite open cover $\kappa_f(U)$ of X such that if α is a refinement of $\kappa_f(U)$, then $i_{\alpha}(f, U)$ is well-defined and independent of α, φ , and ψ . Write $i_{\alpha} = i$ for all

¹ The notation cl(U) denotes the closure of U. We use bd(U) for the boundary of U.

such α .

THEOREM 4. Let $(B \times F, \pi^1, B)$ be the trivial fibre space where B is a finite polyhedron and F is a compact ANR. For U a connected open subset of B, let $f: cl(U) \times F \to B \times F$ be a fibre map. If $\overline{f}(b) \neq b$ for all $b \in bd(U)$, then

$$i(f, U \times F) = \overline{i}(\overline{f}, U) \cdot L(f_b)$$

for all $b \in U$.

Proof. Let F be dominated by a finite polyhedron K by means of maps $\varphi: F \to K$ and $\psi: K \to F$. Define $f^*: B \times K \to B \times K$ by $f^*(b, k) = (\overline{f}(b), \varphi f_b \psi(k))$ then f^* is a fibre map with respect to $(B \times K, \pi^1, B)$ and $\overline{f^*} = \overline{f}$. Since $\psi \varphi$ is homotopic to the identity map on F, $L(f^*_b) = L(f_b)$ (see the proof that $L(f_{b'}) = L(\psi_1 f_{b'} \varphi_1)$ in Theorem 2). Let α be a finite open cover of B which refines $\kappa_{\overline{f}}(U)$, then $\tau = \{(\pi^1)^{-1}(A) \mid A \in \alpha\}$ refines $\kappa_f(p^{-1}(U))$. Since $f^* = (1_B \times \varphi)f(1_B \times \psi)$ and, trivially,

$$(1_{\scriptscriptstyle B} imes \psi)(1_{\scriptscriptstyle B} imes arphi) m{\sim}_{ au} 1_{\scriptscriptstyle B} imes 1_{\scriptscriptstyle F}$$
 ,

then $i(f, U \times F) = \overline{i}(f^*, U \times K)$. Therefore, by Theorem 3,

$$i(f, U \times F) = \overline{i}(\overline{f}, U) \cdot L(f_b)$$
.

3. Proof of Theorem 1. We first assume that B is a finite polyhedron. By a theorem of Hopf [6, Theorem 5], given $\varepsilon > 0$, there exists a map $\overline{g}: B \to B$ homotopic to \overline{f} by a homotopy $h: B \times I \to B$ such that $h(b, 0) = \overline{f}(b)$, $h(b, 1) = \overline{g}(b)$ and $\rho[h(b, t), h(b, t')] < \varepsilon$ for $b \in B$, $t, t' \in I$, where ρ is the metric of B. The map \overline{g} has a finite number of fixed points b_1, \dots, b_s where, with respect to some barycentric subdivision of B, each b_j lies in the interior of a different simplex σ_j of B, where σ_j is not a face of any other simplex of B. Since \overline{f} has no fixed points on bd(U), $\inf \{\rho(b, f(b)) \mid b \in bd(U)\} = \varepsilon_1 > 0$. Let $\varepsilon_2 > 0$ be the distance from $\operatorname{cl} [U \cup \overline{f}(U)]$ to B - V (if V = B, take $\varepsilon_2 = \infty$). Let $\varepsilon = \min(\varepsilon_1, \varepsilon_2)$ then $h(b, t) \neq b$ for all $b \in bd(U)$. Hence $i(\overline{f}, U) =$ $i(\overline{g}, U)$ by the homotopy axiom. Furthermore, $\operatorname{cl} [U \cup \overline{g}(U)] \subseteq V$. The homotopy h induces $h': B \to B^I$. Let λ be regular lifting function for \mathscr{F} and define $H': E \to E^I$ by

$$H'(e)(t) = \lambda(f(e), h'(p(e)))(t)$$
.

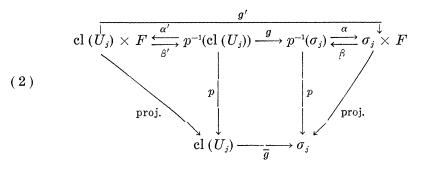
Define $g: E \to E$ by g(e) = H'(e)(1) then g is a fibre map homotopic to f by a homotopy without fixed points on $bd(p^{-1}(U))$ so $i(f, p^{-1}(U)) = i(g, p^{-1}(U))$. Furthermore, $pg = \overline{g}p$. Since f_{b_j} is precisely g_{b_j} if we use the path $h'(b_j)$ to define f_{b_j} and the constant path to define g_{b_j} ,

then $L(f_{b_j}^{\nu}) = L(g_{b_j}^{\nu})$. We have shown that when B is a finite polyhedron, it is sufficient to verify the conclusion for the map g.

Let U_j be a δ -neighborhood of b_j where δ is chosen small enough so that $[\operatorname{cl}(U_j) \cup \overline{g}(\operatorname{cl}(U_j))] \subseteq \sigma_j$. We may contract σ_j to b_j so that b_j stays fixed throughout the contraction and such that the restriction to $\operatorname{cl}(U_j)$ contracts $\operatorname{cl}(U_j)$ through itself to b_j . The contraction induces fibre homotopy equivalences

$$lpha : p^{-1}(\sigma_j) \mathop{\longrightarrow}\limits_{igodots r} \sigma_j imes F : eta \ lpha' : p^{-1}(\operatorname{cl}\left(U_j
ight)) \mathop{\longrightarrow}\limits_{igodots r} \operatorname{cl}\left(U_j
ight) imes F : eta'$$

where the primes denote restriction and $F = p^{-1}(b_j)$ [4, Proposition 4]. Consider the diagram



where $g' = \alpha g \beta'$. By Theorem 4,

$$i(g',\,U_j imes F)=\,ar i(ar g,\,U)\!ullet\!L(g'_{b\,ar s})$$
 .

If we use the constant path to define g_{b_j} , then $g_{b_j} = g'_{b_j}$, so $L(g^v_b) = L(g'_{b_j})$. Let $\mu = g\beta'$: $p^{-1}(\operatorname{cl}(U_j)) \to \sigma_j \times F$, then by the commutativity axiom

$$i(lpha\mu,\,U_j imes F)=i(\mulpha',\,p^{-1}(U_j))$$
 .

Now $i(\alpha\mu, U_j \times F) = i(g', U_j \times F)$ by definition. On the other hand, $\mu\alpha' = g\beta'\alpha'$ is homotopic to g by a homotopy which has no fixed points on $bd(p^{-1}(U_j))$ since \overline{g} has no fixed points on $bd(U_j)$ and the homotopy between $\beta'\alpha'$ and the identity is fibre-preserving, so by the homotopy axiom $i(\mu\alpha', p^{-1}(U_j)) = i(g, p^{-1}(U_j))$. Therefore

$$i(g, p^{-1}(U_j)) = \overline{i}(\overline{g}, U_j) \cdot L(g_b^V)$$
 .

Renumber the fixed points of \overline{g} so that b_1, \dots, b_q are the fixed points which lie in U. Since g(e) = e implies $p(e) = b_j$ for some $j = 1, \dots, s, g$ has no fixed points on $[p^{-1}(\operatorname{cl}(U)) - \bigcup_{j=1}^{q} p^{-1}(U_j)]$. Hence by the additivity axiom,

$$egin{aligned} \dot{i}(g,\,p^{-1}\!\left(U
ight)) &= \sum\limits_{j=1}^{q} \dot{i}(g,\,p^{-1}\!\left(U_{j}
ight)) \ &= \sum\limits_{j=1}^{q} \,ar{i}(ar{g}\,,\,U_{j})L(g_{b}^{\scriptscriptstyle V}) = \,ar{i}(ar{g}\,,\,U)\!\cdot L(g_{b}^{\scriptscriptstyle V}) \;. \end{aligned}$$

Now suppose that B is a compact ANR, let K be a finite polyhedron and let $\varphi: B \to K, \psi: K \to B$ be maps such that $\psi \varphi \sim_{\alpha} 1_{\beta}$ where α refines $\kappa_{\overline{i}}(U)$ and $\alpha(\overline{f}(U))$, the union of all $A \in \alpha$ such that $A \cap \overline{f}(U) \neq \emptyset$, is contained in V. Let $\psi^{\sharp}(\mathscr{F}) = (\psi^{\sharp}(E), p^{\sharp}, K)$ where

$$\psi^{\sharp}(E) = \{(k, e) \in K \times E \mid \psi(k) = p(e)\}$$

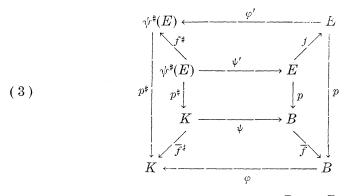
and $p^{*}(k, e) = k$, then $\psi^{*}(\mathscr{F})$ is a fibre space with lifting function λ^{*} given by

$$\lambda^{\sharp}((k, e), \omega)(t) = (\omega(t), \lambda(e, \psi\omega)(t))$$

where λ is the lifting function of \mathscr{F} . Let $h: B \times I \to B$ be the α -homotopy such that $h(b, 0) = b, h(b, 1) = \psi \varphi(b)$, then h induces $h': B \to B^{I}$. Define $\varphi': E \to \psi^{\sharp}(E)$ by

$$\varphi'(e) = (\varphi p(e), \lambda(e, h'(p(e))) \cup p(e))$$

Consider



where $\psi'(k, e) = e$ and $f^* = \varphi' f \psi'$. Since $\overline{f}^* = \varphi \overline{f} \psi$ and $\psi \varphi \sim_{\alpha} \mathbf{1}_B$, then $i(\overline{f}, U) = \overline{i}(\overline{f}^*, \psi^{-1}(U))$. We let $\nu = \varphi' f \colon E \to \psi^*(E)$, then by the commutativity axiom,

$$i(\psi'
u, \, p^{-1}(U)) = i(
u \psi', \, \psi'^{-1} p^{-1}(U))$$
 .

Define $H: E \times I \to E$ by $H(e, t) = \lambda(e, h'(p(e)))(t)$. If H(f(e), t) = efor any $e \in bd(p^{-1}(U)), t \in I$, then $h(\overline{f}(p(e)), t) = p(e)$ which is impossible since α refines $\kappa_{\overline{f}}(U) \ [2, p. 20]$, so $\psi' \nu = \psi' \varphi' f$ is homotopic to f by a homotopy without fixed points on $bd(p^{-1}(U))$ and by the homotopy axiom

$$i(\psi' m{
u},\, p^{-1}(U)) = i(f,\, p^{-1}(U))$$
 .

On the other hand, $i(\nu\psi', \psi'^{-1}p^{-1}(U)) = i(f^*, p^{*-1}(\psi^{-1}(U)))$. If $k \in \psi^{-1}(U)$, then $\overline{f}^*(k) \in \psi^{-1}(V) = W$ since $\alpha(\overline{f}(U)) \subseteq V$. Let $\omega: I \to W$ be a path such that $\omega(0) = \overline{f}^*(k)$ and $\omega(1) = k$. Define $\omega': I \to V$ by

$$\omega'(s) = egin{cases} h'(ar{f}\psi(k))(2s) & 0 \leq s \leq 1/2 \ \psi\omega(2s-1) & 1/2 \leq s \leq 1 \end{cases}$$

and let $f_{\psi(k)}$ be given by $f_{\psi(k)}(e) = \lambda(f(e), \omega')(1)$. Define $f'_{\psi(k)}: p^{-1}(\psi(k)) \rightarrow p^{-1}(\psi(k))$ by

$$f'_{\Psi(k)}(e) = \lambda[\lambda(f(e), h'(\overline{f}^{\psi}(k)))(1), \psi\omega](1)$$
,

then by [4], $f'_{\Psi(k)}$ is homotopic to $f_{\Psi(k)}$. But $f^*_k(k, e) = \lambda^*((k, e), \omega)(1) = (k, f'_{\Psi(k)}(e))$. Therefore $L(f^{*W}_k)$ is equal to $L(f^V_b)$ and is independent of k and ω . Applying the first part of the proof to the fibre space $\psi^*(\mathscr{F})$, the map f^* , and the open set $\psi^{-1}(U) \subseteq K$, we get

$$i(f^{\sharp},\,p^{\sharp\!-\!1}(\psi^{-1}\!\left(U
ight)))=i(ar{f}^{\sharp},\,\psi^{-1}\!\left(U
ight))\!\cdot\!L(f^{\sharp W}_{k})$$
 .

Therefore,

$$i(f, p^{-1}(U)) = i(\overline{f}, U) \cdot L(f_b^V)$$

which completes the proof of Theorem 1.

4. The index of a fixed point class. Let X be a compact ANR and let $f: X \to X$ be a map. Denote the fixed point classes of f by F_1, \dots, F_r . Let $(\tilde{X}, \tilde{p}, X)$ be the universal covering space of X, then by [2, pp. 43-44] there is a map $\tilde{f}^j: \tilde{X} \to \tilde{X}$ such that $\tilde{p}\tilde{f}^j = f\tilde{p}$ which has the following properties: (1) if $\tilde{f}^j(e) = e$, then $p(e) \in F_j$, (2) for each $b \in F_j$ there exists $e \in \tilde{p}^{-1}(b)$ such that $\tilde{f}^j(e) = e$. We say that \tilde{f}^j covers F_j . There is an open set U_j in X containing F_j such that $cl(U_j) \cap F_k = \emptyset$ for $k \neq j$. The index of F_j is defined by $i(F_j) =$ $i(f, U_j)$ and is independent of the choice of U_j .

THEOREM 5. Let X be a compact ANR with finite fundamental group. Let $f: X \to X$ be a map, let **F** be a fixed point class of f, and let $\tilde{f}: \tilde{X} \to \tilde{X}$ cover **F**. If there exists an open subset U of X such that for $x \in U$, f(x) = x if, and only if, $x \in F$, $f(x) \neq x$ for $x \in bd(U)$, and $cl[U \cup f(U)] \subseteq V$, where V is an open connected simply-connected subset of X, then

$$i(\mathbf{F}) = L(\widetilde{f})/L(\widetilde{f}_x^V)$$

for $x \in U$.

Proof. We first observe that $L(\tilde{f}_x^v) \neq 0$. Take $x \in F$, then since the fibre is discrete $L(\tilde{f}_x^v)$ is just the number of fixed points of \tilde{f}

restricted to $\tilde{p}^{-1}(x)$ which, since \tilde{f} covers F, must be greater than zero. Since $\pi_1(X)$ is finite, \tilde{X} is compact and we can apply Theorem 1 to obtain

$$i(f,\,U)=i(\widetilde{f},\,\widetilde{p}^{-1}(U))/L(\widetilde{f}_x^{_V})$$
 .

Since \tilde{f} has no fixed points outside of $\tilde{p}^{-1}(U)$, $i(\tilde{f}, \tilde{p}^{-1}(U)) = L(\tilde{f})$.

The existence of the simply-connected set V in the hypotheses of Theorem 5 is not as severe a restriction as it may appear. For example, if X is a finite polyhedron, (or a compact topological manifold, with or without boundary) f is homotopic to a map g which has only isolated fixed points [6, Theorem 5] [3, Theorem 2] and the homotopy carries F to a fixed point class F' of g of the same index [2, Theorem 3, p. 36]. Hence we can apply Theorem 5 to g and F' to compute i(F) (compare Theorem 5.2 of [8]).

References

1. F. Browder, On the fixed point index for continuous mappings of locally connected spaces, Summa Brasil. Math. 4 (1960), 253-293.

2. _____, The topological fixed point index and its application in functional analysis, Doctoral Dissertation, Princeton U., 1948.

3. R. Brown, On a homotopy converse to the Lefschetz fixed point theorem, Pacific J. Math. 17 (1966), 407-411.

4. E. Fadell, On fibre spaces, Trans. Amer. Math. Soc. 90 (1959), 1-14.

5. O. Hanner, Some theorems on absolute neighborhood retracts, Ark. Mat. 1 (1951), 389-408.

H. Hopf. Über die algebraische Anzahl von Fixpunkten, Math. Z. 29 (1929), 493-524.
 W. Hurewicz, On the concept of a fibre space, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 956-961.

8. Bo-ju Jiang, Estimation of the Nielson numbers, Chinese Math 5 (1964), 330-339.

9. J. Leray, Sur les équations et les transformations, J. Math. Pures appl. (9 me série) 24 (1945), 201-248.

10. B. O'Neill, Essential sets and fixed points, Amer. J. Math. 75 (1953), 497-509.

Received June 15, 1965. This research was supported in part by the Air Force Office of Scientific Research and by the National Science Foundation.

UNIVERSITY OF CALIFORNIA, LOS ANGELES

472