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SIMPLIFYING INTERSECTIONS OF DISKS IN
BING'S SIDE APPROXIMATION THEOREM

F. M. LISTER

In Bing's Side Approximation Theorem for 2-spheres in
EΆ the disks on the approximating sphere and the disks on
the given sphere may intersect in a very complicated manner.
It is shown in this paper that the disks may be chosen so
that there are the same number of disks on the approximating
sphere as on the given sphere and the disks intersect in a
one-to-one fashion. Furthermore, the approximating homeo-
morphism may be chosen so that it maps each disk on the
given sphere onto the disk on the approximating sphere which
it intersects.

Applications are given to a study of the preservation of
tameness of subsets of the boundary of a crumpled cube under
re-embeddings of the crumpled cube in Ez.

An ε-mapping of a subset of E3 into E3 is a mapping which moves
no point a distance as much as ε. An ε-set in Ez is a set of diameter
less than ε. David Gillman [6] and L. D. Loveland [10, 11] have
used the following definition in connection with tame subsets of
2-spheres in E3.

Property (*, F, V). If F is a closed subset of a 2-sphere S in
E5 and V is a component of Es — S, then (*, F, V) is satisfied if for
each ε > 0 there exist an ε-homeomorphism h of S into E3, a finite
collection of mutually exclusive ε-disks {Du D2, •• ,D r} on h(s), and a
finite collection of mutually exclusive ε-disks {El9 E2, , En} on S
such that

( i ) h(s) is polyhedral,

(ii) h(s)- \JlntDjCiV,
(iii) h(s) Π s c \J Int Eif and

(iv) (U^)nF=0.
Bing's Side Approximation Theorem [3, Th. 16] may then be stated

as follows.

THEOREM A (Bing). If S is a 2-sphere in E3 and V is a com-
ponent of E3 - S, then (*, 0 , V) is satisfied.

We show in §6 that if (*, F, V) is satisfied, then the homeo-
morphism h and the collections of disks may be chosen so that the
following additional properties are satisfied.

( v ) r — n,
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(vi) h(Ei) = A, and
(vii) A Π S = h(s) nEt = (Int A) Π (Int Et).
We denote the property with conditions (i)—(vii) by (**, F, V).

Thus, as shown by Theorem 2, (*, F, V) is equivalent to (**, F, V),
This strengthens Theorem A, that is, (**, 0 , V) holds for any 2-sphere
S and either complementary domain V in E3. Furthermore, it is a
consequence of the Tietze Extension Theorem [8, page 82] and Dehn's
Lemma [12] that if (**, F, V) is satisfied and g is a homeomorphism
of S U V into E3, then (**, g(F), g(V)) is satisfied. The same invariance
then also holds for (*, F, V). See § 9. Some theorems on the invariance
of tameness and half tameness (as defined below) of subsets of a
2-sphere S in E3 under homeomorphisms of S U V into E3 follow from
this result and are given in §10.

Most of the definitions in this paper are like those used by
Loveland in [10] and [11]. We say that a closed subset F of a 2-sphere
in E3 is half tame if it is a subset of some 2-sphere which is tame
from one of its complementary domains and that F is tame if it is a
subset of a tame 2-sphere.

To show that (*, F, V) implies (**, F, V) we begin with an
approximation to S from V of the type given by (*, F, V). Then by
a series of steps involving a new selection of disks at each step we
obtain a finite collection of mutually exclusive small disks {A, A, , A*}
on the approximating sphere h(S) in one-to-one correspondence with
a collection of n mutually exclusive small disks {Eu E2, , En} on S
with the property that h(S) — \J Int A c V, the closure of the com-
ponent of A — S containing Bd A intersects S in the interior of the
corresponding disk Eif and (\J E{) D F = 0. The proof is then com-
pleted with an application of the Tietze Extension Theorem, Dehn's
Lemma, and a homeomorphism of the approximating sphere onto itself.
Details are given in Sections 4, 5, and 6.

2* Covering collections of disks* This section includes a key
step in obtaining the new collection of mutually exclusive small disks
on the approximating sphere. This result is stated and proved as
Lemma 3 below. The following lemma is a theorem of plane topology
and is stated here without proof.

LEMMA 1. If {Ku K21 •••, JBΓW} is a finite collection of mutually
exclusive compact sets in E% such that E2 — \J K{ is connected, then
there is a collection of mutually exclusive disks {Dly A> , -A} in
E2 such that iQ

A special cellular decomposition of a 2-sphere S is a finite cellular
decomposition of S in which each pair of intersecting cells intersect
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in an arc. Each 2-sphere has a special cellular decomposition of
arbitrarily small mesh [2]. The star stC p of a cell Cp of a cellular
decomposition is the union of the cells which intersect Cp. If j y is
a collection of sets we denote the union of the sets in sf by

LEMMA 2. If ^ — {CΊ, C2, •••, Cm} is a special cellular decom-
position of a 2 sphere S, J2? is a finite collection of mutually exclusive
disks each of which is a subset of the interior of a cell of &*, and
{&i, i^2, , &Q is a partition of &ί (plus possibly some empty
collections) such that &* c st Cp (p = 1, 2, , m), then there is a
collection of mutually exclusive disks {Du D2, - , Dm} such that
2ϊ* c Int Dp c st Cp.

Proof. Without loss of generality we assume that for each p, 3fp

is nonempty and there is a disk of &p in each cell of the star of Cp.
Denote the subcollection of 3rq each disk of which lies in Cp by &qp.
Now use Lemma 1 to cover each 3fq* by a disk Dqv which lies in Cp

in such a way that the disks in the resulting collection are mutually
exclusive. Then there is exactly one disk in Int Cp associated with
each cell in st Cp. A pattern like that in Figure 1 is obtained. For
q Φ p there is an arc Aqp from Dqp to Cq which lies except for end
points in (Int Cp — \J Drp) such that the arcs in the resulting collection
are mutually exclusive. Next there is an arc Bqp from Dqq to the
end point of the arc Aqp such that Bqp lies, except for its intersection

Figure 1.
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with Aqp, in (Int Cq — \J Drq — \J Asq). The arcs in the resulting
collection {Aqp U Bqp} over all of S are mutually exclusive. The required
disks are obtained (from the spider-like figures in Figure 1) by replacing
each of these arcs by a thin disk.

LEMMA 3. If & — {Cl9 C2, , Cm} is a special cellular decom-
position of a 2-sphere S, & is a finite collection of mutually exclusive
disks each of which is a subset of the interior of a cell of ^ and
{l&i, £&2, , &n} is a partition of &f such that ϋ%* c st Cp for some
Cp e ^ , then there is a collection of mutually exclusive disks
{A, A , , Dn) such that ^ * c Int A c st Cq for some Cq e <if.

Proof. Assign each subcollection ϋ% a cell Cp{i) of ^ such that
3t* c st Cp{ί). Let gfp be the union of all &/s assigned to Cp. Then
{i?i, ί?2, •••, Ŝ m} is a partition of ^ (plus possibly some empty
collections) satisfying the hypothesis of Lemma 2. Hence there is a
collection of mutually exclusive disks {Ely E2, , Em) such that
S?p* c Int Ep c st Cp. Now use Lemma 1 to cover each ^ * in Int Ep

by a disk A in lτAEp such that the disks in the resulting collection
are mutually exclusive. Then {A, A , •••, A*} is a collection of disks
satisfying the conclusion of Lemma 3.

For a given collection & of mutually exclusive disks on S to
satisfy the hypothesis of Lemma 3 that each disk be contained in the
interior of a cell of the cellular decomposition, it may be necessary
to obtain a new cellular decomposition by a homeomorphism of S onto
itself which carries the 1-skeleton of a given cellular decomposition
off the disks of Sf% The procedure is like that used by Bing in [2]
and we simply state the following lemma for future use.

LEMMA 4. If K is the 1-skeleton of a cellular decomposition of
a 2-sphere S, e > 0, and {Du A , # ,A*} is a finite collection of
mutually exclusive e-disks on S, then there is an ε-homeomorphism
h of S onto itself such that (\J A ) Π h(K) = 0 .

3* Intersection of a disk with a finite collection of disks*
Another important step in obtaining a new collection of disks on the
approximating sphere is given in this section. The main result is
Lemma 6, but the following lemma is needed first.

LEMMA 5. If S is a 2-sphere in E*, {El9 E2, , En) is a collection
of mutually exclusive disks on S, V is a component of Ez — S, D is
a disk in E5 with Bd D contained in V, and G is the component of
D - S containing BdD such that (cl G) f] S = (cl G) Π (U
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(cl G) Π Ei Φ 0 (i = 1, 2, , n) then the union of any collection of
components of D — G fails to separate Int D and each component of
D — G intersects exactly one of the sets (cl G) Π Ei (i = 1, 2, , n).

Proof. Let K = D — G. For each component K" of K,
Ka n (cl G - Bd D) Φ 0 and G - Bd Z> is connected. It follows that
if jzf is an indexing set for the set of components of K and & c j ^
then IntD - U«e^ # α = (G - BdD) U U«e^_^ # α is connected. It
follows from the fact that spheres are unicoherent [13, page 60] that
K" Π cl (Int D — Ka) is connected for each a e Stf and therefore Ka

may intersect at most one of the sets (cl G) f) E{. Since it must
intersect at least one of these sets, Ka intersects exactly one.

LEMMA 6. If the hypothesis of Lemma 5 is satisfied, then there
is a collection of mutually exclusive disks {A, D2, • • ,Dn} in intD
such that Bd A c V and (cl G{) n S = (cl G{) Π Int Eζ = (cl G) Π Int E{

(i = 1, 2, , w), where G{ is the component of Dι — S containing

Proof. By Lemma 5 each component of D — S intersects exactly
one of the sets (cl G) Π E{. Let ̂ f be the collection of all components
of D - G which intersect (cl G) Π E{. By Lemma 5, J?Γ* fails to
separate IntD. Since the ϋ^'s are mutually exclusive, {^Γ*, ^%ί*,
• , ̂ ^*} is a collection of sets satisfying the hypothesis of Lemma
1. Hence there is a collection of mutually exclusive disks {Dl9 D2,
.. ,ZU in IntD such that ^ Γ * c I n t A . Note that (c\G)f]Ei =
(cl G) n ^ ί * and (cl G) Π ^ fails to intersect Ek for ft ^ i. Thus
each D^ has the property that Bd A c F and (cl G<) n S = (cl G<) Π Int ̂  =
(cl G) n Int #,. A', {Ai, A2}, Gx, {Gn, G12} illustrate this in Figure 2.

4* Pairing disks in side approximations* The preceding lemmas
along with the Tietze Extension Theorem and Dehn's Lemma are used
to prove the following theorem which shows that a side approximation
to a sphere may be replaced by another such that the disks intersect
in a one-to-one fashion. See Figure 2.

THEOREM 1. If F is a closed subset of a 2-sphere S in E*, V
is a component of Ez — S such that (*, F, V) is satisfied, and e > 0,
then there exist an e-homeomorphism h of S into Ez, a finite collection
of mutually exclusive ε-disks {Dly D21 , Dn} on h(S), and a collection
of n mutually exclusive e-disks {Eu E2, , En} on S such that

( i) h(S) is polyhedral,
(ii) h(S) - U l n t A c F ,
(iii) A Π S = h(S) ΠEi = (Int A) ΓΊ (Int Ei), and
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Figure 2.

(iv) (\JEi)f)F=0.

Proof. Let ̂  — {CUC2, , Cm} be a special cellular decomposition

of S of mesh less than ε/9, and let

δ = min {1/3 min {p(Cp, Cg): C , ί l C g = 0 C9, CqeW) ,

1/2 min {s/9 - diam Cp: Cv 6
( 1 )

By (*, F, V) there exist a δ/2-homeomorphism hx of S into .E13, a finite

collection of mutually exclusive δ/2-disks {D[, Ό[, •••, D'r} on h^S),

and a finite collection of mutually exclusive δ/2-disks {E[,E[, •••,£•/}

on S such t h a t

( 2 )

( 3 )

( 4 )

( 5 )

/Ϊ-I(JS) is polyhedral ,

th.(S) - U Int ΰ J c F ,

Π S = (U Int D'i) Π S c U Int El , and

(U El) Π F = 0 .

Note that Bd D) c V. If (U X>ί) Π S = 0 we are finished. Otherwise
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let G3 denote the component of D] — S containing Bd D] and let
{Elt E2, ---,En} be the subcollection of {#/, E2', ••,#/} such that

( 6 ) (cl Gy) n #< =*= 0 for some j (j = 1,2, . . . , r ) .

Then {El9 E2, , 2?w} is the collection of disks on S in the conclusion
of the theorem. Note that (U JE7<) Π F = 0 . The collection {A, A ,
• , Dn} remains to be identified.

Let K be the 1-skeleton of <&. By Lemma 4 there is a δ/2-
homeomorphism h2 of /&i(S) onto itself such that

( 7) (U £>ί) Π hMK) = 0 .

It follows that for each j (j = 1, 2, , r)

( 8 ) ί ) ; c Int hMCP) for some Cpe<tf .

Let # = Λ ^ L Then g is a S-homeomorphism. Suppose x,y e Cp.
Then ^(a;, /̂) <̂  diam Cp and it follows from (1) that

, g(y)) ^ p(g(χ),») + p(&, 2/) + ί>(sr(?/), 3/)

< l/2(e/9 - diam Cp) + diam Cp

+ l/2(e/9 - diam Cp)

= e/9 .

Hence

(10) diam ^ ( Q < e/9 (p = 1, 2, . . . , m) .

Now suppose fif(Cp) n #* =£ 0 and βr(Cρ) n ^ ^ 0 . Let x e g(Cp)
and ?/ G #(Cς) Π Ei. Note that f̂"1 is a δ-homeomorphism. Then by (1)

p(g~\x), g-\y)) ^ pig-^x), x) + /o(», 1/) + piΰΛv), v)

(11) < δ + δ/2 + δ

< 5/6 min {p(Cr, Cs): CrnCs= 0 C r, Cs e

Hence Cv{\CqΦ <Z) and therefore

(12) if g(Cp) and #(Cβ) intersect the same Ei9 then

and g(Cq) are identical or adjacent cells.

For each j (j = 1, 2, , r), let g^ be the subcollection of 2^'s
such that (cl Gό) Π #< ^ 0 . By (4) and (6),

(cl Gy) n S = (cl Gy) Π (U Int Et: Et e gv) .

Hence the hypotheses of Lemma 5 and Lemma 6 are satisfied and as
a consequence there is a collection of mutually exclusive disks {Dάi: i =
i(l),i(2), ...,n(j)} in IntDJ such that B d D ^ c F and (cl Gμ) Π S =



288 F. M. LISTER

(cl Gji) Π Int Ei = (cl Gά) Π Int Et where Gdi is the component of Dάi - S
containing Bd Dάi. Note that h(S) - \J Int Dμ c V.

Now for each fixed i (i = 1, 2, , n), let ^ be the subcollection
of Djk's such that (cl GiJfe) Π Et Φ 0 . By (12) each ^ is contained
in the star of a cell g(Cp) for some Cp e <Sf. Then {^Ί, ^ 2 , . . . , ^ }
is a family of collections of disks satisfying the hypothesis of Lemma
3. Hence there is a collection of mutually exclusive disks {D", D",
••-,!>"} such that &t* c Int A" c st g(Cp). Note that BdDί'aV.
We may assume without loss of generality that each disk D" has a
polygonal boundary. Let G<" be the component of D" — S containing
BdA". Each A" has the property that cl GΓ intersects S in I n t ^ .
It remains to replace each D" by a disk D{ which intersects S in
Int Ei if it intersects S at all.

By the Tietze Extension Theorem extend the identity map on
(cl GΓ) Π Ei to a map /, on ί?Γ - GΓ into a subdisk #/' of Int E{

which contains (cl GΓ) D Ei% Then extend /< to A ' by defining it to
be the identity on G \ Since D ' c st g(Cp) and diam st g(Cr) < ε/3
for each Cre<tf, it follows that diam A 7 < e/3. Also d i a m ^ < ε/36.
Therefore for each i (ί = 1, 2, , w),

(13) diam /,φΓ) ^ diam A" + Diam Et < 13ε/36 .

Let τ< = l/2(13ε/36 - diam /i(A ')) and let Z7< be a ^-neighborhood of
the set of singularities of fi(D") such that

(14) C/ίΠSc Int ^ ,

(15) (Ut U Λ(A?')) Π (Uk U ΛΦί')) = 0 for i ^ fc, and

(16) (U Ut) ΓΊ (flr(S) - U Int A') = 0

By Dehn's Lemma there is for each i (i = 1, 2, , n), a polyhedral
disk Di c /i(A ') U ϊ/i with Bd A = Bd A ' . By the way Ut is defined,
(g(S) — U ί),-') U U A is a polyhedral 2-sphere, and for each i,

(17) diam A < 13ε/36 .

Now define h = g on g-^giS) - \J A') and as follows on g~\\J A").
First extend the identity map on U Bd D" = U Bd A to a homeo-
morphism K of U A ' onto U D{. Then for each ye\J A ' ,

ρ(h'(y), y) ^ max {diam A ' + diam A : i = 1, 2, , n}
(lo)

< ε/3 + 13ε/36 = 25ε/36 .

Since g is a δ-homeomorphism,

(19) p(g{x), x) < ε/18 for each x e S .
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Let h = Kg on r ' ί U A " ) . Then by (18) and (19),

(20) p(h(x), x) < 25ε/36 + e/18 = 3ε/4 on ^ ( U A") .

Then h is the required homeomorphism and {Dlf D2, , Dn} and
{El9 E29 , En} are the required collections of disks.

5* Pairing disks with a homeomorphisrru In Lemma 10 we
prove the main lemma needed to show that the approximating homeo-
morphism may be chosen so that it maps each disk on the given sphere
onto the corresponding disk of the approximating sphere. The proofs of
Lemma 7 and Lemma 8 below are straight-forward and are not given.

LEMMA 7. If D is a disk and {A, A, , A*} U {El9 E2, , En}
is a collection of mutually exclusive disks in Int A then there is a
homeomorphism h of D onto itself which is the identity on Bd D
and carries E{ onto A (i = 1, 2, , n).

LEMMA 8. // {A, A, , A} and {El9 E29 , En} are finite collec-
tions of mutually exclusive disks in the interior of a disk A then
there is a homeomorphism g of D onto itself which is the identity
on BdD and is such that (\J g(Ei)) Π (U A) = 0

LEMMA 9. If ^ is a special cellular decomposition of a 2-sphere
S, {A, A, , Dn} U {El9 E29 , En} is a collection of mutually exclu-
sive disks with corresponding disks A and E{ in the interior of
the same cell or in the interiors of adjacent cells of cg?

9 then there
is a homeomorphism h of S onto itself such that h(E^ = A and for

each x e S, x and h(x) are either in the same cell or in adjacent cells
of<if.

Proof. For each Cve^ cover all A ' s in Cp which are associated
with Ei's in the same cell Cq (which must either be Cv or a cell
adjacent to Cp) by a disk Fpq in Int Cp and cover all JB/S in Cp which
correspond to A ' s in the same cell Cr by a disk Hpr in Int Cp so that
the disks in the total resulting collection are mutually exclusive. This
may be done by Lemma 1. There is an arc Apq from Fpq to Hqp such
that Apq lies except for end points in (Cp I) Cq) - (\J Fprl) \J Hqs) and
the arcs in the total resulting collection are mutually exclusive. See
Figure 3. If these arcs are replaced by thin disks a collection of
mutually exclusive disks {Kpq} is obtained with Fpq U Hqp c Kpq. Now
apply Lemma 7 to obtain a homeomorphism h of S onto itself such
that h(Ei) = A (ί = 1, 2, , n).

LEMMA 10.~±If & is a special cellular decomposition of a 2-sphere
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Figure 3.

S, {Dly D2, , Dn} is a collection of mutually exclusive disks on
S, {Eu E2, , En} is a collection of mutually exclusive disks on S,
and Di and E{ are contained in the interior of the same cell or in
the interiors of adjacent cells of ^ , then there is a homeomorphism
h of S onto itself such that h{Ei) — Di for each i, and for each
x e S, x and h(x) are either in the same cell or in adjacent cells of
ΐf.

Proof. By Lemma 8 there is a homeomorphism g of S onto itself
which is the identity on the 1-skeleton of ^ and sends each cell Cp

onto itself such that (\J g(Ei)) Π (U A) = 0 . By Lemma 9 there is
a homeomorphism / of S onto itself such that fg(Ei) = Di and for
each x e S, x and f(x) are either in the same cell or in adjacent cells
of ^ Then h = fg is the required homeomorphism.

6. Equivalence of (*, F, V) and (**, F, V). The lemmas of § 5
are used to strengthen Theorem 1 by adding the condition that
h(Ei) = Di.

THEOREM 2. If F is a closed subset of a 2-sphere S in E3 and
V is a component of E3 — S, then (*, F, V) is satisfied if and only
if (**, F, V) is satisfied.

Proof. It is clear that (**, F, V) implies (*, F, V). To prove
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the converse let ε > 0 and let <& = {Cl9 C2, , Cm) be a special cellular
decomposition of £ such that diam st Cp < ε/3 for each Cp e ^. Let

δ = 1/4 min {min {ε/3 - diam st Cp: Cp e

min {pίCp, S - st C,): Cp e ΐf}} .

By Theorem 1 there is a δ/4-homeomorphism g of S into i?3, a finite
collection of mutually exclusive δ/4-disks {A, A , , Dn} on #(S) and
a finite collection of mutually exclusive δ/4-disks {Eu E2, • • ,En} on
S such that

( 2 ) g(S) is polyhedral ,

( 3 ) g(S)- (JlntAcF,

( 4 ) A Π iS = Λ(S) ΓΊ ̂  = (Int Di) ΓΊ (Int ^ ) , and

( 5 ) (U Ei) Π F = 0 .

Without loss of generality assume that (Int A ) Π (Int 2£<) Φ 0, (i =
1, 2, , w). By Lemma 4 there is a δ/4-homeomorphism hλ of S onto
itself such that ((J Et) f) h^K) = 0 where K is the 1-skeleton of ^ .
Similarly there is a S/4-homeomorphism h2 of ^(S) onto itself such
that (U D^ Π h2g(K) = 0 . Note that

( 6 ) Di c Int h2g(Cq) for some Cge^ ,

( 7 ) ^ c Int M Q for some Cpe<ίf ,

( 8) diam st h2g(Cq) < diam st C, + 8 < ε/3 + ε/12 = 5ε/12 ,

( 9 ) hghr'iE,) c Int h2g(Cp) , and

p(Cp, Cq) ^ p(hx(Cp), Cp) + pMPX h2g(Cq))

(10) + p(Kg(Cq), Cq)

Suppose Cpf] Cq = 0 . Then by (1) p(Cp9 Cq) > 4δ, a contradiction to
(10). Hence CpV\CqΦ Q) and C^ and Cq are identical or adjacent cells.
By Lemma 10 there is a homeomorphism hB of h2g(S) onto itself such
that h^ghΐ^Ei) = A and for each a? e h2g(S), x and Λ8(a?) are either in
the same cell h2g(Cr) or in adjacent cells. Thus by (8) h3 is a 5ε/12-
homeomorphism. Let h = hzh2ghϊι. Then h is the required homeo-
morphism.

THEOREM 3. If S is a 2-sphere in E3 and V is a component of
E3 — S, then (**, 0, V) is satisfied.

Proof. This follows immediately from Theorem A and Theorem 2.
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Theorem 3 is a strengthened form of Bing's Side Approximation
Theorem, Theorem A.

7* Generalization to a 2-manifold in a 3*manifolcL Bing has
generalized Theorem A to connected 2-manifolds which separate a
connected 3-manifold [5, Th. 1.1]. Using this and methods of the
preceding sections we get the following form of this generalization.
The proof is omitted since except for details it is like the proof of
Theorem 1 followed by the proof of Theorem 2. A 2-manifold M2 is
tame in a 3-manifold ikF if there is a triangulation of the 3-manifold
such that M2 is the closed union of elements of the triangulation of
M\

THEOREM 4. If M2 is a connected 2-manίfold in a connected
S-manifold M3 such that M3 — M2 = Vλ U V2, VΊ and V2 mutually
separated, and f is a positive continuous real valued function on
M2, then there is a homeomorphism h of M2 into M3, and a locally
finite collection of mutually exclusive disks {E^ on M2 such that

( i ) p(h(x), x) < f(x) for each x e M2,
(ii) h(M2) is tame,
(iii) h(M2 - U Int Ei) = h(M2) - \J Int h(E{) c Vu

(iv) h(Ei) n I 2 - ^ n h(M2) = (Int h(Ei)) Π (Int Et),
and

(v) diam^i < minimum value of f on E{.

A closely related result, a variant of a theorem of Bing [3, Th.
18], also holds.

THEOREM 5. // U is an open subset of a 2-sphere S in E3, V
is a component of E3 — S, and f is a positive continuous real valued
function on U, then there is a homeomorphism h of S into E3 and
a locally finite collection of mutually exclusive disks {Eι} in U such
that

(i ) h{x) = x for each x e S — U,
(ii) p(h(x), x) < f(x) for each xeU,
(iii) h(U) is locally polyhedral,
(iv) h(U - U Int E^ = h(U) - U I n t HE,) c V,
( v) U - \J IntEi<zE* - h(S\jV),
(vi) diam^i < minimum value of f on Ei9 and
(vii) h(Ei) n S = h(S) n Ei = (Int h(Et)) Π (Int Ei).

8* Approximation of a 2-sphere by a singular 2-sphere* To
prove the invariance of (**, F, V) under homeomorphisms of S U V
into -E73 it is convenient first to prove the following theorem.
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THEOREM 6. If F is a closed subset of a 2-sphere S in Ez and
V is a component of Ez — S, then (**, F, V) is satisfied if and only
if for each ε > 0 there exist a finite collection of mutually exclusive
ε-disks {EUE2, , En} on S and an e-mapping g of S into (JJ Int Et) U V
such that

( i) each singularity of g(S) is contained in (\J Int Ei),
(ϋ) g(S- UInt^)cF,
(iii) g(Et) ί)S = g(S) Π Et = g(E{) fl Int Eif and
(iv) (\JEi)f)F=0.

Proof. Suppose, (**, V, F) is satisfied. Then apply the Tietze
Extension Theorem as in the proof of Theorem 1 to obtain the mapping
g required in the theorem. To prove the converse, follow a procedure
as in the proof of Theorem 1 to apply Dehn's Lemma to each of the
singular disks g(Et) so that an approximating sphere and then an
approximating homeomorphism h of S onto this sphere are obtained.
Here, of course, we need a form of Dehn's Lemma for nonpiecewise
linear maps that can be obtained using one of Bing's approximation
theorems [l, Th. 7], Now h(S) satisfies all of the requirements of
property (**, F, V) except the requirement that h(S) be polyhedral.
Bing's approximation theorem [1, Th. 1] can be used to complete the
proof.

9* In variance of (*, F, V) under homeomorphisms of S U V
into EB. It is shown in this section that (**, F9 V) is invariant under
homeomorphisms of S U V into E\ It follows then from Theorem 2
that (*, F, V) is invariant.

THEOREM 7. If F is a closed subset of a 2-sphere S in E\ V is
a component of E3 — S, (**, F, V) is satisfied, and h is a homeomor-
phism of S U V into E\ then (**, h(F), h(V)) is satisfied.

Proof. Consider first the case in which V = Int S. Let ε > 0.
There is a δ > 0 such that the image h(X) of each S-subset X of
S U Int S is an ε/3-subset of h(S U IntS). By Theorem 6 there exist
a finite collection of δ-disks {Eu E2, • >,En} on S and a δ-mapping /
of S into (U Int E{) U Int S such that

(1) each singularity of f(S) is contained in (JJJInt E{) ,

(2) f(S- {JlntE^dlntS f

(3) f(Ei)nS = f(S)ΓlEi = f(Ei)n(JiAEi), and

(4) ( U ^ ) Π ^ = 0 .
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Consider any xeh(S). Then ρ{h~\x), fh~ι{x)) < δ. Hence

p(x, hfh~\x)) < e/3 .

Also diam h(Ei) < ε/3 and it follows that diam hfh"\h(E^) < e. Now
for the sphere h(S), the closed subset h(F), and the collection of
disks {h(E1),h(E2), •• ,h(En)}, the mapping hfh~ι satisfies the require-
ments of the mapping g in Theorem 6. Hence it follows from Theorem
6 that (**, h(F), h(lnt S)) is satisfied. A similar proof can be used
for the case in which V = Ext S by enclosing S in the interior of a
large 3-celi K, so that h would be uniformly continuous on K — Int S.

10* Embeddings of crumpled cubes in E3. A crumpled cube
is a space which is homeomorphic to a 2-sphere plus its interior in
E3. In this section we give some theorems on the preservation of
tameness and half tameness of subsets of the boundary of a crumpled
cube under re-embeddings of the crumpled cube in E3.

Loveland has shown that if (*, F, V) is satisfied for a closed subset
F of a 2-sphere S in E3 with complementary domain V, then F is
half tame [11] and if (*, F, IntS) and (*, F, Ext S) are both satisfied,
then F is tame [10]. It is clear that if a 2-sphere S is tame from
V, then (*, F, V) is satisfied for each closed subset F of S. The
next two theorems follow from these results and Theorem 7.

THEOREM 8. If F is a closed subset of a 2-sphere S in E3, V
is a component of E3 — S, (*, F, V) is satisfied, and h is a homeomor-
phism ofSuV into E3, then h(F) is half tame.

THEOREM 9. If F is a closed subset of a 2-sphere S in E3, V
is a component of E3 — S, (*, F, V) is satisfied, and h is a homeo-
morphism of SUV into E3 such that h(S) is tame from E3 - h(S U V),
then h(F) is tame.

Hosay [7] and Lininger [9] have independently shown that if S
is a 2-sphere in E3, V is a component of E3 — S, and e > 0, then
there is an ε-homeomorphism h of S U V into E3 such that h(S) is
tame from E3 - h(S U V). The next theorem follows from this and
Theorem 9.

THEOREM 10. If F is a closed subset of a 2-sphere S in E3, V
is a component of Ez — S, (*, F, V) is satisfied, and ε > 0, then there
is an ε-homeomorphism h of S U V into E3 such that h(F) is tame.

As pointed out by Loveland in [10] it is known from results of
Bing [4] and methods of Gillman [6] that if F is a finite union of
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tame finite graphs and tame Sierpiήski curves on a 2-sphere S in Es,
then (*, F, IntS) and (*, F, ExtS) are satisfied. Theorem 9 and this
result imply the following theorem.

THEOREM 11. If F is a finite union of tame finite graphs and
tame Sierpinski curves on a 2-sphere S in Es, V is a component of
E3 — S, and h is a homeomorphism ofSuV into E5 such that h(S)
is tame from Ed — h(S U V), then h(F) is tame.

Question. Can Theorem 11 be generalized to tame closed subsets
of a 2-sphere with no degenerate components? If it were known
that (*, F, V) holds for such subsets of a 2-sphere, then the theorem
would generalize immediately.
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