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ORDER SUMS OF DISTRIBUTIVE LATTICES

RAYMOND BALBES AND ALFRED HORN

In this paper, the authors define the order sum of a family
of distributive lattices which is indexed by a partially ordered
set P. The order sum reduces to the free product when P is
trivially ordered, and to the ordinal sum when P is simply
ordered.

It is proved that the order sum of conditionally implicative
lattices is conditionally implicative, and that every projective
distributive lattice is conditionally implicative. The second
half of the paper investigates conditions under which the
order sum of projective lattices is projective. It is shown that
if {La I a e P) is a family of distributive lattices having largest
and smallest elements, then the order sum of the family is
projective if and only if each La is projective, and P is such
that the order sum of the family {Ma | a e P) of one-element
lattices Ma is projective.

1* Existence and properties of order sums*

DEFINITION 1.1. Let {La \ a e P} be a family of distributive lattices

whose index set P is partially ordered. A distributive lattice L is

called the order sum of the family if for each ae P there exists a

monomorphism φa: La—+ L such that:

(1.1) L is generated by \Jaep<pa(La).

(1.2) If a < β and xeLa,ye Lβ, then φa{x) < φβ{y).

(1.3) If M is any distributive lattice and {fa: La —>M\ ae P} is

a family of homomorphisms such that whenever a < β9 fa(x) ^ fβ(y)

for all xe La and y e Lβy then there exists a homomorphism f: L—>M

such that fφa = fa for all aeP.

The existence of the order sum will be proved in Theorem 1.7.

THEOREM 1.2. / / L and M are order sums of {La\aeP}, then

Proof. Let φa\La-+L and ψa; La —* M be monomorphisms as in

Definition 1.1. By (1.3), there exist homomorphisms f\M^>L and

g:L-*M such that fψa = φa and gφa = ψa. We have fgφa = ffa = φa

for each α, and therefore by (1.1), fg = ILf the identity function on

L. Similarly gf = IM. Thus g = f*1 and / is an isomorphism.

By Theorem 1.2, the order sum of a family {La\aeP} is unique

up to isomorphism. We denote the order sum by ΣaepLa. If P is
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trivially ordered, in the sense that a <^ β only when a = β, then the
order sum reduces by very definition to the free product [2].

DEFINITION 1.3. Let {La\aeP} be a family of pairwise disjoint
lattices indexed by a chain P. The ordinal sum L of the family is
the set \JaβpLa with the following partial order: if xe La and y e Lβ,
then x ^ y if and only if either a < β, or a = β and x ^ y in the
original order of La. If the lattices La are not pairwise disjoint,
then the ordinal sum of the La is defined to be the ordinal sum of
pairwise disjoint lattices La such that La~La. If P is the chain
{0,1} with 0 < 1, then the ordinal sum of {Lo, Lx} is denoted by
Lo 0 Lx.

THEOREM 1.4. If P is a chain, then the ordinal sum L of
{La I a 6 P} is the order sum ΣaepLa.

Proof. We may assume the La are pairwise disjoint. Let φa: La—>L
be the inclusion map. Obviously conditions (1.1) and (1.2) hold.
Suppose the fa are as in (1.3). Let /: L—> M be the union (combined
function) of the fa. It is clear that / is a homomorphism and fψa — fa.

COROLLARY 1.5. If P is a chain, and for each aeP,La is a
one-element lattice, then ΣaePLa = P.

Proof. In this case the ordinal sum of the La is obviously
isomorphic with P.

THEOREM 1.6. Let {x{\ie 1} be a family of distinct variables.
Let E be a set of inequalities of the form xiχ xim ^ xόi + + xjn,
where the indices are in I. Then there exists a distributive lattice
L which is generated by a family {α̂  | i e 1} of elements such that

(1.4) {θLi\ie 1} satisfies every inequality in E.
(1.5) If M is a distributive lattice which contains a family

{bi I i G 1} which satisfies every inequality in E, then there exists a
homomorphism f\L—*M such that /(α^) = &; for all ie I.

Proof. This is a special case of a general theorem of algebra,
since the class of distributive lattices is equational. A different proof
for the case of distributive lattices is given in [l, Th. 1.9].

THEOREM 1.7. If {La \ a e P} is a family of distributive lattices,
and P is a partially ordered set, then J\aepLa exists.
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Proof. Let {xafi \aeP,ie La} be a family of distinct variables.
Let Ea be the set of all inequalities xatil, xa,im ^ xa,j1 + + %a,jn

such that iλ im ^ j \ + + j n in La. Let E be the union of
the Ea, ae P, together with all inequalities xaΛ ^ xβij such that
a < /3, ΐ e L α and jeLβ. By Theorem 1.6, there exists a distributive
lattice L generated by a family {aati \aeP,ie La} satisfying (1.4) and
(1.5). We will show L = ^aeP La.

Define φa: La—> Lby φa(i) = aa>ί. To show φa is a homomorphism,
let i e Lai j e La, and let k = ί + i . Since i ^ k, j ^ k, and k ^i + j ,
we have ααfi ^ αΛfJfe, αα>i tί αα,Λ, and αα,fc ^ aati + aa>j, since {αβ,< | i e La}
satisfies Ea. I t follows that aa>k = αtt)ί + αα,y, and so φa(i + i) =
φJS) + ^«(i). Similarly 9>«(ii) = φa{i)φa{3).

To show that φa is injective, suppose αα>i = aatj but i ^ j . There
exists a prime filter F in Lα such that i e F and j g JP. Let JkΓ = {0,1}
be the chain such that 0 < 1. Let ba>k — 1 if keF, ba,k= 0 if
keLa - F, bβtk = 1 if β ik<x>, keLβ, and δ ^ = 0 if β < a, keLβ.
Since ΐ 7 is a prime filter, {δα)A; | & e Lα} satisfies all inequalities in Ea.
Clearly if β Φ a, {bβ>k \ k e Lβ} satisfies all inequalities in Eβ. If β < 7,
then bβfk ^ &r,r for all k e Lβ, r e Lr. Indeed if not, bβfk = 1 and bhr = 0,
which implies 7 ^ a and therefore β < a, contradicting bβyk = 1. Thus
{fys,fc I /5 e P, & G Lβ} satisfies all inequalities in E. By Theorem 1.6,
there exists a homomorphism f: L—>M such that f(aβtk) = bβyk. In
particular f(aUfi) — 1 and f(aa>j) = 0. This contradicts αα>i — αα t i .

We now verify (1.1), (1.2) and (1.3). L is generated by U«ep <Pa(La),
since L is generated by {αα>i | a e P, ί e Lα}. Next suppose a<β,ie Laj

and i G Lβ. Then αα>ί ^ α^y since xa>i ^ ^ , y is in E. To show
«β,i ^ a>a,i, let Λf = {0,1} and let br,k = 1 if 7 S <*> k e Lr, and bΐfk = 0
if 7 ^ a, ke Lr. Clearly {bγΛ \7eP,keLr} satisfies all inequalities in
E. By Theorem 1.6, there exists a homomorphism f:L~+M such
that f(aβtj) = 1 and f(aati) — 0. Therefore aβtj ^ αα,ίβ

Finally suppose we have homomorphisms fa as in (1.3). Let
ba>ι = /«(i). Obviously {6a>i | α G P, i G L J satisfies all inequalities in E.
By Theorem 1.6, there exists a homomorphism f: L—>M such that
f(aa9i) = ba>i and therefore fφa = /α.

In [2, §9] a construction is given for the free product of a family
of distributive lattices which implies that the Stone space of the free
product of {La j a e 1} is the Cartesian product of the Stone spaces of
the La. This statement and the construction are not accurate. The
following theorem describes the set of all prime filters of Σα€i> La in
the general case where P is partially ordered.

THEOREM 1.8. Let $ be the set of all functions f on P such
that

(1.6) for each aeP,f(a) is either a prime filter in La or
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f(a)= 0 , or f(a) = La

(1.7) if a<β and f(a) Φ 0 , then f(β) = Lβ

(1.8) for some a,f(a) Φ 0 , and for some a,f(a) Φ La

There is a one-to-one correspondence between g and the set of all
prime filters in L — J\aeP La such that if F is the prime filter
corresponding to /, then f(cή = φa1(F(]φa(La)). Here φa is the
monomorphism described in Definition 1.1.

Proof. Let F be a prime filter in χ.«€ P Lay and let / be the
function on P such that f(a) = φά\F f] φa(La)). We show / e g . Since
φa{La) is a sublattice of ^\aepLa, (1.6) holds. Conditions (1.7) and
(1.8) follow immediately from (1.2) and (1.1) respectively. Conversely,
if fe g, let M = {0,1}, and let fa: La —M be such that fa(x) = 1 if
xef(a) and fa(x) = 0 if xeLa - f(a). Clearly {fa\aeP) satisfies
the hypothesis of (1.3). Therefore there exists a homomorphism
g: L-+ M such that gφa = fa. If we set F = {x e L \ g(x) = 1}, F is a
prime filter and f(a) = φ~\F f) φa{La)).

The following lemma describes the inequalities which hold within
an order sum.

LEMMA 1.9. Suppose L = χ α 6 ? La, and φa is the monomorphism
of Definition 1.1. Assume alf —,am are distinct members of
P, βi, , β« are distinct members of P, ir e LΆr for 1 ̂  r ^ m, and
j s e Lβs for 1 ̂  s ^ n. Then

(1.9) ^ ( i j ΨaJiJ ^ ^( i i ) + + ̂ βw(iJ if and only if
for some r and s either ar < βs or ar = βs and ir ^ j 8 .

Proof. The condition is obviously sufficient. By changing indices,
we may assume ax = βl9 , α p = βp, and {αp+1, , am} is disjoint
from {βp+1, « ,/9J, where p may be 0. Let M be the chain {0,1}.
Suppose the condition fails to hold. Then there exist prime filters Fk

in La]c, 1 <̂  k <̂  p, such that ik e Fk and ifc g ,Pfc. Let / be the function
on P such that

f(ak) = Fk, 1 ^ k £ p ,

/(α f t) = £βJfc , p + l ^ f c ^ m

/(α) ~ La , iί a > ak for some k,l ^ k ^ m

and

/(α) — 0 otherwise.

By Theorem 1.8, there exists a prime filter F in L such that
Λ ) ) = f(a). This implies ^ ( i * ) eF for 1 ̂  A; ̂  m, and
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ψβk{3k) & F for 1 fg k ^ n. Since F is a prime filter, (1.9) cannot hold.

DEFINITION 1.10. If P is a partially ordered set, we denote by
P* the order sum XαepΛtn where for each a, Ma is a one-element
lattice. By Lemma 1.9, the set \Jaep ψa{Ma) is isomorphic with P.
Therefore we will identify the lone member of φa(Ma) with a, and
P will be a generating subset of P*. If P is a lattice, P will not
usually be a sublattice of P*. P* is characterized by the property
that every order preserving function on P to a distributive lattice M
can be extended uniquely to a homomorphism on P* to M.

THEOREM 1.11. If Q is any nonempty subset of P, then ζ>* is
isomorphic with the sublattice N of P* which is generated by Q.

Proof. Let / be an order preserving function on Q to a distributive
lattice M. By [1, Lemma 1.7.] / can be extended to a homomorphism
on N to M if for any finite nonempty subsets S and T of Q, π(S) ^ Σ(T)
implies π(f(S)) ^ Σ(f{T)). This follows immediately from the fact
that by Lemma 1.9, π(S) ̂  Σ(T) only when a ^ β for some aeS,βeT.

THEOREM 1.12. Suppose P= \JkeκPk, where for each k, every
element of Pk is incomparable with every element of P ~ Pk. Then
P* is the free product of the Pfc*.

Proof. By Theorem 1.11, we may assume Pfc* is a sublattice of
P*. Let φk:Pk* —>P* be the inclusion map, and let fk: Pfc* —> M be a
homomorphism into a distributive lattice M. Let g:P—>M be the
union of the restrictions fk\Pk Then # is order preserving, and can
be extended to a homomorphism h: P* ~> M. We have h\P£=fk,
and the proof is complete.

2* Conditionally implicative lattices*

DEFINITION 2.1. If x and y are members of a lattice, #—>y
denotes the largest element z such that xz ̂  y.

DEFINITION 2.2. A lattice L is implicative it x—>y exists for
[Tall #, 2/ in L

It is known that every implicative lattice is distributive and has
a largest element. Note also that x~^y ^ y.

DEFINITION 2.3. A lattice L is conditionally implicative if when-
ever x, y are in L and x j£ y, then x—*y exists.
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A conditionally implicative lattice with a largest element is
implicative. If L is a lattice and U is obtained from L by adding a
largest element, then L is conditionally indicative if and only if U
is implicative. It follows that a conditionally implicative lattice is
distributive.

LEMMA 2.4. Let x, y, and z be members of a distributive lattice.
If %—+y and x—*z exist, then x—>yz exists and equals (x —>y)(x—*z).
If x~+z and y-+z exist, then (x + y)—>z exists and equals (x-*z)(y—>z).

Proof. The proof is immediate.

THEOREM 2.5. // La is conditionally implicative for each ae P,
then Σ«ep La is conditionally implicative.

Proof. By (1.1) and Lemma 2.4, we need only show t h a t if

#i> •••>&*, a r e distinct members of P , βu •••,&„ are distinct members

of P, ir e Lar for 1 ̂  r ^ m, js e Lβs for 1 ̂  s ^ n, x = φOl(ii) <pajim),

y = ψβjioΊ) + + <pPn(Jn), and a? S V, then a; —> 2/ exists. Indeed

every member of L is a sum of elements of type x as well as a

product of elements of type y. We may suppose ak = βk for 1 ^ k <^ p

and {ap+1, •••,«„} is disjoint from {/9P+1, , /5J. Since x^y,ikS θ\

for all fc. Let

Clearly xz ^ y and y ^ z. Suppose tt; = φTl(tι) ΨrJ^q) a n d ^ ^ ̂  y.

By Lemma 1.9, either w <L y, hence w ^ «, or for some r, s, yr = a8 = βs

and ί sί r ^ js. In the second case, w ^ φrr{tr) ^ ^ s ( ^ s —*.?*) ^ ^ Since

every element of ΣaeP La is a sum of elements of type w, it follows

t h a t x —> y — z.

REMARK. It is easily seen using Lemma 1.9 that the converse of
Theorem 2.5 also holds. Thus Theorem 2.10 below follows directly
from Theorem 2.5 and its converse.

COROLLARY 2.6. A free distributive lattice is conditionally
implicative.

Proof. A free distributive lattice is the free product of one-element
lattices.

DEFINITION 2.7. A lattice M is a retract of a lattice L if there
exist homomorphisms f: L—> M and g: M—> L such that fg = IM.

THEOREM 2.8. If for some β e P, Lβ has a largest and smallest
element, then Lβ is a retract of L = Σ«ep La. If P is trivially
ordered, the same holds with no hypothesis on Lβ.
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Proof. Let 0 and 1 be the smallest and largest elements of Lβ.
For each a, define fa: La —> Lβ by : for each x e La,

fa(x) = l if a>β

fa{x) = x if a = β

fa(x) = 0 if a £ β .

The family {fa\aeP} satisfies the hypothesis of (1.3). Therefore
there exists a homomorphism f; L—> Lβ such that fφβ = fβ = IL . In
case P is trivially ordered, fix an element x0 of Lβ and define fa: La —* Lβ

by

fa(x) = x0 if α Φ β

= x iί a = β .

The rest of the proof is as before.

THEOREM 2.9. A retract M of a conditionally implicative lattice
L is conditionally implicative.

Proof. Let / and g be homomorphisms as in Definition 2.7. Let
x, y be elements of M with x ^ y. Then g(x) ^ 0(2/), for otherwise
α = jfafa) ^ /#(?/) = 2/. Let a? = f(g{x)-+g(y)). We have g(x)(g(x)-r>
g{y)) ^ 0(2/). Applying / to both sides, we obtain xz ̂  y. Now
suppose #w <£ #. Then g(x)g(w) ^ (̂1/), and hence ^(w) ̂  0(0?) —• (̂?/).
Applying /, we find w ^ z. Thus « = a; —> ?/.

THEOREM 2.10. Let L be the free product of a family {La \ a e 1}
of distributive lattices. Then L is conditionally implicative if and
only if La is conditionally implicative for all a.

Proof. This follows from Theorems 2.5, 2.8 and 2.9.

3* Order sums and protective lattices* In contrast to the
situation for Boolean algebras, the direct product of two projective
distributive lattices is not always projective, [1, Example 8.3]. As a
replacement for this theorem, the results of this section show that
projectivity is often preserved under order sums.

DEFINITION 3.1. A distributive lattice L is projective if for every
pair of distributive lattices Lλ and L2, every homomorphism h: L-+L29

and every epimorphism / : Lx —> L2, there exists a homomorphism
g: L-+L! such that fg = h.

The following lemmas are known and easily proved.
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LEMMA 3.2. A retract of a projective distributive lattice is
projectίve.

LEMMA 3.3. If L is projective and f: L1~^ L is an epirnorphisrn,
then there exists a homomorphism g: L—^LX such that fg — IL. In
particular, every projective distributive lattice is a retract of a free
distributive lattice.

THEOREM 3.4. The free product L of a family {L{ \ i e 1} of
distributive lattices is projective if and only if L{ is projective for
each ie I.

Proof. The condition is necessary by Theorem 2.8 and Lemma 3.2.
If the condition holds, let M and N be distributive lattices, f: M -+N
an epimorphism and h: L—+ N a homomorphism. For each i e I, let
ψi be the monomorphism of Definition 1.1. Since Li is projective,
there exists a homomorphism g{\ Li~>M such that fg{ = hφit There
exists a homomorphism g: L—> M such that gφ{ = gim Now for each
ί> fgφ% = fffi = hψi. By (1.1), it follows that fg = h.

Theorem 3.4 is a generalization of the following known statement.

LEMMA 3.5. A free distributive lattice is projective.

Proof. Since a one-element lattice is projective, the result follows
from Theorem 3.4.

THEOREM 3.6. A projective distributive lattice is conditionally
implicative.

Proof. This follows from Corollary 2.6, Lemma 3.3 and Theorem^
2.9.

THEOREM 3.7. Suppose for each aeP, Ma is a retract of La.
Then M = Σ«ep Ma is a retract of L = Xα€p La.

Proof. By hypothesis there exist homomorphisms fa: La—>Ma and|
ga: Ma —• La such that faga = IMoύ. Let φa\ La-^L and ψa: Ma-+M
be the monomorphisms of Definition 1. Let ha = ψafa> By (1.3) there
exists a homomorphism f: L-^M such that fφa = ha, ae P. Similarly
there exists a homomorphism g: M—> L such that gψa = φaga. For
each a, we have fgψa = fφaga = ψafaga = Ψa Since M is generated
by U«6P ψa(Ma), it follows that fg = IM.

LEMMA 3.8. If P is a partially ordered set, then P* is projective
if and only if for each ae P there exists a finite sequence
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i 9 SafPia) of nonempty finite subsets of P such that
(3.1) α e S β l P ( β ) , and every member of Sa>p(a) is Ξ> a.
(3.2) for each r, Sa,r has a member ^ a.
(3.3) if a < β, then for every r there is an s such that Sa r 3

Proof. By [1, Th. 5.1], P * is protective if and only if for each
a there exist nonempty finite subsets Sa>0, , SatP(a) of P such that
(3.3) holds and

(3.4) a = Σ π(S*.r) ,
r=0

where the products and sum are relative to P * . By Lemma 1.9, (3.4)
is equivalent to (3.2) and

(3.5) for some r, every element of Sa,r is ^ a.

By renumbering the indices, we obtain (3.1) from (3.2) and (3.5).

THEOREM 3.9. Let {La \ a e P} be a family of distributive lattices
each of which have a smallest and largest element. Then L =
Σaep La is protective if and only if La is protective for each <x, and
P * is protective.

Proof. Suppose L is protective. By Lemma 3.2 and Theorem 2.8,
La is protective for each a. Since a one-element lattice is a retract
of any lattice, the projectivity of P * follows from Lemma 3.2 and
Theorem 3.7.

For the converse, let N be a free distributive lattice which is
freely generated by a family {da>i \ae P,ie La} of distinct elements.
Let Na be the sublattice generated by {da>i \ i e La], let fa: Na —* φa(La)
be the homomorphism such that fa(dafi) — <pα(i), i e La, and let /: N—>L
be the extension of the fa. By Corollary 3.5 and Lemma 3.3, there
exist homomorphisms ga: <pa(La) —> Na such that faga = Iφ{La). By
Lemma 3.2, we need only find a homomorphism g: L —> N such that

fg = h.
For each α, there exist sets Sa,l9 , Sa>p{a) as in Lemma 3.8.

For ieLa, let

ba,i,β = φa(i) if β = a

= φβ(0β) if β > a

if β £ a ,

where 0β, lβ are the smallest and largest elements of Lβ. Let
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Ca,i = Σ Π 9β(ba,i,β) .
r=l βesa,r

We wish to show that {caΛ \ae P,ie La} satisfies all the inequalities
of the set E defined in the proof of Theorem 1.7. First, suppose
fλ im^JiΛ- ••• + Jm where the elements involved are in La.
For each i e Lay we have cati = ga(<Pau))Pa + Qa, where Pa and Qa are
independent of i. Therefore

Ca,h Ca,im = gaψa{il) 9a<Pa(im)Pa + Qa

^ [QaψaUl) + + QaψaiDWa + Qa

Next, suppose a < /3, ίe La, and j e Lβ. To show ca>i ^ cβtj, first
observe that for any 7 6 P, 6«fi,r ^ 6βfi,7 (consider the cases 7 > β, 7 = /5,
and 7 ^ /51). By (3.3) for each r, 0 ̂  r <£ p(α:), Sα,r a Sβ,s for some s.
Therefore for every r,

Π 0 r ( ω ^ Π gτ(Ki.r)^ Π ^-(δβ)i,r) ̂  c β J .

Hence cΛfi ^ cβ ) i.
By Theorem 1.6, there exists a homomorphism g:L—>N such

that g(φa(i)) = CaΛ for all ae P, i e La. Now, since / extends each /β,
we have for ae P,ie Lα,

(3.6) Λ(9> β (i)) = / ( c β f i ) = X Π δ«,ίfβ.
r=l βeSa,r

By (3.1) and (3.2), it is easily seen that the right side of (3.6) reduces
to φa{i). Using (1.1), we conclude that fg — IM.

We have been unable to find workable necessary and sufficient
conditions for the projectivity of P * . It is necessary that P contain
no uncountable chain, since no protective lattice can contain such a
chain [1, Th. 4.2], On the other hand, the countability of P is a
sufficient condition, as shown by the following.

THEOREM 3.10. // P is countable, and La is a countable pro-
jective distributive lattice for each ae P, then L = 2J«€P La is
projective.

Proof. Let N, Na, fa, f, and ga be as in the proof of Theorem
3.9. Arrange the members of \JaeP φa{La) in a sequence α:, α2,
without repetitions. For each n, let an be the a such that αΛ e φa(La).
We define inductively:
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and for n > 1,

cn = 9an(an) H{cr\r <n,ar> an} + Σ ( c r | r < % , ^ < an} .

We wish to show there exists a homomorphism g: L—> N such that
g(an) = cTO for all n. By Theorem 1.6, this will be the case if we
show:

(3.7) If am < an , then cm ^ cn , and

If αWjL = = amp = anχ = . . . = α:Wα , and

(3.8) ami amp ^ αWl + + αWg , then

^ c m p ^ c W i + . . . +cnq .

We prove (3.7) by proving the following by induction on n:

If m < n , then α m < α n implies cm ^ cn , and
(3.9) .

α m > αΛ implies cw ^ cΛ .

For n = 1, this holds vacuously. Suppose (3.9) holds for all
n<p, and p>l. If m<pandam<ap, then cm<^Σ{cr\r<p, ar>ap}<^cp,
where the second inequality holds by definition of cp. Suppose m<p
and am>ap. Then cm is one of the factors of gap{ap) Π {cr I r<p, ar>ap}.
Hence to show cm ^ cp, we need only show cm ^ cr whenever r < p
and ar < α p . Since 6̂ w > ar and m < p,r < p, this follows from the
induction hypothesis.

As for (3.8), let α be the common value of ami, , αΛ . Replace
each of cWl, , cWj) by its defining formula and distribute the product
of these as a sum of products. We obtain cmjL cmp = A + B,
where

A = ga(amι) U{cr\r <ίuar> a} ga(aMp) Π K \r < ip \ ar > a)

and B is a sum of products each of which has a factor cr with ar < α.
By (3.7), B <̂  cΛl. It remains to show A ^ cΛjL + + cw . Using
(3.7), we have

cmi cmp ^ Π K I r < j k , ak>a) for 1 ^ & ̂  qr .

Therefore

% ^ Σ l9a(a%t) U{cr\r> j k , ak < a}]

Q
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This proves the existence of the homomorphism g. By Lemma 3.2,
we have only to prove fg = IL. This will hold if we show

(3.10) fg(an) = an , for all n.

We have fg(a1) = f{cx) = fgai(a*) = / ^ ( α O = a,. Suppose (3.10) holds
for n < p, and p > 1. Then

fg(ap) = Λrβp(α,) Π {/0(αr) | r < p, α r >

+ Σ {/ίKβr) I r < p, ar < ap} ,

which by the induction hypothesis,

= &v Π K I r < p, ar > αp} + Σ K I r < p, ar < αp}

by (1.2).

COROLLARY 3.11. / / P is countable, then P* is protective.

The next theorem gives another sufficient condition for the
projectivity of P*.

THEOREM 3.12. Let P be partially ordered set such that:

(3.11) for each a, {β \ β ^ a) is well ordered by ^ , and

(3.12) if a < β, then {y \ a ^ 7 ^ β} is finite.

Proof. For each α, let f(a) = a if a is a maximal member of
P, and /(α) = the immediate successor of a otherwise. Let f° = JF,
and for an integer p > 1, fp = ffp~λ. Let us write a ~ /5 whenever
for some 7,7 ^ a and Ύ ̂  β. By (3.11), ~ is an equivalence relation.
Let {Pfc I & e 1£} be the set of all ~ equivalence classes. By Theorem
1.12, P* is the free product of {P£\keK}. Therefore by Theorem
3.4, we may assume a ~ β for all a, β in P.

Fix an element α0 of P. For each α, let p{a) be the smallest
integer n ^ 0 such that fn(ct0) ^ a, and let #(α) be the smallest integer
n ^ 0 such that /%(α) = fpίa)(a0). For 0 ^ r ^ p(a), let

Sa.r = {/rK)} U { f W I 0 ^ n ^ q(a) - 1} .

Conditions (3.1) and (3.2) of Lemma 3.8 clearly hold. To verify (3.3),
we need only show that for each r there is an s such that Sa>r 5
sf{aUs. If a0 S a, then p(f(ά)) = p(ά) and q(f(a)) = q(a) - 1, and
for each r, Sa>r 2 S/(α),s. If a0 ^ α, then α - / ^ X O , p(/(α)) =
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p(a) + 1, ?(/(«)) - q(a) = 0, and Sa,r = Sf{a),r for each r £ p(a). Thus
by Lemma 3.8, P* is protective.

We return to the question of the projectivity of order sums of
protective lattices.

THEOREM 3.13. If Lo and Lx are free distributive lattices, Lo

is uncountable, and Lτ is infinite, then the ordinal sum Lo 0 L, is
not projective.

Proof. We may assume LQ and Lλ are disjoint. Let Lo and Lx

be freely generated by A = {aa \ a e 1} and B = {bβ \ β e J} respectively.
If Lo φ Li is projective, then by [1, Corollary 5.2, and remark following
Th. 5.1] for each a and β there exist finite sequences Sa,0, •• ,Sα,p(α)

and 5̂ ,0, , Sβ>p(β) of non-empty finite subsets of A (J B such that:

(3.13) aa - X Π (Sa,r)
r=0

(3.14) bβ = Σ Π (SβJ
r=0

(3.15) if r Φ s, Sβ,r g S^^

for each α, β and each r, 0 ^ r ^ £>(#), there exists an
(3.16)

s, 0 £ s ^ p(/S), such that Sα,r 3 S ,̂s .

Since aa < 6̂  for all a, β and 5 is independent, it follows
from (3.14) that ^ , r = {6̂ } for some r, say r = 0. If 0 < r £ p(β),
Π (Sβ,r) g bβ and bβgSβ>r by (3.15). Therefore by the independence
of B, Sβ,r n A Φ 0 for r > 0.

Let βu β2, be a sequence of distinct members of J. For each
integer n > 0, let

A - U S/>s.r n A .

Since / \ is countable, there is an a e A such that aag Γn. If we show

(3.17) bβne
PUQSa.r

for all n, we will have a contradiction since this union is finite.
Suppose (3.17) fails for some n. By (3.16) for 0 ^ r ^ p(α),

either Sα,r 2 S^^ = {bβj, or Sα,r 3 Sβ%t8 for some s > 0. The first
case is impossible by assumption. Hence for each r, Sayr contains an
element aa of Sβn,8 Π A. By (3.13), aa ^ X?S ««,.. Since A is inde-
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pendent, we have a = ar for some r and therefore aa e Γn, which is
a contradiction.

DEFINITION 3.14. If L is a lattice, let D(L) be the dual of L,
that is, L with reverse order.

The dual of a protective (free) distributive lattice is protective
(free).

In contrast to Theorem 3.13, we have the following.

THEOREM 3.15. If Lo and Lx are projective and either LQ has a
largest element or Lx has a smallest element, then L = £ 0 φ Lx is
projective.

Proof. We may assume Lo and Lx are disjoint. Let N be a free
distributive lattice with distinct free generators {dύΛ \ i e Lo} U {dlti \ i e Lx}.
For r = 0,1, let Nr be the sublattice generated by {dr^ \ i e Lr}, and
let fr:Nr—>Lr be the homomorphism such that fr(drti) = ί. Let
f:N-+L be the homomorphism which extends f0 and fx. By Lemma
3.3, there exists homomorphisms gr = Lr~^Nr such that frgr = ILr.

Suppose Lo has a largest element 1. Define g: L—> N by

g(x) = go(x) , if x e Lo

= go{ΐ) + gλ(x) , if x e Lλ .

It is easily seen that g is a homomorphism and fg = IL. Hence L is
projective. If Lx has a smallest element, then Ό^L^ φ D(LQ) is
projective, since D{LX) has a largest element. Therefore L =

is projective.

COROLLARY 3.16. Let Lo and Lx he free distributive lattices.
Then L — Lo φ Lx is projective if and only if either

( i ) I/o and Lx are countable, or
(ii) Lo or Lx is finite.

Proof. If (i) holds, L is projective by Theorem 3.10. If (ii)
holds, L is projective by Theorem 3.15. Suppose neither (i) nor (ii)
holds. Then one of Lo, Lx is uncountable and the other is infinite.
In this case L is not projective by Theorem 3.13 and duality.

COROLLARY 3.17. Let Lo and Lx be uncountable free distributive
lattices, and {a} be a one-element lattice. Then Lo φ Lx is not
projective, but Lo φ {a} φ Lx is projective.

Proof. This follows from Theorems 3.13 and 3.15 and the associ-
ativity of ordinal sums.
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