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ON THE BIHARMONIC WAVE EQUATION

ERNEST L. ROETMAN

Under appropriate restrictions of material and motion the
equation of motion for a vibrating elastic bar is (di + dl)u = 0.
Because of its mechanical importance, there is a large litera-
ture devoted to the eigenvalue problem for this equation but
solutions of boundary value problems for the equation itself
seem to have been ignored. It appears that Pini was the first
to seek a solution in terms of integrals analogous to thermal
potentials. Like Pini, we use a fundamental solution very
similar to that of the heat kernel to obtain potential terms
which lead to a system of integral equations. While Pini uses
Laplace transforms to obtain solutions to the integral equa-
tions, we observe that the problem may be reduced to one
integral equation of a complex valued function, f=a + λk*f,
effecting a significant simplification.

Along the way, we obtain, by reduction to Abel integral
equations, a general method of solving semi-infinite problems
which can solve boundary value problems not available to
Fourier transforms, the technique presently used.

The first appendix is a justification of the change of order of
integration for a key iterated integral; the computation of some im-
portant integrals is given in the second appendix.

2* The fundamental solutions* By standard Fourier transform
techniques, one finds that a fundamental solution for the equation

(1) (31 + d\)u = 0

is

( 2 ) K(x, t) = -π-vψ-112 exp (™- + i*λ .
V At 4 /

We also define

( 3 ) C(x, t) = Re K(x, t) , S(x, t) = Im K(x, t).

We obtain by straightforward computation:

( 4 ) dmK=^Kf

Δt

(5) (di + idt)κ = o,

(6) (di - idt)κ = o,
139
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and hence

( 7 ) (3t + 5

It is convenient to set

(8) K^x, t) = \tK(x9s)ds;
Jo

thus

(9) κι(x,t) = 0±
Δ

a = -π~112eiπli and h = — .
4t

where

Then

(10) 3βX1 = ^ J K 1 - - ^ J B Γ f

(11) 3 ^ = - iϋΓ,

(12) (32, + idt)Kλ = 0 .

3* Semi-infinite bar* We consider now the problem of the semi-
infinite bar; that is, we seek a function u(x, t) on D = {0 < x} x (0, Γ)
such that

(13)

and in

(14)

the limit

u(x

idi +

,0) =

%)u =

dtu(x,

f, t) =

= 0,

0) =

= α(ί)

o,

(15)

where the conditions on the functions a and b will be determined
presently.

We try a solution in the form

(16) u(x, t) = Γ[C(a?, ί - s)^(s) + S(x, t - s)f(s)]ds .
Jo

To relate φ and f to α and 6, we consider

(17) U(x, t; φ) = [*K(x, t - s)φ(s)ds .
Jo
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The next two theorems are essentially contained in [3] but for com-
pleteness we include them here. (We use BV and CBV to mean
respectively the classes of functions of bounded variation and continuous
and of bounded variation.)

THEOREM 1. If φ is BV on [0, T], then

(dl + idt)U= 0

on D.

Proof. By integration by parts

(18)

so that

(19)

by (11)

U = φ(0)K! + \

T= -iφ(0)K(x,t)

0

+ [

V, t - S)dφ(s)

X, t — s)dφ(s) .

Differentiation of (18) with respect to t and comparison with (19)
completes the proof. Defining

ue(x, t; φ) = Re U(x, t; φ)

us(x, t; φ) — Im U,

we have

COROLLARY. If φeC1 and ^ ' e B V on [0, Γ], then uc and us

satisfy (13).

Proof. Since (19) can be written as

dlU = -iφ(0)K(x, t) - iU(x, t; φ'),

we can apply Theorem 1 again.

THEOREM 2. // ^ G C B V ( [ 0 , T]), then

(21) lim U(x, t; φ) = -π-^V^ί* 0 ' ( ί 0 - s)~ι'2φ{s)ds ,
x-*0± J 0

(22) lim dxU(x, t; φ) = ±<p(t0)
x^0±
x-*tQ

on (0, T), and

(23) lim U = lim 3 , 1 7 = 0 .
ί->0+ ί->0+
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Proof. Equation (21) and the first equality in (23) follow easily
by standard arguments. That

I dxK(xy t — s)φ(s)ds
Jo

exists for all x > 0 follows immediately from

where

J dxKφds

M(tu t2) = sup dxKds

V(φ; tl9 t2))M(tl9

ti ^ W < Z ^ t2

(see [2, p. 623]) and, since the integral exists, goes to zero as tu t2-+ t.
(The second part of (23) obtains from M(0, t) —> 0 as t —> 0.) On the
other hand, by integration by parts,

2Vπ x
- w112

w112]

4s V π x

so that the convergence is uniform with respect to x for | x | ^ δ > 0.
Therefore

(24) E/x(£, ί; φ) = iΓ,(^, ί - s)φ(s)ds .
Jo

For (p = 1,

Ux(x,t;l)= [tKx(x,s)ds= -J-!Lίχ [* s~312 exp (—
Jo 2v π Jo V 4s

which through a change of variable becomes

ds

ή pi 1

, ί; 1) = - - ^ =
Vπ

m-ll2eτmdm

where h = $2/4£. Since

lim h = 0 ,

(25) lim Σ7x(ί&, ί; 1) = ± 1 .

Now, for x > 0
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dxK(x, t - S)[φ(s) - φ(to)]ds

- φ(to)\ds

and

Λ I ̂  1 L sup I ?>(«) - φ(Q I

which goes to zero as ί—• ί0 and x-^0 + . Also,

I I2 I £ j SUp ! p(8) - φ(ta) ! + V(9»(8) - φ(t0); t - δ, t)\M(x)

where

M(x) = sup [t2dxK(x, t - s)ds
J*i

t - δ ^ t, < t2 ^ t. But,

3βiΓds = — m~ll2eί

I J#2 7Γ 1 J A ί ί j )

dm

where A(s) = x2/4(ί — s), and since the limits of integration are always
positive and the integral on (0, oo) exists, the last integral is uniformly
bounded in x and t, i.e. M(x) ^ Mx. Therefore,

121 ̂  ilίi{sup) ̂ (s) - - <p(tD); (t - δ, ί ) ) } .

Thus, for ί sufficiently close to t0 and δ so small that t — δ is also
close to ί0, the continuity of 9? and of its variation implies that 112

is small which completes the proof.
We shall later find it necessary to extend these theorems for an

important special case which is not contained in the above hypotheses.
We can show that our theorems do not hold without the BV require-
ment, but as we shall see, BV is not necessary; thus, the present
conditions are not the most natural for the kernel in question.

From the preceding we see that the conditions (14) are satisfied
and that the boundary conditions (15) must be related to the density
functions φ and ψ by

(26)

-7SΓ S> - )ds - VW \>
φ(t) = b(t) .

= ait)

We then have
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φ(t) = b(t)
( 2 7 ) ψ(t) = -VY4- (V - s)-v2a(s)ds - b(t).

at Jo

That is, we have proved that:

THEOREM 3. If b(t) and d/dt \ (t — s)-lβa(s)ds have first deriva-
Jo

tίves which are CBV[0, T], then (16) satisfies (13) with conditions
(14) and (15) where φ and ψ are given by (27).

4* The finite bar problem* We consider next the problem of
finding a function u(x, t) on the domain

D = {0 < x < 2} x (0, T)

which satisfies

(28) (3t + d\)u - O i n ΰ

with

u(x, 0 + ) = dtu(x, 0 + ) = 0

and

u(0 +, ί) = αxίί) , u(2 -, t) - α,(ί)

3 ( 0 +, ί) = WO , dβu(2 -, ί) = Wί)

for ί > 0.
We seek a solution in the form

ΐ φ , 0 = ue{x, t; φ1) + ^s(x, ί; fO
+ ^(2 α ί; ) + ^(2 - x, t;

We observe that, by the corollary to Theorem 1, if φt and ψi (1 = 1, 2)
have CBV derivatives, then (30) satisfies (28) and, by Theorem 2, that
(30) satisfies the initial conditions and finally that there hold the
relations

(312) 9 l + 2Jί-8/2 sin (1- + -j)}*^2 - 2Jί-8'2 cos (-ί + j
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cos ( 1 + ψjUφ! + U~112 sin (λ + -fWi
W 4 / J I \t 4/(313)

21'2Γ'2 + 2-1'2P'ty2 = - α

(314) 2<μ-3/2sin — + —)Uφ1 - 2^r3/2cos — + — H*fi
I \t 4/J I \t

where

/*0 = I /(* — s)g(s)ds
Jo

and

lV(ί) =

This system is equivalent to that found by Pini [3, p. 101].
For convenience we define operators

(32)

Eφ {t

and

(33) Ca + iSa = Ea , Cα

so that the system (31) can be written

I V + 2 i S V

Cιl2 + S1/2α/ri + 2- 1 / 2 P / V

Adding and subtracting the first and third equations and the
second and fourth equations respectively and setting

ψl + ψl = /l ψl + Ψ12 = 01

9>1 - ψ>2 = / 2 ψl - ψ2 = U2

^ i — #2 = ^4.2 δi + b2 = B2 ,

we obtain two systems of two equations each:

-2-1 / 2/1 / 2/1 - 2-1'2I1'2flr1 - C^fi - Sll2

gi = A

/i + 2 5 - ^ - 2C-1'201 - ft
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(38)

and

(39)

_2-v /v / J - 2~1'2Pl2g2 + C1 / 2/2 + Sll2g2 = A.

f2 - 2S-1IZA + 2C~llsg2 = B,

Defining operator matrices

2-1/2/1/2 _ 2 -

M= '
Γ 0

-2C- 1 / 2 2C~1/2

we can write (26) and (27) respectively as

(40) M

and

Ψ

where

(41) M-1 =

Hence, (36) can be written as

(42) ' f l

with

A
,-'NF

I SI

To simplify M^Nu we prove:

LEMMA. 1/ φ is CBV [0, T], then

(43) I^2E1I2φ = -2E-ιl2φ .

Proof. Consider

H(t) = — Γ
π Jo

- r)]-ll2drds
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which is a absolutely integrable and, hence, can be written as

H(t) = — Γdr?>(r)Γexp(i/(s - r))[(ί - s)(s - r)]~ll2ds
It JO Jr

= [ φ(r)Erfc(e~iπli(t - r)~ll2)dr .
Jo

Observe that

Λ-Erfc{e-iπ'\t - r)-1'2) = — VΊcdxK(2, t - r)
dt 2

and define

F(t) = —Vπ dxK(2, t)*ψ .
Li

Then,

r) - H(t)] - F(t)

τ- r)"1") - E((t - r)-l'*

τ -

- r - χ Γ φ(τ)E((t - r)~ll2)dr
J ί — δ

: = Λ + Λ •* 3 >

where £?(s) = Erfc(e~ixμs) and δ is to be chosen.
If T > 0, we write

+ τ- 1 (τφ(t + τ - p)E(p~1/2)dp = JΎ + J 2

Jo

By the properties of the complimentary error functions,

E((p + τ)~1/2) - E(p-lί2) = 2eiπ'4\P+τe-ilnn-3l2dn ,

whence,

I J, I ̂  2{sup (I 9> I; [0, Γ]) + V(φ; [0, T])}M(τ, δ)

where

Λf(τ, δ) = sup (τ-M erilnn~zl2dn\dp



148 ERNEST L. ROETMAN

Integrating the inside integral by parts and then integrating by parts
with respect to p, we obtain

2

\...)dp= -ί[τ-1(e-il{p+τ\v + τ) 5 / 2 - e~iIpp5l2)]z

w

p + τ) 3 / 2 - e~ilpp*l2)dp

+ ±-i \ r - 1 1 eilnn~ll2dn )dp .

Now then, we are justified in taking the limit as τ —> 0 to obtain

ϊίϊn Af(τ, δ) ^ sup [e^'^ip112 + 5/2p3/2)]^

- 5/2 Γ e-'»(ij)-1/£ + S/2pllz)dp

- 1/2 Γ e-ih>p-ll2dp
Jw

^ ^ δ 1 / 2 if δ < 1 .

On the other hand,

I J21 <: sup (I φ i; [0, /2) | dp)

^ B{τ112 + O(τ3/2)}

which goes to zero with τ. Thus, choosing δ such that

l im I J*! I < ε
r->0

and holding it fixed, we have

and hence,

For τ < 0,

lim I £ I = 0
τ-*0

lim I τ~ι{H{t + τ) - H(τ) - F(t) \ < e .
r->0

τ - - E((p ~

- p)E(p-ll2)dp

= J[ + Jί
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The estimates for J2

f are exactly like those of J2, the only change
in J[ occurs in the range, 0 ^ tλ < t2 ^ δ — τ, over which Mf(δ, τ) is
taken, but if \τ\ < δ, then we strengthen the inequalities if we extend
the range to 0 ^ t < t2 ^ 2δ and everything goes as before.

Thus (d/dt)H(t) — F(t) and the lemma follows by easy comparison
with (43).

The lemma established, we return to (42) where we now see that

2C~1/2

But

so that

M~ιN — I
1 ' 2VΎC-1'2 - 2S-1'2 2VΎS-112 + 2C-1/2J '

_ ί C ) - 1 / 2

and (42) becomes

(44)

M-'Ni = 2

1 +2

S —1/2 r<— i/:

C~1/2 S~1/:

/

Further, if we multiply the second equation in (44) by i and add
it to the first with

/ = /i + iΰi

a = d + iDit

(45)

(44) becomes

or

(46)

where

(47) k(t) = ίπ-ι'2eiπH-m exp (i/t) .

Starting from system (40) we obtain in an analogous fashion

(48) g = b- 2iE~ιl2g

where g = f2 + i^2, 6 = C2 + ίD2. Or,

f=a + 2ίE-ll2f

fit) = a(t) - \'k(t - s)f(s)ds
Jo
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(49) g(t) = b(t) + [k(t-
Jo

where k is defined in (47).
These two problems are combined in the equation

(50) f(t) = α(ί) + λft*/(ί).

5* Solution of the integral equation* We here solve the integral
equation (50) collecting our results at the end in the form of a theo-
rem. By formal successive substitution of (50) into itself, we obtain

(51) / = a + λ&*α + |λ|2&*(fc*α) + λ | λ |2 k*(k*{k*a)) + ••• .

In Appendix A, we show that for functions a(t) e CBV [0, T] we can
interchange the order of integration to obtain

k*(k*a) = (k*k)*a — k2*a

where by explicit evaluation

k2{t) = (2/τr)1/2r3/2exp(-2/0 .

This function has the same form as k (it is even absolutely integrable)
so that again

(fc*α)) = k*(k2*a) = (k*k2)*a .

Thus, we obtain for (51)

(52) / = a + Xk*a + | λ |2 k2*a + λ | λ |2 k3*a +

where

k2n -

k2n+1 = -λ-(2/πy'2(2n + 1 - ί)ί~3/2exp (-[n(2n + 2) - i(2n
Δ

(see Appendix B for the computation).

To see that this series has meaning, one observes that on [0, T]

I k21 ^ M2 and | kd \ ̂  Λfs

whence

I fc2n I = Λfa ί—V(w - 1)! , w > 0

and

|Λ21I+1| ^ \t\k3(t-s)\\k2(n^)(s)\ds
Jo

^^Kn - 1)! , ^ > 0 .
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Hence, if αeCBV and one sets A = max(α(ί); [0, Γ]) then

151

+ ! λ I A(M2 + I λ I Mt) X (I λ I MzT-'T^/in - 1)1
n=l

which shows that (52) is a uniformly convergent series for all λ and

(53) / = a + λfc*α + Σ | λ \2n (k2n*a + Xk2n+1*a).

To show that /, defined by (53), is continuous, one need only show
that k*a is continuous; the other terms have very smooth kernels. If

g(t) = \ s~3/2 exp (i/s)a(t — s)ds ,
J

then for tx > ί2

s~m exp (ΐ/s)α(ίi - s)ds
H

Sδ

s~3/2 exp (i/s)ai(s)ds
o

s-3/2 e X p (i
δ

= /! + I2 + /s

where az(s) = a(t± — s) — a(t2 — s) and <5 < (l/2)tλ is to be chosen. Now

I J* I ̂  (2 sup I α I + 2V(a; [0, Γ]))M,, i = 1, 2 .

The existence of the integral implies that

= SUP
u

t2 ^ U < V ^ ti

goes to zero as t2 —> tλ and that

0 £u < v ^ δ,

is small if δ is small. The uniform continutity of a makes I3 small

a s ί>2 * ^ ̂ i

One observes that

χk*f= χk*a + I λ
λ |2w

and we have proved:
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THEOREM 4. // αeCBV[0, T], then f, defined by (53), is a con-
tίnuous solution of the equation

f — a + Xk*f

for all λ.

6* Solution for the finite problem* The function /, determined
by (53), may not be BV; for example set a(t) = 1. Thus, the solution
of the system (34) may not satisfy the conditions of Theorems 1 and
2. However, we can establish the validity of the results directly.

PROPOSITION. If a is CBV, then

(54) U(x, t;k*a) = -U(x + 2, t; a) .

The proof of this proposition is easily effected by an inversion of
the order of integration and evaluation of the interior integral. Justi-
fication of the interchange can be obtained by adapting the argument
of Appendix A.

From (53) / — Xk*a is CBV, a is CBV by assumption and the
remaining sum has a bounded first derivative because of the form of
km, m ^ 2. Therefore,

U(x, t f) = U(x, t f - Xk*a) - XU(x + 2, t a) ,

and from Theorem 2

lim U(x, t f) = -eίπ"Γl2[f - Xk*a]

We observe that k*a = -2iE~ll2a and -2E~112 = U~1I2E112 (the
lemma) so that

U(x, t f)-*

Also, from Theorem 2

lim Ux = ±(f - Xk*a) - XUX(2, t; a).
x~*0±
ί->ί0

Since Ux(2, t; a) = — k*a, we see that Ux(x,t;f)-+f(t) as x—*0 +
which is the only case of interest.

We thus conclude that if I~ll2a,i and δ< (i = 1, 2) have first deriva-
tives which are CBV then (33) provides a solution to the equation
(3i + d2

t)u = 0 with homogeneous initial conditions and boundary values
given by (32).

Appendix A* To solve the integral equation above, it was neces-
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sary to interchange the order of integration for a very singular inte-
grand. We here prove that the interchange is valid.

If / is CBV[0, T] and \ a \ > 0, | δ | > 0 , Re a ^ 0, Re b ^ 0, then
for 0 ^t^ T

Jx = [['[(t - s)(s - u)]-*l2exp(-a(t - s)-1 - b(s - u)-1)
Jo Jo

• xf(u)dnds

= / W [(ί - β)(s - ^)" 3 / 2 exp (-α(ί - s)-1 - b(s - u)-1)
Jθ )u

• xdsdu = J 2 .

The method of proof will be to show that J2 exists, to restrict the
domain to that on which interchange is easily justified, and then to
show that the neglected terms vanish in the limit which will establish
the existence of Jλ and the equality Jλ — J2.

The first integral of J2 is evaluated explicitly in Appendix B as

VΈU= +

Wb Va

Thus

J

J2 = cλ\t -

which is equivalent to the first integration of Jl9

Now then,

{-b(s - u)-ι)f(u)du

= I u~m exp ( — b/u)f(s — u)du
Jo

will exist if we can show that

u-m e X p (_5/^\y(s _ u)(iu __> o as π, m —• 0 .

m

But

/(m, w) ^ (B + F(/, [0, Γ]))ikΓ(m, n)

where 5 = sup \f(t) |, 0 ^ ί ^ T, and

M(m, w) = sup I u~m exp (— b/u)du m ^ z ^ n .

The existence of the integral implies that M(m, n)-^0 as m, π —• 0;
hence, I(s) exists.
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Moreover, similar estimates give

(A.3) \I\£(B+ V(f, (0, β)))Λf(O, s),

where by integration by parts

Λf(O, s) ^ ! b I"11 exp (-δ/φ 1 / 2 - exp (- b/w)w1121

and thus M(0, s) ^ 3 | b |-V-1/2. Hence, I(s) is well behaved near the
origin so that the outside integral of Jλ is not improper at the origin
and its existence will be established if

has a limit as 3 —> 0. However,

Jl = Γ~V3/2exp(-α/s)/(ί - δ - s)ds
Jδ

- s) - I(ί - δ -s)]ds

where the first integral is proper and we may interchange the order
of integration to obtain

S t~2δ/Ct Cu + δ ft \

( - - )...d8dil
o \ju Jw Jί-δ/

Substitution into J/ gives J/ = J2' — Λ — I2 + 73, where /3 is the second
integral in J/ above. Since J2 exists, lim J2' = ^2. We have only to

δ- O

show that /,• — 0̂ (i = 1, 2, 3) with S to have J2 = J2.
We integrate the first integral of I3 by parts to obtain

I(t - s) - I(t - δ - s) = b~1exp(-b/δ)δ1i2f(s - δ)

_ JL6-Iί VV2exp(-b/u)f(8 - u)du
2 Jo

(s - u)112 exp (-6(s - u)-ι)df{u)
8

which substituted into 73 gives

I 3 = b-\Lόl - J32 + I*) .

If we extend / to the negative reals by f(t) = /(0) for ί < 0, then

/31 = b-ψ'2 exp (-6/5) Γ"δs-3/2 exp (-a/s)f(s - δ)ds .
jδ
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The integral converges to I(s) as δ —» 0 so that I31 —> 0 as δ —> 0.
Observe that

u)du

where

M1(0, δ) = sup I Γ ^~1/2 exp (-b/u)du

V(f)]M1(0f δ)

, 0 ^ w < 2 ̂  δ.

By the same analysis as used to estimate M(0, s) we see that Mi(0, <?) ^
const. <53/2 and hence

/2 + (£ _ g)-l/2) #

Finally we have

[' (s - u)1'2 exp (-u(s- uy'Wiu) ^ iΓ<S1/2F(/; (s - δ, s)).

Since / is uniformly continuous on [0, T] so is V(f; (0, s)); thus,

"^"(/ (s — δ> s)) — °(1) as δ—̂> 0 uniformly in s, and

Integrals Ix and J2 are essentially the same as can be seen by
substituting s = u + v into Iλ and s = ί — v into 72. We thus consider
only Λ which we write as

S ί-2δ Γί

f(u) \ [(t — u — v)vλ~m exp ( — a(t — u — v)~λ — b/v)dvdu .
o Jo

Integrating the first integral by parts (integrating exp( — b/v)), we
obtain

)( — a/u)f(t —u)du

S ί-2δ rδ

duf(u) \ exp (— b/v — a(t — u — v)~x)
0 JO

x Γ i - i ; - v * ( ί - u - v ) - 3 / 2 + S/2vll2(t - u - v ) - 5 1 2

— CLV yt — 1h — D)

Ix = b-\Iu — J12 - /13 + Iu). Since In is just I31, I n - ^ 0 as δ-+Q
Since ί - u - v ^ ^, hence (t - u - v)~a ^ δ~α {a > 0), J^ ( i =

2, 3, 4) are absolute integrable as double integrals so that Fubini's
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theorem is applicable. Reversing the order of integration in 712 we
obtain

ηι 1l\^' pvπ ( ff (ΐ Of Oi\—^\

o 2 Jo

• xf(u)dudv .

The inside integral can be estimated by [B + y(/)]ilί3(δ, v) where

MB(δ, v) — sup I (t — u — v)~z12 exp ( — a(t — u — v)~Ύdu ,
I Jw

0 ^ / w ; < 2 ; ^ ί — 2§. By integration by parts we see that M3 satisfies

M,(δy 0) ^ 3 I a h 1 (ί - ^)1 / 2 + I α I"1 (25 - v)1'2

thus, I12—> 0 as δ —> 0. Similarly the inside integral J13, after reversing
the order of integration, can be estimated by K[(2δ — ^)~1 / 2 + (t — v)~1J2]
so that Ji3 —•> 0 as δ —> 0.

Estimates like those above are too coarse for I14; we must take
another approach. If we reverse the order of integration and then
integrate the inner integral by parts

S δ

vll2(t — v)~312 exp (— b/v — a(t — v)~ι)dv
0

— f(t — 2δ) I ^1/2(2δ — v)~m exp ( — b/v — a(t — v)~ιdv
Jo

S δ rt-28

v1'2 exp ( — b/v) \ exp( — a(t — u — v)~ι)
o Jo

x [ - 3 / 2 ( ί - u - v)-5l2f(u)du + ( t - u - v)-"2df(u)]dv

that is

aIΛ = f(0)Iul - f(t - 2δ)IU2 + IU3 + Ilu .

Now, J143 is just /13 and

so that /141 and J143 —> 0 as δ —•> 0.
For /144 we have immediately that

I Iiu I ^ (%1 / aΓ"M(ί - ^ - ^)- 3 / 2^F(/; (0,
Jo Jo

If δ < 1 and 0 < p < l , y = δp > δ and
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[~2\t - u - v)~3l2dV(f; 0, u)) = (T"* + Γ" β \ ί - u - v)~^dV{f)
JO \Jθ Jί-2/2/

; (0, ί)) + (22/ - v)-^V(f; (t - 2y, ξ))

(2δ - v)-^V(f; (ζ, t - 2δ))

by the second mean value theorem for Riemann-Stieltjes integrals
where t - 2y ^ ξ ^ t - 2δ. Therefore,

I IUi I ̂  2δ*ιχ2y - δ)-s'W(f; (0, ί)) + | - F ( / ; (ξ, t - 28)).

Since V(f, (0, u) is continuous in u, we have

I Ilu I ̂  2δ8<1-*>'8(2 - δ 1 - ^ ) ^ 2 ^ / ; (0, ί)) + o(l)

as δ^>0.
To complete the proof we have only to show that I142 —> 0 as d -+ 0.

The only question arises if a and 6 are both imaginary for which we
write b = ίβ, a = ihβ. If we set v = 2δ/(w + 1), than

J142 = ^

Given ε > 0, we can choose N such that

Γ dw ^ Γ(w + iyΊw-3l2dw ^ 2(iV + 1)-W-1/2 < e .

The remaining integral goes to zero with δ by a stationary phase
argument.

Appendix B* We here evaluate certain integrals which we have
used. From [1] p. 146(28)

L jr3 / 2 exp(-—α/

for Re (a) > 0. One can easily show that the formula is valid if
Re (a) ^ 0, I a | Φ 0. Thus, using this formula we have

[(t — u)uYm exp( —α(£ — u)~Ύ — h/u)du

I arg a \ ̂  π/2 , | arg 6 | ^ ττ/2 .

Thus for k*k, a = eiτ'2 b = e-iπ'2 and ^(ί) = (2/π)1/2r72exp(-2/ί).

ks(t) = k*kz= -—VΊ2/π)(3 - i) exp [-(4 - Zi)^1].
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Finally, by induction

and hence

= -λ-(2jπ)ιl\2n + 1 - ί)t~m exp (-[n(2n + 2) - i(2w +

The author expresses his gratitude to Professor W. Fulks who
suggested the problem and gave invaluable aid.
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