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ON EVANS KERNEL

MITSURU NAKAI

In classical potential theory on the plane, two important
kernels are considered: the hyperbolic kernel log (|1—Z2|/|2—C|)
on |z| <1 and the logarithmic kernel log(1/[z— ) on
|2] < 400, The former is extended to a general open Riemann
surface of positive boundary as the Green’s kernel.

The object of this note is to generalize the latter to an
arbitrary open Riemann surface of null boundary, which we
shall call Evans’ kernel. The symmetry (Theorem 1) and the
joint continuity (Theorem 2) of Evans’ kernel are the main
assertions of this note. It is also shown that Evans’ kernel
is obtained on every compact set in the product space as a
uniform limit of Green’s kernels of specified subsurfaces less
positive constants (Theorem 3).

The hyperbolic and logarithmic kernels are characteristic
of hyperbolic and parabolic simply connected Riemann surfaces,
respectively. The corresponding role is played by the elliptic
kernel log (1/[z, £]) for an elliptic simply connected Riemann
surface, i.e., a sphere, The generalization of it, which we
call Sario’s kernel, is shown to be obtained in a natural
manner from the Evan’s kernel,

Wide applications of Evan’s kernel are obviously promised, but
we do not discuss these here at all.

1. Positive singularities. Throughout this note, we denote by
R an open Riemann surface of null boundary, i.e., R e 0,4 (cf. Ahlfors-
Sario [1]). We denote by R the one point compactification of Alexandroff
and by oo the point at infinity, i.e., B = R U {} (cf. Kelly [4]).

Let ge B. A positive singularity (or more precisely, normalized
positive singularity) [, at ¢ is a positive harmonic function in a
punctured open neighborhood V(l,)c R (i.e., V(l,) U {q} is an open
neighborhood of ¢ in R) such that

(1) lim I(p) = +o
pEV(lg),p—q

and

(2) g *dl, = —2

for a (and hence for all) simple analytic curve a  V(l,) which is the
boundary of a neighborhood of ¢ and is positively oriented with respect
to this neighborhood. Here *dl, is the conjugate differential of dl,
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(Ahlfors-Sario [1]).
Two singularities I, and I/ at g B are said to be equivalent if
[, — l; is bounded in a punctured neighborhood of q.

LEMMA 1. There exists a positive singularity 1, for every geR.
All 1, are equivalent by pairs for each fixed q € R.

In fact, let ge R and {U, 2} be a parametric disk at ¢, i.e., U
is a neighborhood of ¢ and z a conformal mapping of U onto {|z| < 1}
with 2(q) = 0. Then [(p) =1log (1/|2(p)]) on V(,)=U —{q} is a
positive singularity at q. Let I, be another positive singularity at q.
Denote by p = p(z) the inverse mapping of z = 2(p), and assume that
li(p(z)) is defined and positive in {0 < |[z]| <7} (0<r<1). Let
*I1(p(z)) be the multiple-valued conjugate of I)(p(z)) on {0 < |z| < 7},
and consider f(z) = e~ @+l @) - In view of (2)

| dt = —27 (@ = p(12] = )

for every 0 < » < v'. Hence f(z) is single-valued in {0 < |z| < 7}. It
is also bounded, since I)(p(z)) > 0. Therefore f(z) can be continued to
all of {{z] < r}. Thus we can find a bounded analytic function ¢(z)
in {|z| < r} with ¢(0) == 0 and f(z) = 2"p(z) (n = 1,2, .--). Hence

lip(z) = —log | f(z)| = —nlog|z| — log |p(2)] .

Clearly log|o(z)| is harmonic in some {|z| < »”} (0 <" < r), and
thus (2) implies that » = 1. Therefore I, — [, is bounded in a neigh-
borhood of gq.

For the existence of a positive singularity (., at -, see Kuramochi
[5], Nakai [6], or Sario-Noshiro [15].

There can exist two or more nonequivalent singularities at oo.
For example, let R = {|z| < +o} — {0} and Ii(z) = xlog (1/]2])(0 <
[z <), —=Nlog|z|(|z] >1). Since {0 < |z|<BU{l< 2] < + =}
is a neighborhood of the Alexandroff point o« at infinity for R, all
12(0 < N < 1) are positive singularities at o, but the [4 — % are not
bounded in any neighborhood of <o if X\ = \.

2. Existence of Evans’ kernel. The logarithmic kernel
log (1/|z — {|) on the plane P = {|z| < + =} is a harmonic function
in z on P — {{} which possesses positive and negative singularities at
{ and o, respectively, and is symmetric on P x P. Having these
in mind, we generalize the logarithmic kernel to an arbitrary open
Riemann surface of null boundary as follows:
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DEFINITION. An Evans’ kernel e(p, q¢) on R is a mapping of R x R
onto (— oo, + =] satisfying the following four conditions:

(a) e(p, q) is harmonic in »p on R — {g}.

(b) e(p, q), as a function of p, is a positive singularity at ¢,

(¢) —e(p, q), as a function of p, is a positive singularity at oo,
and —e(p, ¢) and —e(p, ¢') are equivalent for every pair (¢, ¢')e R X R,

(d) e(p, q) is symmetric, i.e., e(p, q¢) = e(q, p) on R X R.

The condition (b) means that there exists a positive singularity
l, at ¢ such that

(3) e(p, @) = L,(p) + hy(p)

in a punctured neighborhood V(l,) of ¢q, where %, is a harmonic function
on V(l,) U{g}. Since [, is unique up to the equivalence, (3) has a
definite meaning. The condition (c) means that there exists a positive
singularity [l.. at o« independent of g such that suph, < +c and

(4) e, ) = —la(p) + Ry(p)

on R outside a compact set K, B. Since there can exist more than
one nonequivalent positive singularity, e(p, q) depends essentially on
le. For this reason, it would be better to call e(p,q) an [.-Evans’
kernel, indicating the dependence on [...

We are now able to state

THEOREM 1. On an arbitrary open Riemann surface R of null
boundary there exists an l.-Evans’ kernel which is unique up to an
additive constant.

The existence of a function satisfying (a), (b), and (¢) is known
(Evans [2], Selberg [16], Noshiro [10], Kuramochi [5], and Nakai [6];
see also Sario-Noshiro [15]). Such a function is usually called an
Evans-Selberg’s potential. Actually for each fixed ge R, a function
o(p, ¢) with (a), (b), and (c) is obtained from —I. and [, by the main
existence theorem of Sario [11] (see Ahlfors-Sario [1; p. 154]). Thus
the problem is to find a function %4(p) on R such that

o(p, 9) + k(q) = 0(q, p) + k(p)
for every p, qc R. Instead of seeking such a k(p), however, we will
prove the theorem in §3 and §4 by an indirect procedure.

3. Let ¢, be an arbitrary but then fixed point in R. Consider
open sets

(5) R,={p|peR, o(p, q) > —n}
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for each positive integer n. By (c), we conclude that R, is compact
in R. By the maximum principle, we also infer that R, is connected.
Clearly the relative boundary oR, of R, consists of a finite number
of piecewise analytic Jordan curves. The sequence {R,}; is an exhaus-
tion of R, i.e., R,CcR,., and R = U R,.

Let g,(p, 9) be the Green’s kernel on R,, i.e., the mapping of
R, x R, onto [0, +co] such that » — g,(p, q) is harmonic on R, — {g}.
It is a positive singularity at ¢ R, and vanishes on 0R,. Moreover
it is symmetrie, i.e.,

(6) 9.(p, @) = 9.(¢, D)

on R, x R, (see Ahlfors-Sario [1]). Consider the kernel u,(p, g) on
R, defined by

(7) %D, Q) = gu(p, @) — 1 .

Since R e 0, the increasing sequence {g,(p, ¢)}; diverges to + co.
However for {u,(p, q)}, we obtain the following (cf. Tsuji [17]):

LEMMA 2. The limit

(8) e(p, q) = i{rg Ua(D, Q)

exists on R X R and 1s an l.-Evans’ kernel. The convergence is
untform on K X {q} for all ¢e R and all compact sets K C R — {q}.

Let ¢ge R. By (c), there exists an integer n(g) such that
[o(p, @) — o(p, @) | < ¢(q)

on R — R,,, where ¢(q) is a finite constant depending only on ¢. If
n = n(q), then 0(p,q) — u.(p, ¢) is harmonic on R, and o(p,q,) —
u,(p,q) =0 on dR,. Hence

(9) | o(D, @) — u.(p, @) | < ¢(q)

for every pe R,. Therefore

(10) [ Untm(D, Q) — (D, @) | < 2¢(q)

for every pe R, with n = n(q) and m = 1,2, ---. Thus for an arbitrary
fixed g e R, there exists a subsequence of {u.,(p, 9)};° which is uniformly
convergent on each compact subset of R — {qg}.

Let D be a countable dense subset of R. Using the diagonal
process of Cantor, we can find a subsequence {n,};-, of {n}i" such that
for every fixed ge D, {u,, (p, ¢)}i-, converges to a harmonic function,
say e,(p), uniformly on each compact subset of R — {q}.
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Next fix p arbitrarily in B. By (b), w.(», q9) = u,(q, ) and thus

[Unim(Dy @) — UalD, @) | = |Usm(q, P) — (g, p)|. Hence by (10), we
obtain

for every ge R, with n = n(p) and m = 1,2, ---. Fix k, with n,, =
n(p). Then {u, (p,q) — U, (D, @))%, is a uniformly bounded sequence
of harmonic functions in ¢ and converges on a dense set D of R.
Hence by Harnack’s convergence theorem {u, (p, q) — unko(p, )}, and
a fortiori {u,,(p, )%, converges uniformly on each compact subset
of R — {p}. Set

hy(q) = limu, (v, @) ,

which is a harmonic function on R — {p}.
Thus we conclude that

(11) o(p, 9) = limu,(», ¢)

exists for every (p,q)e R x R. Again by (10), |e(p, ¢) — %, (p,9)| <
¢(q). By Harnack’s theorem, the convergence in (11) is uniform on
K x {q} for every qc R and every compact set K c R — {q}. Since
u,.(p, Q) = u,(q, »), e(p, q) clearly satisfies (d). In view of (11), (a) is
clearly satisfied by e(p, q). From (9), it follows that

(12) [o(p, @) — e(p, q) | < c(q)

for every pe R. Since p(p, q) satisfies (3) and (4), e(p, q) also satisfies
(b) and (c). Therefore e(p, q) is an [.-Evans’ kernel.

Finally we prove that (11) implies (8). Assume contrariwise that
(8) is not valid. Let {v,}:, be the complementary subsequence of
{m}ioy, ie., {Mim U {n)is = {n}7. Since {u,}7., does not converge
to e(p,q) on R x R, we can find a point (p,q)ec R X R and a sub-
sequence {¢,}r_, of {v,}7_, such that

(13) Eﬁm’o u#k(pu q,) # e(D1, ¢1)

exists. Since {u,,}i_, satisfies (9), by the same manner as above, we
can find a subsequence {m,};_, of {¢£,}7=. and an l.-Evans’ kernel ¢'(p, q)
on R such that (11) is valid for €'(p, q) and {u,.,)7-,. By (13), e(p,, q,) #

¢'(p1, ¢v)-
On the other hand, (12) is also true for ¢'(p, ¢) and thus

le(p, @) — €'(p, 9)| < 2¢(q)

for every pe R. Therefore p — e(p, q) — €'(p, q) is a bounded harmoniec
function on R and consequently a constant a(q) (see Ahlfors-Sario [1]).
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By the symmetry, q—e(p,q) — €¢'(p,q) = a(q) is also a bounded
harmonic function and so a(q) is a constant a, i.e., e(p, q) = €'(p, Q) + a
on R x R. Since u,(p, ¢,) = o(p, q.), e(p, ¢,) = €'(p, q) on R and thus
a = 0. In particular e(p,, q,) = ¢'(p,, ¢.), a contradiction.

4. To complete the proof of Theorem 1, we have only to show
the uniqueness of the [.-Evans’ kernel up to an additive constant.
Let e(p, ¢) and ¢'(p, q) be [.-Evans’ kernels. Consider the difference
E(p,q) = e(p,q) — ¢'(p,q). By (b) and (c), p— E(p, q) is a bounded
harmonic function on R, and so is ¢ — E(p,q). Similarly as above,
we conclude that FE(p, q) is a constant.

5. Joint continuity of Evans’ kernel. From the potential-
theoretic view point, it is very important that the logarithmic kernel
log (1/}z — {) is continuous on P X P = {(z,0)||z|,|{] < + <o} in the
extended sense. The joint continuity of Green’s kernel is well known.
We can also prove the corresponding fact for Evans’ kernel:

THEOREM 2. Ewvans’ kernel e(p,q) on R 1is jointly continuous,
1.e., e is a continuous mapping of B X R onto (— oo, + =],

Specifically, e(p, q) is finitely continuous on R X R outside the
diagonal set, and for any relatively compact subsurface V C R, the
decomposition

(14) e(p, @) = 9»(p, Q) + v(p, Q)

18 valid on V x V. Here g, is the Green’s kernel on V and v, s
a finitely continuous function on V x V.

We shall use Heins’ device (Heins [3]). Let ¢g,e R and V be a
relatively compact subsurface of B. We may assume that the relative
boundary oV of V consists of a finite number of piecewise analytic
Jordan curves. Assume that ¢, V. Set

.

d(q) = d(q; q,, V) = max le(p, @) — e(p, q0)

Observe that by (¢), e(p, Q) — e(p, ¢,) is a bounded harmonic function
in pon R— V. Since Re0y, e(p, q) — e(p, q,) takes its maximum and
minimum on 8V, and therefore

(15) le(p, q) — e(p, ¢) | = d(q)
for every pe R — V. First we show that

(16) limd(g) =0.

L'nd'(1]
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If this were not the case, then there would exist a sequence {¢,}r CV
such that lim,q, = q,, d(g,) > 0, and lim,d(q,) > 0. Let W be a
subsurface of R which is the same kind as V and such that
g WcWcV. We may assume that {¢,}7 c W. Take the Green’s
kernel g, on V and consider the function v,(p) = (e(p, ¢.) — e(p, ¢,))/d(q..).
This is harmonic on R — W and, by (15), |v.(p)| <1 for pe R — V.
Clearly = (g9,(p, q.) — g+(p, ¢,))/d(q,) + 1 + v,(p) are harmonic and non-
negative on V. Therefore

(17) [v.(p) | =1+ b(g.)
on V — W and consequently on R — W, where

b(q,) = max | g,(p, ¢.) — 9,(0, q,) |/d(q.) .
PEW

Since g,(p, q) is continuous on V x V and {1/d(¢,)}7 is bounded, we
obtain lim, b(q,) = 0. Hence from (17), it follows that {v,} is a
sequence of uniformly bounded harmonic functions on R — W. Let
pe R — W be arbitrary but fixed for the time being. Since e(p, q,,) —
e(p, ¢,) (m— o) and {1/d(q,)}> is bounded, lim, v,(p) = 0. Thus {v,}>
converges to zero uniformly on each compact subset of R — W and
in particular on 0V. However this is impossible, since max, ey, | v,(p) | =
d(q,)/d(q,) = 1. Hence (16) must be valid.

Let (p,, ¢y e R X R with p, = ¢,. In particular, choose V in such
a fashion that p,¢ V, q,e V. Let pe¢ V and gqe V. Then from (15)
it follows that

le(p, @) — e(po, @) | = | e(p, @) — e(Do, @) | + (a5 6, V) .
By (16) and lim,._, e(p, ¢,) = e(py, ¢,), We conclude that
lim  e(p, @) = e(p,, Qo) ,

(p,2)—(pg,90)

i.e., e(p, q) is finitely continuous on R x R outside the diagonal set.
Finally consider

(18) (D, @) = v(p, @) = e(p, Q) — g»(D, @)

on V x V. From what we have seen thus far, it follows that v(p, q)
is finitely continuous on V x V outside the diagonal set. Let p,e V
and W be an open neighborhood of p, with W V. For any ¢ > 0,
we can find an open neighborhood U of p, such that U c W and

(19) (D, Do) — € < v(p, q) < v(p, po) + €

for every (», )€ (@W) x U. For an arbitrary fixed g € U, the functions
of p on W involved in (19) are harmonic since positive singularities
cancel, and (19) is valid on 0W. Therefore by the maximum principle,
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(19) is valid on W. Thus in particular, (19) is true for every (p, q)
in U x U. Hence

(D, @) — v(Do, o) | = [0(D, Do) — V(Do Do) | + € .

Since lim,_,, v(p, Do) = (Do, Do), liM 400059000 VD, @) = V(Ds, o). Therefore
e is the sum of a finitely continuous function v and the Green’s kernel
which is also continuous on V x V.

6. Approximation by Green’s kernels. As a complementary
statement to Lemma 2, we shall prove

THEOREM 3. Let e(p, q) be an Evans’ kernel on R and g¢,(p, q)

be the Green’s kernel on R, = {p|peR,e(p, q) > —\} with a fived
g, €R. Then

(20) e(p, ¢) = lim (g;(p, ) — M)
untformly on each compact set of R X R, t.e.,

lim sup |e(p, ) — (9P, 9) —N)| =0

2—00(p,)EK XK

for every compact set K C R,

By a similar manner as in the proof of Lemma 2, we can show
that ¢'(p, ¢) = lim,_.. (g:(p, Q) — \) exists on R X R and €'(p,q) is an
Evans’ kernel such that p — ¢'(p, q) gives a positive singularity at oo
equivalent to that of p — e(p, ¢). Moreover the convergence is uniform
on K x {¢} with an arbitrary ¢c R and an arbitrary compact set
K CR — {g}. Since p— e(p, q) — €(p, q) is bounded and harmonic on
R, as in §4, e(p,q) — €(p,q) is a constant on R x R. Moreover
e(p, q,) = 9., q) — N = €(p, q,) on R,, and we conclude that e(p, q) =
¢(p,q) on R X R, i.e., the identity (20) is valid.

Let w(p, @) = (e(p, @) — (9:(p, @) — N\)) on R,. Fix an arbitrary
X >0 and let x > \,. For an arbitrary fixed ge R,, p— wy(p, q) is
harmonic on R, and for pecdR,, wyp, q) = (e(p, q) — (9:(p, @) — \)) =
(e(p, 9) — (9:(p, 20) — N) = e(p, q) — e(p, q.), since gx(p, q) = 9D, ¢,) = 0.
Therefore |w;(p, Q) | < maX,cqz, | (P, ¢) — e(p, @) | for pe R;, and thus

(21) lwip,q)| = max _ |e(p, q) — e(p, q)|

(0,0 € AR X By,

for every (p, q) e R, X RZO. By Theorem 2, |e(p, q) — e(p, q,)| is finitely
continuous on (9R;) X R, and thus

(22) M,= max _|e(p,q) — e, q)| < oo .

(p,q>6<6R1)xEXO
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By (c), »— e(p, q9) — e(p, q,) is a bounded harmonic function on B — R,
for each fixed ge R,. Thus from Re 0, it follows that

[e(p, q) — e(p, q)) | = max le(p, q) — e(p, q) | = M,

for every (p, ¢)e (R — R;) X R;. Hence in particular
(23) M, < M,

for all A > \. Therefore by (21), (22), and (23), there exists a finite
constant M and \, € (\,, + ) such that

(24) fwip, )| < M

for every (p, ¢) € R;, X R;, and N > \,.
Set fi(p, @) = wi(p, q9) + M. Then

(25) 0= filp,q) = 2M

on R, x R,. Hence p— fi(p,q) and q— fi(p,q) are nonnegative
harmonic functions on R,. Therefore

k(p, ') (0", @) = filp, @) = k(p, ) fa(?', @) ,
kg, )10, @) = L0, @) = kg, ¢) f(D', @)

for arbitrary points p, ', q, and ¢’ in R, . Hence for (s, t)e R; X R,,
k(s, t) is given by

k(s, t) = kRZO(s, t) = inf {c| e7'h(s) = h(t) = ch(s) for every h e HP(R,)} ,

(26)

where HP(R;) is the class of all nonnegative harmonic functions on
R;. From the Poisson formula, it follows that 1 < k(s, t) < o and

@7 lim ks, t) = 1

s>t

(cf. Nakai [7]). By (25) and (26), we obtain

| £, @) — [0, @) | = 2M(K(p, p")k(g, ¢') — 1)
and in turn
(23) | wip, @) — wa®', )| = 2M(k(p, P)k(q, ¢') — 1)

for every (p, q) and (9, ¢’) in R;, X R;. From (27) and (28), it follows
that the family {w;(p, 9)}:,, is equicontinuous on R; X R;. Therefore
the convergence lim, ... w;(p, ¢) = 0 on R, X R, outside the diagonal
implies the uniform convergence lim;_.. w;(p, ¢) on Rzolz X Rzo/z-

7. Sario’s kernel. The most important potential-theoretic kernel
on the extended plane P = {|z| < + o} is the elliptic kernel log (1/[z, {]),



134 MITSURU NAKAI

where

[2,8] =z = LIV 1+ [2FVI+ L] .

For simplicity, let s(z,{) = log (1/[2,{]) and e(z, &) =log(1/|z — ).
Observe that

(29) 82, ) = 3 log (L + e™=)(1 + 76%) + e(z, ) .

In view of this, the most natural generalization of the elliptic kernel
to an arbitrary closed surface S is as follows:

(30) s(p, @) = Flog (1 + e7*®*) (1L + e7**%) + e(p, q)

for (p,q)e S x S, where a is an arbitrary but then fixed point in
S, e a point in S different form a, and e(p, ¢q) is an Evans’ kernel
on S — {eo}.

For an open Riemann surface Sc0, the kernel s(p,q) can also
be defined by (30), where <« is taken as the Alexandroff point at

infinity of S.
Even if S¢ 0,4 maintaining the formality (29), we may define

(31) s(p, @) = log (1 + e ¥®*)(1 4 e**%) + ¢g(p, q) ,

where g(p, q) is the Green’s kernel on S.
Then the kernel s(p, ¢) on an arbitrary Riemann surface S enjoys

most of the important properties of the elliptic kernel, and thus may
be regarded as a generalization of the elliptic kernel. It satisfies the
following:

(@) s(p, q) is bounded from below on S x S,

(B) s(p, @) = s(g,p) on S X 8§,
(7) 4,5(p, @) exisis on S — {a, q}, s continuously extendable to

S, and the resulting 2-form 1is independent of q,
0) for every subsurface QS with 2¢0,4 there exists a
finitely continuous function vy(p,q) on 2 x Q such that

(32) s(p, q) = go(p, q) + vo(D, Q)

on 2 x 2, where g (p, q) is the Green’s kernel on Q.

In general, a function with the four properties (a)—(0) may be
called Sario’s kernel on S, since Sario [12, 13, 14] constructed such
a function (see also Nakai [8, 9]). In our case, the formulas (30) and
(31) enable us to prove («)—(d) quite rapidly.

The properties (8) and (v) are direct consequences of (30) and (31).
For open S, (0) is again an easy consequence of the very definition of
s(p, @) and (14). For closed S, we have only to consider the case
where Q is a parametric disk at - and a¢ 2. Observe that there is
only one positive singularity g.(p, -) at - up to the equivalence.
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Let

(D, q) = €D, @) — 9o(D, ) — 9(q, ) — go(D, @) .
Both p — v(p, q¢) and g — v(p, q) are harmonic on 2. Clearly

v(p,q) = min  v(p, q)

(9,q)E€(02) X (0R)

for every (p,q)e 2 x Q. Since v(p, q) = e(p, ¢)(> — ) is continuous
on (02) x (02), there exists a constant ¢ such that v(p, q¢) = ¢ > — .
Similarly as in the proof of (28) we obtain

[v(p, @) — v(@', @) | = [ v, @) — c| (ko(, D)ko(q, ') — 1) .
Thus v(p, ¢) is finitely continuous on 2 x 2. From this, (32) follows.

8. Finally we prove (a). We only prove it for open Se0, If
S is closed, then we have only to consider S — «. For S¢0, the
same proceedure with the replacement of e(p, q¢) by ¢(p,q) and with
an obvious modification gives the proof.

Take a relatively compact subsurface V of S containing a. Set

A, = inf s(p,q),

(p,Q)EV XV
A,= inf s(p,9)= inf _s(p,q)
(9,9)EVX(S—V) (9,9)E(S—V)XV
and
Ay = inf s(p, q) .

(9,9)€(S—V)X(S—F)

We have to show that A, > —«(z =1, 2, 3).
In general, s(p, @) > e(p, q) > — <. Since e(p, q) is continuous on
V x Vy Al g min(p;q)GVx? e(p, q) > —oo, _ _
Next consider the case (p,q)e (S — V) x V. Clearly
s(p, @) > e(p, @) — e(p, a) = w(p, q) .

By (¢), » — w(p, q) is bounded and harmonic in S — V. Since Se0,,

w(p, q) = min w(p, q)
PEIV

for every (p,q)e (S — V) x V. The function w(p, q)(> —) is con-
tinuous on (V) x V and thus

w(p, ¢) Z minw(p,g) = min _w(p,q) > —oo
PEIV (p,9)E(OV) XV

for all (p,q) e (S — V) x V. Therefore A, = min,,, ey W(P,q) > — co.

Finally let (p, q)e (S — V) x (S — V) and observe that
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s(p, q) > e(p, @) — e(p, a) — e(q, a) = v(p, q) .

By (¢), »— v(p,q) is bounded in a punctured neighborhood of oo.
Moreover it is harmonic in S — V — {q} and v(q, ) = + . By Se0,,
we infer

(33) v(p, 9) = min v(p, q)
PEIV

for every (p, q)e(S — V) x (S — V). Fix p arbitrarily in 6V. Simi-
larly as above, the minimum principle applied to the harmonic function
q— v(p, q) gives

(34) v(p, ¢) = min v(p, q)
qEIV
for every (p, q)e(@V) x (S — V). From (33) and (34), it follows that

v(p,q) = min  v(p,q)

(p,q)E(OV) X (0V)

for all (p,q)e(S — V) x (S — V). Again since v(p, ¢)(> — ) is con-
tinuous on (6V) x (0V), we conclude that

A;= min w(p,q) > —oo .

(p,q)€(OV) X (3V)
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