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ON THE RIGIDITY OF SEMI-DIRECT PRODUCTS
OF LIE ALGEBRAS

R. W. RICHARDSON, JR.

Roughly speaking, a Lie algebra L is rigid if every Lie
algebra near L is isomorphic to L. It is known that L is
rigid if the Lie algebra cohomology space H\L, L) vanishes.
In this paper we give an elementary set of necessary and
sufficient conditions, independent of Lie algebra cohomology,
for the rigidity of a semi-direct product L = S + PW, where p is
an irreducible representation of a semi-simple Lie algebra S on
a vector space W. These conditions lead to a number of new
examples of rigid Lie algebras. In particular, we obtain a
rigid Lie algebra L with H%L, L) Φ 0.

It follows from [9] that there is only a finite number of isomor-
phism classes of rigid Lie algebras with a given underlying vector
space. The "rigidity theorem" of [9] shows that L is rigid if
H2(L, L) = 0. Thus semi-simple Lie algebras are rigid. In general,
however, it is difficult to compute H2(L, L) and there are few known
examples of rigid Lie algebras which are not semi-simple. In consi-
dering the rigidity of semi-direct products L — S + PW, we avoid the
use of Lie algebra cohomology and appeal instead to the " stability
theorem" of [10]. Our results essentially reduce the problem of
rigidity for such semi-direct products to a classification problem in the
theory of semi-simple Lie algebras.

In a series of papers [6] written with an eye towards applications
to physics, R. Hermann has obtained results similar to ours in a
number of special cases. His method involves a direct computation of
H\L, L).

1. Preliminaries* Let V be a finite-dimensional real or complex

vector space and let A\V) denote the vector space of all alternating

bilinear maps of V x V into V. Let ^ t be the algebraic set in A2( V)

consisting of all Lie algebra multiplications on V. There is a canonical

representation of the group G = GL(V) of all vector space automor-

phisms of V on the vector space A\V) defined as follows. If geG

and φ e A2(V), then (g. φ)(χ, y) = giφig^x, g~xy)) for all x,yeV. The
algebraic set ^ f is stable under the corresponding action of G on
A\V). Moreover, the orbits of G on ^ correspond precisely to the
isomorphism classes of Lie algebra structures on V.

Let μ e ^£ and let L = (V, μ) be the corresponding Lie algebra.
Then L is rigid if the orbit G(μ) is an open subset of ^ € If V is
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a complex (resp. real) vector space, then it follows from [9, Prop.
17.1, p. 21] that G(μ) is in fact a Zariski-open subset of ^f (resp.
one component of a Zariski-open subset of ^£). Hence there exists
only a finite number of isomorphism classes of rigid Lie algebras with
underlying vector space V.

If μ, μr e ^f&nά if L = (V, μ) and 1/ = (V, μ') are the correspond-
ing Lie algebras, then L is a contraction of U if μ lies in the closure
of the orbit G(μ'). If L is rigid and is a contraction of I/, then it
follows that L is isomorphic I/.

2. Rigidity of semi-direct products* Let S be a semisimple
(real or complex) Lie algebra and let p be an irreducible representa-
tion of S on a finite-dimensional vector space W. We consider W as
an abelian Lie algebra and form the corresponding semi-direct product
L = S + PW. (See [1, pp. 17-20] for the appropriate definitions.)

THEOREM 2.1. Let L = S + PW be as above. Then L is not rigid
if and only if there exists a semi-simple Lie algebra U which
satisfies the following conditions: (a) there exists a semi-simple
subalgebra S' of U which is isomorphic to S (b) if we identify S
and S' by an isomorphism, then L'/Sf is isomorphic as an S-module
to W.

Here the S-module structure of L'jS' is determined by the adjoint
representation of Sr on U.

Proof. Let V denote the vector space direct sum S φ W; V is
the underlying vector space of L. We identify S and W with sub-
spaces of V in the usual manner. Let μ be the Lie algebra multipli-
cation on V corresponding to L. Suppose there exists a semi-simple
Lie algebra U satisfying conditions (a) and (b) above. We may assume
that V is the underlying vector space of Lf. If μ' denotes the Lie algebra
multiplication on V corresponding to Z/, we may assume further that
μ(s, s') = μ'(s, s') for every s, s' e S and that μ(s, w) — μ'(s, w) for
every s e S, w e W. Let F denote either the real field or the complex
field. For each teF,t^0, let gteGL(V) be defined by: gt(s) = s if
8 e S and gt(w) = tw if w e W. We let μt be the Lie algebra multi-
plication on V given by μt(x, y) = gt(μ'(gc\n), 9C\v)) for x, x e V.
Then the Lie algebra Lt = (V, μt) is isomorphic to U. It is easy to
check the following conditions : if s, s' e S, then μ(s, s') = μt(s, s') if
se S,w : W, then μ(s,w) = μt{s, w) if w, w' e W, then

μ*(w, w') = t~λμr{w, wr).
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It follows immediately that l im^/^ = μ. Thus L is a contraction of
U and hence L is not rigid.

Now for the converse. Let ^/ί denote the set of Lie algebra
multiplications on V. It follows from the '' stability theorem'' of
[10] (see, in particular Corollary 11.4) that there exists a neighborhood
U of μ in M such that if μλ e U, then the Lie algebra LL = (V, μx) is
isomorphic to a Lie algebra U = (F, μ') which satisfies the following
conditions : (1) if s,s 'eS, then μ(s, s') = μ'(s, s') (2) if s e S and
w G W, then μ{s,w) = μ'(s, w). If L is not rigid, we may assume that
1/ is not isomorphic to L. Let R denote the radical of U and let
prw : V—> W denote the projection with kernel S. Since R f]S — {0},
it follows that the restriction of prw to R is an injection. Since the
representation p of S on W is irreducible, it follows easily from (1)
and (2) that either R = {0} or that prw maps R isomorphically onto W.

Suppose R Φ {0}. Then [#, R] φ R and [R, R] is stable under the
adjoint representation of S (considered as a subalgebra of U) on ZΛ
The argument given above shows that [R, R] — {0}, hence that R is
abelian. In this case, it is an easy consequence of the Levi-Whitehead
Theorem that U is isomorphic to L, thus giving a contradiction.

Thus R = {0}, and consequently the Lie algebra U is semisimple.
It follows immediately from (1) and (2) above that U satisfies (a) and
(b) of Theorem 2.1. This completes the proof.

COROLLARY 2.2. Let L be as in Theorem 2.1 and let Lx be a Lie
algebra with the same underlying vector space as L such that L is
a contraction of Lλ. Then either Lλ is semisimple or Lx is isomor-
phic to L. Hence there exist only a finite number of isomorphism
classes of Lie algebras Lx such that L is a contraction of L1%

This was proved in the course of the proof of Theorem 2.1.

3. A classification problem* If a Lie algebra U satisfying
conditions (a) and (b) of Theorem 2.1 exists, it follows easily that S'
is a maximal semi-simple subalgebra of U. Consider now the problem
of finding, for each semi-direct product L = S + PW, with S semi-
simple and p irreducible, the set of all (isomorphism classes of) Lie
algebras L' such that L is a contraction of Z/. It follows from the
results of § 2 that this problem reduces to the following classification
problem:

Classify to within isomorphism the set of all pairs (Z/, S'),
where L' is a semi-simple Lie algebra and S' is a maximal semi-
simple subalgebra of U such that the adjoint representation of Sf on
L'jSf is irreducible. For each such pair describe the adjoint repre-
sentation of S' on L'/S'.
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The maximal semi-simple subalgebras S' of a complex semisimple
Lie algebra ΊJ have been classified by Dynkin [3, 4]. There remains
the problem of finding those pairs (I/, Sr) for which the adjoint re-
presentation of S' on L'/S' is irreducible and, for each such pair,
finding the highest weight of the representation of S' on L'/S'. In
the case of real Lie algebras the problem becomes considerably more
complicated.

3* Some examples* (1) Let on denote the Lie algebra of all skew
symmetric nbγ n matrices with real entries. Let p denote the identity
representation of on on Rn and let mn = on + pR

n mn is the Lie algebra
of the Lie group of all rigid motions of Rn. We may imbed on as a sub-
algebra of on+1 in an obvious manner. We consider on+1 as an o^-module
via the adjoint representation. Then on+1 splits, as an oΛ-module, into
a direct sum of on and an o%-submodule which is isomorphic to R%. It
follows from Theorem 2.1 that mn is a contraction of on+1; hence on+1

is not rigid.
(2) Let S denote the unique simple Lie algebra of dimension three

over the field C of complex numbers. By a half-integer we mean an
element of the set {1/2,1,3/2, •••}. For each half-integer k let pk

denote the irreducible representation of weight k of S on C2k+1. Every
irreducible representation of S is equivalent to some ρk. We denote
by Lk the semidirect product S + PkC

2k+1. If S is embedded as a
subalgebra of a semisimple Lie algebra L of rank r, then it is shown
in [8, p. 996, Th. 5.2] that the number of irreducible components
occuring in the complete reduction of the adjoint representation of S
on L is at least r. Moreover there always exists a three-dimensional
simple subalgebra of L (the principal three-dimensional subalgebra) such
that exactly r irreducible components occur. Combining this result
with Theorem 2.1 it follows that Lk is not rigid if and only if there
exists a semisimple Lie algebra of rank 2 and of dimension 2k + 4.
From the classification of simple Lie algebras over C, it follows easily
that Lk is rigid unless k = 1,2,3 or 5. If Lk is not rigid, there is
precisely one semisimple Lie algebra L (to within isomorphism) such
that Lk is a contraction of L.

4* Remarks on Lie algebra cohomology* A representation p
of a Lie algebra L on a vector space X defines on X the structure
of an L-module. If aeL and xeX we denote p(a).x simply by a.x.
An element x e X is an invariant of L if a.x — 0 for every a e L.
The set of invariants of L forms an L-submodule of X which we
denote by XL. If φ : X—* Y is a homomorphism of L-modules, then
φ(XL) c YL. Let S be a semi-simple Lie algebra and let X—* Y —> Z
be an exact sequence of finite-dimensional S-modules (and S-module
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homomorphisms). It follows easily from the fact that every finite-
dimensional S-module is semi-simple that the corresponding sequence
Xs __> ys _ , Zs of S-modules is again exact.

We assume familiarity with Lie algebra cohomology. For details
we refer the reader to [7]. If X is an L-module, we denote by
C(L, X) = @nC

n(L, X) the cochain complex used to compute the
cohomology of L with coefficients in X. We shall denote by

the corresponding cohomology group. If I is an ideal of L, then
there is a natural L-module structure on C(I, X) and this induces an
L-module structure on H(I, X). Let 0 —>X—* Y—>Z-+0 be an exact
sequence of L-modules. Then the corresponding exact sequence

0 — C(I, X) — C(I, X) ->C(I,Z)-+0

of cochain complexes is also an exact sequence of L-modules. Con-
sequently, the corresponding cohomology exact sequence

> Hn~\I, Z) — Hn{I, X) -> Hn(I, Y) -> H*(I, Z)-+ -

is an exact sequence of L-modules. Suppose now that there is a
semi-simple subalgebra S of L which is supplementary (as a vector
subspace of L) to /. Then, by restriction, we can consider each
Hn(I, X) (resp. Hn(H, Y), Hn(I, Z)) as an S-module. Hence the coho-
mology exact sequence above gives rise to an exact sequence

> H*-\I, Z)s -> H*(I, X)s — Hn(I, Y)s — Hn(I, Z)s-> - - - .

5. A rigid Lie algebra with ίΓ2(L, L)Φ$. Let S be the simple
3-dimensional Lie algebra over C, let n be a positive integer, let
W = C2n+1, and let p be the irreducible representation of weight n of
S on W. Let L = Ln denote the semi-direct product S + PW. Then
W is an abelian ideal in L and S is supplementary to If in L. We
consider L as an L-module via the adjoint representation. If we con-
sider C as a trivial S-module, then Hι(S, C) = 0 =H2(S, C) (see
[2. p. 113]). It follows from the Hochschild-Serre spectral sequence
[7, p. 603, Th. 13] that H\L, L) = H2(W, L)\ But H\W,L) is a
trivial If-module. Hence H\L, L) = H2(W, L)s.

Consider the exact sequence 0—+ W—+ L —> L/W—>0of L-modules.
It follows from the results of § 4 that there is a corresponding
cohomology exact sequence

>H1(W9L/W)S^H\W9 W)s-> H*(W, L)8-+

Since W is an abelian Lie algebra and W and L/W are trivial W-
modules, it follows that H\W, W) - Cn{W, W) and Hn(W,L/W) -
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Cn(W, L/W). Assume now that n > 1. Then it is easy to see that
σ(WL/W)s = 0 and hence that H\W, L/W)s = 0. Thus we have an
exact sequence 0~->H2(W, W)8(W,L)8.

It follows from the Clebsch-Gordan formula [5, p. 251] that the
tensor product representation of S on Wig CW decomposes into a direct
sum of representations of weight 2n, 2n — 1, •••, 1,0. Let T denote
the S-submodule of WigcW consisting of all skew-symmetric tensors.
Then the representation of S on T decomposes into a direct sum of
representations of odd weights 2n — 1, 2n — 3, , 1. In particular,
if n is odd, the representation of weight n occurs in the complete
reduction of T as a direct sum of irreducible S-modules. In this case,
it follows immediately that H\W, W)s = C2(W, W)s is 1-dimensional.
Hence H2(L,L) = H2(W, L)s Φ 0. Combining this with the results of
(2) of § 3, we obtain :

PROPOSITION 5.1. For every odd integer n > 5, the Lie algebra
Ln is a rigid Lie algebra with H\Ln, Ln) Φ 0.

REFERENCES

1. N. Bourbaki, Groupes et Algebres de Lie, Hermann, Paris, 1960.
2. C. Che valley and S. Eilenberg, Cohomology theory of Lie groups and Lie algebras,

Trans. Amer. Math. Soc. 63 (1948), 85-124.
3. E. B. Dynkin, Semisimple subalgebras of semi-simple Lie algebras, Mat. Sbornik

N. S. (72) 30 (1952), 349-462 (Russian). Amer. Math. Soc. Translations (2) 6 (1957),
111-245.
4. Maximal subgroups of the classical groups, Trudy Moskov. Mat. Obsc 1 (1952), 39-

166 (Russian), Amer. Math. Soc. Translation (2) 6 (1957), 245-379.
5. I. M. Gelfand and Z. Y. Sapiro, Representations of the group of rotations in three-

dimensional space and their applications, Uspehi Mat. Nauk. (N. S.) (47) 7 (1952), 3-117
(Russian). Amer. Math. Soc. Translations (2) 2 (1956), 207-316.
6. R. Hermann, Analytic continuation of group representations, I, II, III (to appear,

Comm. on Math. Phys.)
7. G. Hochschild and J. P. Serre, Cohomology of Lie algebras, Ann. of Math. 57

(1953), 591-603.
8. B. Kostant, The principal three-dimensional subgroup and the Betti numbers of a

complex simple Lie group, Amer. J. Math. 8 1 (1959), 973-1032.
9. A. Nijenhuis and R. Richardson, Cohomology and deformations in graded Lie

algebras, Bull. Amer. Math. Soc. 72 (1966), 1-29.
10. S. Page and R. Richardson, Stable subalgebras of Lie algebras and associative
algebras (to appear).

Received October 24, 1966. The author would like to acknowledge partial support
received from an O. N. R. Contract.

UNIVERSITY OF WASHINGTON




