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ORDER SUMS OF DISTRIBUTIVE LATTICES

RAYMOND BALBES AND ALFRED HORN

In this paper, the authors define the order sum of a family
of distributive lattices which is indexed by a partially ordered
set P. The order sum reduces to the free product when P is
trivially ordered, and to the ordinal sum when P is simply
ordered.

It is proved that the order sum of conditionally implicative
lattices is conditionally implicative, and that every projective
distributive lattice is conditionally implicative. The second
half of the paper investigates conditions under which the
order sum of projective lattices is projective. It is shown that
if {L.|a€ P} is a family of distributive lattices having largest
and smallest elements, then the order sum of the family is
projective if and only if each L, is projective, and P is such
that the order sum of the family {M,|ac P} of one-element
lattices M, is projective,

1. Existence and properties of order sums.

DEFINITION 1.1. Let {L.|a e P} be a family of distributive lattices
whose index set P is partially ordered. A distributive lattice L is
called the order sum of the family if for each a e P there exists a
monomorphism ¢,: L, — L such that:

(1.1) L is generated by U.er@a(La).

(1.2) If a< B and weL,,yc L, then @, (x) < pp(y).

(1.3) If M is any distributive lattice and {f,: L,— M|ae P} is
a family of homomorphisms such that whenever a < 8, f.(x) < fs(¥)
for all xe L, and y e Lg, then there exists a homomorphism f: L — M
such that fp, = f, for all ae P.

The existence of the order sum will be proved in Theorem 1.7.

THEOREM 1.2. If L and M are order sums of {L,|aec P}, then
L=M.

Proof. Let @,: L,— L and +,: L,— M be monomorphisms as in
Definition 1.1. By (1.3), there exist homomorphisms f: M — L and
g: L — M such that fv, = ¢, and gp, = ¥.. We have fgp, = fv. = @,
for each «, and therefore by (1.1), fg = I,, the identity function on
L. Similarly gf = I,. Thus g = f~* and f is an isomorphism.

By Theorem 1.2, the order sum of a family {L,|a e P} is unique
up to isomorphism. We denote the order sum by ZX,epL,. If P is

421



422 RAYMOND BALBES AND ALFRED HORN

trivially ordered, in the sense that a« < B only when a = 3, then the
order sum reduces by very definition to the free product [2].

DerINITION 1.3. Let {L.|aec P} be a family of pairwise disjoint
lattices indexed by a chain P. The ordinal sum L of the family is
the set U.epL, With the following partial order: if x e L, and y € Ly,
then ¢ < y if and only if either « < B, or @« =8 and # <y in the
original order of L,. If the lattices L, are not pairwise disjoint,
then the ordinal sum of the L, is defined to be the ordinal sum of
pairwise disjoint lattices L, such that L, = L,. If P is the chain
{0,1} with 0 <1, then the ordinal sum of {L,, L,} is denoted by
L,&® L.

THEOREM 1.4. If P 1is a chain, then the ordinal sum L of
{L,|a € P} is the order sum X, cpL,. '

Proof. We may assume the L, are pairwise disjoint. Let @,: L,—L
be the inclusion map. Obviously conditions (1.1) and (1.2) hold.
Suppose the f, are as in (1.3). Let f: L— M be the union (combined
function) of the f,. It is clear that f is a homomorphism and fp, = f,.

COROLLARY 1.5. If P is a chain, and for each aecP,L, is a
one-element lattice, then X,epL, = P.

Proof. In this case the ordinal sum of the L, is obviously
isomorphic with P,

THEOREM 1.6. Let {x;|te I} be a family of distinct variables.
Let E be a set of inequalities of the form x; - «++ +x; = x; + -+ +a;,
where the indices are in I. Then there exists o distributive lattice
L which is generated by a family {a;|1€ I} of elements such that

(1.4) {a;|7 eI} satisfies every inequality in E.

1.5) If M is a distributive lattice which contains a family
{b;|7€ I} which satisfies every inequality in E, then there exists a
homomorphism f: L — M such that f(a;) = b; for all 1¢e 1.

Proof. This is a special case of a general theorem of algebra,
since the class of distributive lattices is equational. A different proof
for the case of distributive lattices is given in [1, Th. 1.9].

THEOREM 1.7. If {L.|aec P} is a family of distributive lattices,
and P s a partially ordered set, them >,er L. exists.



ORDER SUMS OF DISTRIBUTIVE LATTICES 423

Proof. Let {,;|aeP,icL,} be a family of distinct variables.
Let E, be the set of all inequalities i, * *** *@u,i), = Bas, + *** + Zas,,
such that ¢+ -+ -7, <4+ - +J, in L,. Let E be the union of
the E,, ac P, together with all inequalities x,; < ®; such that
a <pB, ieL, and je Lg. By Theorem 1.6, there exists a distributive
lattice L generated by a family {a,,;|ae P, ie L,} satisfying (1.4) and
(1.5). We will show L = S.ep Lo

Define @,: L, — L by ¢.(i) = a,,;. To show ¢, is a homomorphism,
let teL, jeL, and let k=74j. Since 1<k, j<k,andk<1+7,
we have ,; < Qupy Quyj < Qoiy ANA G = Qi + Ay, Since {@,,; ]| 7€ Ly}
satisfies F,. It follows that a,, = @u; + Qe;, and so @.(¢ + J) =
Puli) + @ald).  Similarly @.(i5) = Pli)pald).

To show that ¢, is injective, suppose a.,; = a,,; but ¢ £ j. There
exists a prime filter F' in L, such that t€ F and j¢ F. Let M = {0,1}
be the chain such that 0<1. Let b,,=1 if keF, b,,=0 if
keL,—F, bg,=1if BLa, keL,, and b, =0 if S< «, ke L,.
Since F is a prime filter, {b,,.|k € L,} satisfies all inequalities in E,.
Clearly if B # a, {bs,.|k € Lg} satisfies all inequalities in E;. If 8 <,
then by, < b,, for all ke Lg, r € L,. Indeed if not, by, = 1and b,, = 0,
which implies ¥ < a and therefore 8 < «, contradicting bs, = 1. Thus
{bs,. | B€ P, ke Ly} satisfies all inequalities in E. By Theorem 1.6,
there exists a homomorphism f: L — M such that f(as,.) = bs;. In
particular f(a.;) =1 and f(a.;) = 0. This contradicts a,,; = a,,;.

We now verify (1.1), (1.2) and (1.3). L is generated by Ue.er Pa(Ls),
gince L is generated by {a.,;|ae P,1¢ L,}. Next suppose @ < 3,1 ¢ L.,
and jeLs,. Then a,; < a,; since #,; <g; is in E. To show
Gp,; Z A, let M ={0,1} and let b, =1 if vyLa,keL, and b,,=0
if vy<a,keL, Clearly {b,,.|veP, ke L,} satisfies all inequalities in
E. By Theorem 1.6, there exists a homomorphism f: L-— M such
that f(as,,) =1 and f(a.;) = 0. Therefore ag; £ a,,;.

Finally suppose we have homomorphisms f, as in (1.3). Let
b.,; = fALt). Obviously {b.,;|ae P, e L,} satisfies all inequalities in F.
By Theorem 1.6, there exists a homomorphism f: L — M such that
f(a,,;) = b,,; and therefore fp, = f..

In [2, §9] a construction is given for the free product of a family
of distributive lattices which implies that the Stone space of the free
product of {L,|ae I} is the Cartesian product of the Stone spaces of
the L,. This statement and the construction are not accurate. The
following theorem describes the set of all prime filters of >.er L, in
the general case where P is partially ordered.

THEOREM 1.8. Let X be the set of all functions f on P such
that
(1.6) for each aecP,f(a) is either a prime filter in L, or
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fl@) =@, or f(@) =L,

L.7) if a<B and f(a) # @, then f(B) = Lg

(1.8) for some «a, f(a) = @, and for some «, f(a) = L,
There is a one-to-ome correspondence between F and the set of all
prime filters in L = >\,ep L, such that if F 1is the prime filter
corresponding to f, themn f(a) = @;(F N@u(L,). Here @, is the
monomorphism described in Definition 1.1.

Proof. Let F be a prime filter in S.er L., and let f be the
function on P such that f(a) = ¢z*(F N @u(L,). We show fe . Since
Po(L,) is a sublattice of S,er L., (1.6) holds. Conditions (1.7) and
(1.8) follow immediately from (1.2) and (1.1) respectively. Conversely,
if fe, let M ={0,1}, and let f,: L,— M be such that f,(z) =1 if
zef(a) and fu(x) =0 if xeL, — f(a). Clearly {f.|ae P} satisfies
the hypothesis of (1.3). Therefore there exists a homomorphism
g: L — M such that gp, = f,. If we set F ={xeL|g(x) =1}, F is a
prime filter and f(a) = @;(F N @uLya)).

The following lemma describes the inequalities which hold within
an order sum.

LEMMA 1.9. Suppose L = Siep L., and @, is the monomorphism
of Definition 1.1. Assume a,, ---,«, are distinct members of
P, By, -+, B, are distinct members of P,i,€ L, for 1<r=m, and
Js€Lg, for 1 <s<n. Then

(1.9) @, (%) =+ P, (1) = Pp, (1) + + o+ + Pp (Ja) 0f and only if
for some r and s either o, < B, or a, =B, and i, < j,.

Proof. The condition is obviously sufficient. By changing indices,
we may assume @, =pf,, ---,a, = (,, and {a,,, ---,a,} is disjoint
from {8,,1, -+, B.}, Where p may be 0. Let M be the chain {0, 1}.
Suppose the condition fails to hold. Then there exist prime filters F,
in L,,,1 <k < p, such that i, F, and j, ¢ F\,. Let f be the function
on P such that

fla) = F , 1=sk=p,
f(ak):Laky p+1§k§m
flo) = L,, if @« > a, for some k,1 <k<m

and

fla) = @ otherwise.

By Theorem 1.8, there exists a prime filter F in L such that
P (F' N @u(Ls)) = f(@). This implies ¢, (i) € F' for 1<k < m, and
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®p, (1) € F for 1 <k <n. Since F is a prime filter, (1.9) cannot hold.

DEFINITION 1.10. If P is a partially ordered set, we denote by
P* the order sum > .er M,, where for each «, M, is a one-element
lattice. By Lemma 1.9, the set U.er po(M,) is isomorphic with P.
Therefore we will identify the lone member of ¢.(M,) with «, and
P will be a generating subset of P*. If P is a lattice, P will not
usually be a sublattice of P*. P* is characterized by the property
that every order preserving function on P to a distributive lattice M
can be extended uniquely to a homomorphism on P* to M.

THEOREM 1.11. If Q is any monempty subset of P, them QF is
1somorphic with the sublattice N of P* which is generated by Q.

Proof. Let f be an order preserving function on @ to a distributive
lattice M. By [1, Lemma 1.7.] f can be extended to a homomorphism
on N to M if for any finite nonempty subsets S and T of @, #(S) < 2(T)
implies 7(f(S)) < 3(f(T)). This follows immediately from the fact
that by Lemma 1.9, 7(S) < X(T') only when a < 8 for some a« e S,8¢ T.

THEOREM 1.12. Suppose P = Uex Pr, where for each k, every
element of P, is imcomparable with every element of P — P,. Then
P* is the free product of the Py.

Proof. By Theorem 1.11, we may assume P; is a sublattice of
P*, Let @,: PF¥ — P* be the inclusion map, and let f,: P} — M be a
homomorphism into a distributive lattice M. Let g: P— M be the
union of the restrictions f,|P,. Then ¢ is order preserving, and can
be extended to a homomorphism h: P*— M. We have h|P} = f,
and the proof is complete.

2. Conditionally implicative lattices.

DerFINITION 2.1. If 2 and y are members of a lattice, v —y
denotes the largest element z such that zz < v.

DEFINITION 2.2. A lattice L is implicative if x— y exists for
rall z,y in L.

It is known that every implicative lattice is distributive and has
a largest element. Note also that x —y = y.

DEFINITION 2.3. A lattice L is conditionally implicative if when-
ever z,y are in L and 2 £ y, then ¥ — y exists.
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A conditionally implicative lattice with a largest element is
implicative. If L is a lattice and L’ is obtained from L by adding a
largest element, then L is conditionally indicative if and only if L’
is implicative. It follows that a conditionally implicative lattice is
distributive.

LEMMA 2.4. Let x,y, and z be members of a distributive lattice.
If x —y and x— 2z exist, then x — yz exists and equals (x — y)(x — z).
If x—z and y—z exist, then (x + y)—z exists and equals (x—z)(y —2).

Proof. The proof is immediate.

THEOREM 2.5. If L, is conditionally implicative for each ae P,
then Si.ep L. ts conditionally implicative.

Proof. By (1.1) and Lemma 2.4, we need only show that if
a, -+, a, are distinct members of P, B, ---, B, are distinct members
of Pyi,e L, forl<r=m, j, € Lp for L<s=n, =@ (1) *** *Pa_(Vm),
Y= (d) + +++ + pp,(4.), and x £y, then x—y exists. Indeed
every member of L is a sum of elements of type = as well as a
product of elements of type y. We may suppose o, = B, for 1<k <p
and {&,4,, **+, ,} is disjoint from {8,.,, -+, B,}. Since x £y, %, L J;i
for all k. Let

P . . ki .
2= 2 Pa (e —01) + 21 P, (Jk) .
k=1 k=p+1

Clearly z < y and y < 2. Suppose w = @, ({,)+ - @1 (to) and 2w < y.
By Lemma 1.9, either w < y, hence w < z, or for some 7, s, 7, = a, = 8,
and 4,¢t, < j,. In the second case, w < @, (t,) = @, (i, — J,) < 2. Since
every element of X,cr L. is a sum of elements of type w, it follows
that x —y = 2.

REMARK. It is easily seen using Lemma 1.9 that the converse of
Theorem 2.5 also holds. Thus Theorem 2,10 below follows directly
from Theorem 2.5 and its converse,

COROLLARY 2.6. A free distributive lattice s conditionally
implicative.

Proof. A free distributive lattice is the free product of one-element
lattices.

DEFINITION 2.7. A lattice M is a retract of a lattice L if there
exist homomorphisms f: L— M and ¢g: M — L such that fg = L.

THEOREM 2.8. If for some Be P, Lg has a largest and smallest
element, then Lg is a retract of L = Suer L.. If P is trivially
ordered, the same holds with no hypothesis on Lg.
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Proof. Let 0 and 1 be the smallest and largest elements of L.
For each a, define f,: L,— L by : for each xz¢ L,,

@ =1 if a>pB
fl@) =2 if a=p
fdw) =0 if aZpB.

The family {f,|aec P} satisfies the hypothesis of (1.3). Therefore
there exists a homomorphism f: L — L, such that fp, = f5 = ILs’ In
case P is trivially ordered, fix an element =, of L; and define f,: L,— L,

by

J@) =, if a=p
=z if a=48.

The rest of the proof is as before.

THEOREM 2.9. A retract M of a conditionally implicative lattice
L is conditionally tmplicative.

Proof. Let f and g be homomorphisms as in Definition 2.7. Let
x,y be elements of M with z £ y. Then g(x) £ g(y), for otherwise
z = fg(®) < fo(y) = y. Let z= f(g(x) —g(y)). We have g(z)(g(x) —
9(¥)) < 9(y). Applying f to both sides, we obtain zz <y. Now
suppose xw = y. Then g(z)g(w) < g(y), and hence g(w) < g(2) — g(¥).
Applying f, we find w < 2. Thus z =2 —y.

THEOREM 2.10. Let L be the free product of a family {L.|a € I}
of distributive lattices. Then L is conditionally implicative if and
only if L, 1s conditionally implicative for all .

Proof. This follows from Theorems 2.5, 2.8 and 2.9.

3. Order sums and projective lattices. In contrast to the
situation for Boolean algebras, the direct product of two projective
distributive lattices is not always projective, [1, Example 8.3]. As a
replacement for this theorem, the results of this section show that
projectivity is often preserved under order sums.

DEFINITION 3.1. A distributive lattice L is projective if for every
pair of distributive lattices L, and L,, every homomorphism h: L — L,,
and every epimorphism f:L,— L, there exists a homomorphism
g: L — L, such that fg = h.

The following lemmas are known and easily proved.
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LEMMA 3.2. A retract of a projective distributive lattice is
projective.

LEmmA 3.8. If L is projective and f: L, — L is an epimorphism,
then there exists a homomorphism ¢g: L — L, such that fg = I,. In

particular, every projective distributive lattice is a retract of a free
distributive lattice.

THEOREM 3.4. The free product L of a family {L;|teI} of
distributive lattices is projective if and only if L, is projective for
each 1€ 1.

Proof. The condition is necessary by Theorem 2.8 and Lemma 3.2.
If the condition holds, let M and N be distributive lattices, f: M — N
an epimorphism and h: L — N a homomorphism. For each 7¢I, let
@; be the monomorphism of Definition 1.1. Since L; is projective,
there exists a homomorphism g;: L; — M such that fg; = hep,. There
exists a homomorphism g¢: L — M such that gp; = g;. Now for each
%, fop; = f9; = hep;. By (1.1), it follows that fg = h.

Theorem 3.4 is a generalization of the following known statement.
LEMMA 3.5. A free distributive lattice is projective.

Proof. Since a one-element lattice is projective, the result follows
from Theorem 3.4.

THEOREM 3.6. A projective distributive lattice 1s conditionally
implicative.

Proof. This follows from Corollary 2.6, Lemma 3.3 and Theorem ]}
2.9.

THEOREM 3.7. Suppose for each aecP, M, is a retract of L,.
Then M = Siep M, ts a retract of L = >.ep La.

Proof. By hypothesis there exist homomorphisms f,: L,— M, and}
9ot My, — L, such that f,g,= I, . Let @, L,— L and . M.— M
be the monomorphisms of Definition 1. Let h, = .f.. By (1.3) there
exists a homomorphism f: L — M such that fp, = h,, « € P. Similarly
there exists a homomorphism g¢g: M — L such that gy, = p.9.. For
each «, we have fgv, = fPula = Vafala = Va. Since M is generated
by Ueer vo(M,), it follows that fg = L.

LEMMA 3.8. If P is a partially ordered set, then P* is projective
of and only if for each ac P tlhere exists a finite Ssequence
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Seaos * 5 Sa,pcr Of nomempty finite subsets of P such that

3.1) aeSlS, ,w, and every member of S, .. s = a.

3.2) for each r,S,, has a member < «.

3.3) if @ < B, then for every r there is an s such that S,, 2
S, ;-

Proof. By [1, Th. 5.1], P* is projective if and only if for each
a there exist nonempty finite subsets S,,, ---, S, Of P such that
(3.3) holds and

(

N
2

(3.4) a =3 1(S.,) ,

(A

0

5
1l

where the products and sum are relative to P*. By Lemma 1.9, (3.4)
is equivalent to (3.2) and

3.5) for some r, every element of S,, is = a.

By renumbering the indices, we obtain (3.1) from (3.2) and (3.5).

THEOREM 3.9. Let {L,|aec P} be a family of distributive lattices
each of which have a smallest and largest element. Then L =
Sieer Lo is projective if and only if L, is projective for each a, and
P* 4s projective.

Proof. Suppose L is projective. By Lemma 3.2 and Theorem 2.8,
L, is projective for each «. Since a one-element lattice is a retract
of any lattice, the projectivity of P* follows from Lemma 3.2 and
Theorem 3.7.

For the converse, let N be a free distributive lattice which is
freely generated by a family {d,;|ae P,ic L,} of distinct elements.
Let N, be the sublattice generated by {d.,;|¢ € L.}, let f.: N,— @ (L)
be the homomorphism such that f,(d.,;) = @.(t), i € L,, and let f: N— L
be the extension of the f,. By Corollary 3.5 and Lemma 3.3, there
exist homomorphisms g.: @u(L.,) — N, such that f.g.= I, By
Lemma 3.2, we need only find a homomorphism ¢: L — N such that
f9 = I..

For each «, there exist sets S, -+, Sapw @S in Lemma 3.8,
For 1¢ L,, let

beip = @a(t) If B=a
=pp(0p) if B>a
=g@p(lg) if BZa,

where 05, 1, are the smallest and largest elements of L,. Let
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p(_a‘)

Cayi = > 11 9e(bai8)

r=1BESqy,,

We wish to show that {c,;|ae P, tc L,} satisfies all the inequalities
of the set E defined in the proof of Theorem 1.7. First, suppose
faw vve iy <41+ -+ + J,, where the elements involved are in L,.
For each i e L,, we have ¢,,; = 9.{Pai)P. + Q., where P, and Q, are
independent of 4. Therefore

ca,il' M 'ca,im = gacpa(il)° M 'gagDa(im)Pa + Qa
é [ga@a(jl) "]“ M + ga¢a(jn)]Pa + Qa
= ca,jl + cee Cc\',j,n .

Next, suppose a < B, 1€ L,, and je Ls. To show ¢, < ¢cg,;, first
observe that for any v e P, b,,;,; < bp,;, (consider the cases v > 8, v =8,
and v %2 8). By (3.3) for each 7,0 < » < (@), S.,, 2 Sp,, for some s.
Therefore for every 7,
H gr(ba,i,r) = H gr(bmi,7‘) = . g?‘(bﬁ,a',r) = Cpij -
TESa,r TESR,s TESB s

Hence c,,; < ¢,;.

By Theorem 1.6, there exists a homomorphism ¢: L — N such
that g(@au) = ¢ca,; for all «e P,7¢e L,. Now, since f extends each fj,
we have for a¢c P,i¢e L,,

»la)
(3.6) Fol@ui) = fewd = 3 TT buss.
By (3.1) and (3.2), it is easily seen that the right side of (3.6) reduces
to @.(?). Using (1.1), we conclude that fg = L.

We have been unable to find workable necessary and sufficient
conditions for the projectivity of P*, It is necessary that P contain
no uncountable chain, since no projective lattice can contain such a
chain [1, Th. 4.2]. On the other hand, the countability of P is a
sufficient condition, as shown by the following.

THEOREM 3.10. If P is countable, and L, is a countable pro-
jective distributive lattice for each wec P, then L = >,.ep L, 18
projective.

Proof. Let N, N,, f., f, and g, be as in the proof of Theorem
3.9. Arrange the members of U.er p.(L.) in a sequence a,, a,, ---
without repetitions. For each =, let a, be the a such that a, € @.(L,).
We define inductively:

€1 = go 1)



ORDER SUMS OF DISTRIBUTIVE LATTICES 431

and for » > 1,
Co = Go (@) [ e, |7 <m0, > a,} + S{e, |r <ma <a,}.

We wish to show there exists a homomorphism g¢: L — N such that
g(a,) = ¢, for all n. By Theorem 1.6, this will be the case if we
show:

3.7 If a,<a,, then ¢,<c¢,, and
If a"‘l: "'Zamp:anlz Y :a"q’ and
(3.8) Upys ot iy S g+ 00+ @y then

cml. eee .cmpg c”1+ cee +c”q .
We prove (3.7) by proving the following by induction on #:

(3.9) If m<n, then «, <a, implies ¢, <c¢,, and
’ a, > a, implies ¢, =c, .

For » =1, this holds vacuously. Suppose (3.9) holds for all
n<p, and p>1. If m<panda,<a,, thene, < S {c, |r<p, a.>a,} <c,,
where the second inequality holds by definition of ¢,. Suppose m <p
and a,, >a,. Then ¢, is one of the factors of g, (a,) II {c,| r<p, a,>a,}.
Hence to show ¢, = c¢,, we need only show ¢, = ¢, whenever r < p
and @, < «,. Since a, > a, and m < p,r < p, this follows from the
induction hypothesis.

As for (3.8), let « be the common value of «,,, --+, @, . Replace
each of ¢, , «+-, ¢, by its defining formula and distribute the product
of these as a sum of products. We obtain ¢, - -c,, = A+ B,
where

A :ga(aml)[[{crl’r<ih a, > a}’ ce ’ga(amp)ﬂ{crl7.<7:plar>a}

and B is a sum of products each of which has a factor ¢, with «, < a.
By 38.7), B=c,. It remains to show A < Coy + 00+ Cppe Using
(3.7), we have

Cyt 0t

Cu, = Il {c, |7 <Jpya, >a} for 1<k=<gq.

Therefore

q

q .
Cap e Cng Z 35 [0ulan) T e |7 > iy e < )]

M-

v

Cry® *0 0 "

S
3

9u(@n,)

)
=
I

1

=y

%

9u(Cm,)

cml. cee .cmp

k=1

v

£
S
I
i

Cpy® *00 ®
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This proves the existence of the homomorphism g. By Lemma 3.2,
we have only to prove fg = I,. This will hold if we show

(3.10) fo(a,) = a, , for all n.

We have fg(a,) = f(¢1) = [9e,(@1) = fa,9a,(@)) = @,. Suppose (3.10) holds
for n < p, and p > 1. Then

f9(a,) = f9q,(a,) IT {fo(a,) |7 < p, @, > @}
+ X {fo(a) | r < p e <a,l,

which by the induction hypothesis,

:ap:[]:{arllr<p:ar>ap}+Z{ar|/r<pyar<ap}

:ap,

by (1.2).
COROLLARY 3.11. If P is countable, then P* is projective.

The next theorem gives another sufficient condition for the
projectivity of P*.

THEOREM 3.12. Let P be partially ordered set such that:
(3.11) for each o, {B|B = a} is well ordered by <, and

(8.12) if @ < B, then {v|a <v £ B} is finite.

Proof. For each a, let f(a) =« if a is a maximal member of
P, and f(a) = the immediate successor of « otherwise. Let f° = Ip,
and for an integer p > 1, f¥ = ff*~', Let us write o ~ 8 whenever
for some v,v = a and v = 8. By (3.11), ~ is an equivalence relation.
Let {P,| ke K} be the set of all ~ equivalence classes. By Theorem
1.12, P* is the free product of {P;|ke K}. Therefore by Theorem
3.4, we may assume a ~ 8 for all a, 8 in P.

Fix an element @, of P. For each «, let p(a) be the smallest
integer » = 0 such that f"(a,) = «, and let g(«) be the smallest integer
n = 0 such that f“(a) = f*“(a,). For 0 < r < p(a), let

Se,r = {f" (@)} U{f"(@) |0 = n < q(a) — 1}.

Conditions (3.1) and (3.2) of Lemma 3.8 clearly hold. To verify (3.3),
we need only show that for each » there is an s such that S,,2
Srnee 1f 0 £ @, then p(f(a)) = p(a) and ¢(f(@) = g(@) — 1, and
for each 7,S,,2 Spw.. If @ =a, then a=f"“(a), p(f(a)) =
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p(@) + 1, ¢(f(a)) = g(@) = 0, and S,,, = S;.,, for each » < p(a). Thus
by Lemma 3.8, P* is projective.

We return to the question of the projectivity of order sums of
projective lattices.

THEOREM 3.13. If L, and L, are free distributive lattices, L,
1s uncountable, and L, is infinite, then the ordinal sum L,P L, is
not projective.

Proof. We may assume L, and L, are disjoint. Let L, and L,
be freely generated by A = {a.|ac I} and B = {bs| 5 € J} respectively.
If L, L, is projective, then by [1, Corollary 5.2, and remark following
Th. 5.1] for each a and B there exist finite sequences S.,, ***, Se,pw
and S;,, + -+, S;,,(8) of non-empty finite subsets of 4 U B such that:

»la)
(3.13) 0 = 2 11 (Sar)
p(g)
(3.14) by = 24 11 (Sp.0)
(8.15) it r+#s,85, & Ss.

for each a, 8 and each r, 0 < » < p(a), there exists an

(3.16)
s,0 < s < p(B), such that S,,2S;,, .

Since a, <b; for all a,8 and B is independent, it follows
from (3.14) that S;,, = {bs} for some r, say r =0. If 0 <r < p(B),
II(S;s,,) < bs; and bs¢ Ss, by (3.15). Therefore by the independence
of B,S;,NA=+ @ for r>0.

Let 8, 5., --- be a sequence of distinct members of J. For each
integer n > 0, let

P(By)

r, = ll{ Sﬂn,,ﬂA.

Since ', is countable, there is an « € A such that a,¢ I",. If we show

»la)

(3.17) bs, € U0 Se.r

for all n, we will have a contradiction since this union is finite.
Suppose (3.17) fails for some n. By (3.16) for 0 < r < p(a),

either S,.,2S;,,= {bs,}, or S.,,2S;,,, for some s> 0. The first

case is impossible by assumption. Hence for each r, S,,. contains an

element a, of S; ,,NA. By (3.13), a, =< >79a,. Since A is inde-
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pendent, we have & = «a, for some r and therefore a,c”,, which is
a contradiction.

DEFiNITION 3.14. If L is a lattice, let D(L) be the dual of L,
that is, L with reverse order.

The dual of a projective (free) distributive lattice is projective
(free).

In contrast to Theorem 3.13, we have the following.

THEOREM 3.15. If L, and L, are projective and either L, has a
largest element or L, has a smallest element, then L = L,@ L, 1is
projective.

Proof. We may assume L, and L, are disjoint. Let N be a free
distributive lattice with distinct free generators {d,,; |© € Ly} U {d,,;|7 € L,}.
For » = 0,1, let N, be the sublattice generated by {d,.|?€ L.}, and
let f,: N,— L, be the homomorphism such that f.(d,;) =7 Let
fi N — L be the homomorphism which extends f, and f;,. By Lemma
3.3, there exists homomorphisms g, = L, — N, such that f,g, = I, .

Suppose L, has a largest element 1. Define g: L — N by

9(x) = g4(%) , if xel,
= g,(1) + gi(®) , if velL,.

It is easily seen that ¢ is a homomorphism and fg = I,. Hence L is
projective. If L, has a smallest element, then D(L,) @ D(L,) is
projective, since D(L,) has a largest element. Therefore L =
D(D(L,) @ D(L,) is projective.

COROLLARY 3.16. Let L, and L, be free distributive lattices.
Then L = L,@ L, is projective i1f and only +f either

(1) L, and L, are countable, or

(ii) L, or L, is finite.

Proof. If (i) holds, L is projective by Theorem 3.10. If (ii)
holds, L is projective by Theorem 3.15. Suppose neither (i) nor (ii)
holds. Then one of L, L, is uncountable and the other is infinite.
In this case L is not projective by Theorem 3.13 and duality.

COROLLARY 3.17. Let L, and L, be uncountable free distributive
lattices, and {a} be a one-element lattice. Then L,D L, is not
projective, but L, P {a} B L, is projective.

Proof. This follows from Theorems 3.13 and 3.15 and the associ-
ativity of ordinal sums.
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