ESTIMATES FOR THE TRANSFINITE DIAMETER WITH APPLICATIONS TO CONFORMAL MAPPING

Melvyn Klein

Let $f(z)$ be a member of the family S of functions regular and univalent in the open unit disk whose Taylor expansion is of the form: $f(z)=z+a_{2} z^{2}+\cdots$. Let D_{w} be the image of the unit disk under the mapping: $w=f(z)$. An inequality for the transfinite diameter of n compact sets in the plane $\left\{T_{i}\right\}_{1}^{n}$ is established, generalizing a result of Renngli:

$$
d\left(T_{1} \cap T_{2}\right) \cdot d\left(T_{1} \cup T_{2}\right) \leqq d\left(T_{1}\right) \cdot d\left(T_{2}\right)
$$

This inequality is applied to derive covering theorems for D_{w} relative to a class of curves issuing from $w=0$, arcs on the circle: $|w|=R$ as well as other point sets.
I. Preliminary considerations.

Definition (1.1). Let E be a compact set in the plane. Set:

$$
\begin{gathered}
V\left(z_{1}, \cdots, z_{n}\right)=\prod_{k>l}^{n}\left(z_{k}-z_{l}\right) \quad n \geqq 2, \quad z_{i} \in E \\
V_{n}=V_{n}(E)=\max _{z_{1}, \cdots, z_{n} \in E}\left|V\left(z_{1}, \cdots, z_{n}\right)\right|
\end{gathered}
$$

and

$$
d_{n}=d_{n}(E)=V_{n}^{2 / n(n-1)}
$$

The transfinite diameter of E is then defined by: $d=d(E)=\lim _{n \rightarrow \infty} d_{n}$.
A full discussion of the transfinite diameter and related constants can be found in [2, Chapter 7].

The following is a theorem of Hayman [3]:
Theorem (1.2). Suppose $f(z)$ is a function meromorphic in the unit disk with a simple pole of residue k at the origin, i.e., the expansion of $f(z)$ about the origin is of the form:

$$
f(z)=\frac{k}{z}+a_{0}+a_{1} z+\cdots
$$

Let D_{w} denote the image of $|z|<1$ under the mapping $w=f(z)$ and let E_{w} denote the complement of D_{w} in the w-plane. Then: $d\left(E_{w}\right) \leqq k$ with equality if and only if $f(z)$ is univalent.

Using Hayman's theorem is easy to prove the following:

Theorem (1.3). Let $w(z)=k z+a_{2} z^{2}+a_{3} z^{3}+\cdots$ be a function univalent in $|z|<1$ and D_{w} the image of $|z|<1$ under $w(z)$. Then the complement of the image of D_{w} under the mapping: $\zeta=1 / w$, which we denote by E_{ζ}, has transfinite diameter: $1 / k$. In particular, if $w(z)=z+a_{2} z^{2}+\cdots$ then $d\left(E_{\zeta}\right)=1$.

We will need to know the transfinite diameter of several specific sets.

Lemma (1.4). Let E be the set union of:
(i) an arc of central angle $\theta, 0 \leqq \theta \leqq 2 \pi$ lying on $|w|=1$ with midpoint: $w=1$.
(ii) a linear segment $[a, b], 0 \leqq a \leqq 1 \leqq b$. Then the transfinite diameter of E expressed as a function of a, b and θ is given by

$$
\begin{array}{r}
\cos ^{2} \frac{\theta}{4}\left[(1+b)\left(1+a^{2}-2 a \cos \frac{\theta}{2}\right)^{1 / 2}\right. \\
d(E)=\frac{\left.+(1+a)\left(1+b^{2}-2 b \cos \frac{\theta}{2}\right)^{1 / 2}\right]}{2\left[(1+a)+\left(1+a^{2}-2 a \cos \frac{\theta}{2}\right)^{1 / 2}\right]} \\
\quad \times\left[(1+b)-\left(1+b^{2}-2 b \cos \frac{\theta}{2}\right)^{1 / 2}\right]
\end{array}
$$

where positive roots are taken throughout.
Proof. A univalent mapping, $w=f(z)$, of $|z|<1$ onto the complement of E with a simple pole at $z=0$ will be constructed. According to Theorem (1.2) the residue of the mapping function is the transfinite diameter of E. Define:

$$
w_{1}(z)=(z+\alpha) /(1+\alpha z)
$$

where:

$$
\alpha=\frac{d-c+\csc \frac{\theta}{4}}{c}-\left[\left(\frac{d-c+\csc \frac{\theta}{4}}{c}\right)^{2}-1\right]^{1 / 2},
$$

Define:

$$
\begin{array}{ll}
w_{2}=\frac{1}{2}\left(w_{1}+\frac{1}{w_{1}}\right) & w_{3}=c\left(w_{2}+1\right)-d \\
w_{4}=\left(w_{3}^{2}-1\right)^{1 / 2} & w_{5}=\frac{\cot \frac{\theta}{4}+w_{4}}{\cot \frac{\theta}{4}-w_{4}}
\end{array}
$$

The composition of these five mappings is given by:

$$
w(z)=\frac{\left.\cot \frac{\theta}{4}+\left\{\frac{1}{2} c\left(\frac{z+\alpha}{1+\alpha z}+\frac{1+\alpha z}{z+\alpha}+2\right)-d\right]^{2}-1\right\}^{1 / 2}}{\left.\cot \frac{\theta}{4}-\left\{\frac{1}{2} c\left(\frac{z+\alpha}{1+\alpha z}+\frac{1+\alpha z}{z+\alpha}+2\right)-d\right]^{2}-1\right\}^{1 / 2}}
$$

$w(z)$ maps $|z|<1$ onto the exterior of E (upon proper choice of the parameters c and d, to be made presently); it has a simple pole at the origin of residue:

$$
\frac{c}{\csc \frac{\theta}{4}+2(d-c) \sec ^{2} \frac{\theta}{4}+\tan \frac{\theta}{4} \sec \frac{\theta}{4}\left(d^{2}+1-2 c d\right)} .
$$

This is the transfinite diameter of E. To express it in terms of a, b and θ we note that the point $w=b$ is the image of $w_{2}=1$, and the point $w=a$ is the image of $w_{2}=-1$. Using this to solve for c and d we find:

$$
\begin{gathered}
d=\frac{\left[a^{2}+1-2 a \cos \frac{\theta}{2}\right]^{1 / 2}}{(a+1) \sin \frac{\theta}{4}} \\
c=\frac{\left[a^{2}+1-2 a \cos \frac{\theta}{2}\right]^{1 / 2}}{2(a+1) \sin \frac{\theta}{4}}+\frac{\left[b^{2}+1-2 b \cos \frac{\theta}{2}\right]^{1 / 2}}{2(b+1) \sin \frac{\theta}{4}} .
\end{gathered}
$$

Substituting these values in the above expression for the residue we arrive at the expression given in the statement of the lemma.

When $a=b=1$ the set E is simply an arc of central angle θ on the unit circle. Using the lemma we find: $d(1,1, \theta)=\sin \theta / 4$.

Lemma (1.5). Let E be the set union of two linear segments issuing from the origin at an angle $2 \pi \alpha, 0<\alpha \leqq 1 / 2$, each of length: $4 \alpha^{\alpha}(1-\alpha)^{1-\alpha}$. Then: $d(E)=1$.

Proof. The mapping of $|z|<1$ onto the exterior of E is given by the Schwarz-Christoffel formula:

$$
\left.\begin{array}{rl}
w & =c \cdot \int_{0}^{z} \frac{(z+1)^{1-2 \alpha}(z-1)^{2 \alpha-1}\left(z-1+2 \alpha-2\left[\alpha^{2}-\alpha\right]^{1 / 2}\right)}{\times\left(z-1+2 \alpha+2\left[\alpha^{2}-\alpha\right]^{1 / 2}\right)} \\
z^{2}
\end{array} z\right] \text { (z+1)} \begin{aligned}
& 2-2 \alpha \\
& zz-1)^{2 \alpha}
\end{aligned}
$$

The residue of this function (the transfinite diameter of E) is c. Noting that the map carries $z=1-2 \alpha+2\left(\alpha^{2}-\alpha\right)^{1 / 2}$ onto $w=$ $4 \alpha^{\alpha}(1-\alpha)^{1-\alpha} e^{i \pi \alpha}$ we find that $d(E)=|c|=\left|e^{i \pi \alpha} /(-1)^{\alpha}\right|=1$.

Finally, we describe two types of symmetrization.
Steiner symmetrization of a plane set E with respect to a straight line l in the plane transforms E into a set E^{\prime} characterized by the following:
(i) E^{\prime} is symmetric with respect to l.
(ii) Any straight line orthogonal to l that intersects one of the sets E or E^{\prime} also intersects the other. Both intersections have the same linear measure, and
(iii) The intersection with E^{\prime} consists of just one line segment, and may degenerate to a point.

Circular symmetrization of a plane set E with respect to the positive real axis transforms E into a set E^{\prime} characterized by the following:
(i) E^{\prime} is symmetric with respect to the real axis.
(ii) Any circle $|z|=r, 0 \leqq r<\infty$ that intersects one of the sets E or E^{\prime} also intersects the other. Both intersections have the same linear measure, and
(iii) The intersection with E^{\prime} consists of just one arc with its midpoint on the positive real axis, and may degenerate to a point.

The following theorem describes the effect of these symmetrizations on the transfinite diameter [5; p. 6 and Note A]:

Theorem (1.6). Neither Steiner nor circular symmetrization increase the transfinite diameter.
II. Estimates for the transfinite diameter. A recent result of Renngli [6] is the following:

Theorem (2.1). If T_{1} and T_{2} are compact sets in the plane, then

$$
d\left(T_{1} \cup T_{2}\right) \cdot d\left(T_{1} \cap T_{2}\right) \leqq d\left(T_{1}\right) \cdot d\left(T_{2}\right)
$$

We will now generalize this to obtain an inequality for n compact sets.

Theorem (2.2). If $T_{1}, T_{2}, \cdots, T_{n}$ are compact sets in the plane, let C_{k} be the set of all points contained in at least k of the T_{j} 's. Then:

$$
\begin{equation*}
\prod_{k=1}^{n} d\left(C_{k}\right) \leqq \prod_{k=1}^{n} d\left(T_{k}\right) \tag{1}
\end{equation*}
$$

Proof. For $n=1$ this is a triviality. For $n=2$ it is identical with Renngli's result:

$$
d\left(T_{1} \cup T_{2}\right) \cdot d\left(T_{1} \cap T_{2}\right) \leqq d\left(T_{1}\right) \cdot d\left(T_{2}\right)
$$

Suppose the theorem is already established for $n-1$ sets. Let B_{k} be the set of all points lying in at least k of the sets $T_{1}, T_{2}, \cdots, T_{n-1}$. Obviously: $B_{n-1} \subset B_{n-2} \subset \cdots \subset B_{1}$. Also:

$$
\begin{equation*}
C_{n}=B_{n-1} \cap T_{n}, \quad C_{1}=B_{1} \cup T_{n} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
C_{k}=B_{k} \cup\left\{B_{k-1} \cap T_{n}\right\} \quad(k=2,3, \cdots, n-1) . \tag{3}
\end{equation*}
$$

If $d\left(B_{n-1} \cap T_{n}\right)=d\left(C_{n}\right)=0$, (1) is certainly true.
If $d\left(B_{n-1} \cap T_{n}\right) \neq 0$, then, a fortiori,

$$
d\left(B_{k} \cap T_{n}\right) \neq 0 \quad(k=1,2, \cdots, n-1)
$$

By (2), (3) and Renngli's inequality:

$$
\begin{gathered}
d\left(C_{n}\right)=d\left(B_{n-1} \cap T_{n}\right) \\
d\left(C_{k}\right) \cdot d\left(B_{k} \cap T_{n}\right)=d\left(C_{k}\right) \cdot d\left(B_{k} \cap B_{k-1} \cap T_{n}\right) \leqq d\left(B_{k}\right) \cdot d\left(B_{k-1} \cap T_{n}\right) \\
\quad(k=2, \cdots, n-1) \\
d\left(C_{1}\right) \cdot d\left(B_{1} \cap T_{n}\right) \leqq d\left(B_{1}\right) \cdot d\left(T_{n}\right) .
\end{gathered}
$$

Multiplying these inequalities and dividing both sides by $\prod_{k=1}^{n} d\left(B_{k} \cap T_{n}\right)$ yields

$$
\prod_{k=1}^{n} d\left(C_{k}\right) \leqq \prod_{k=1}^{n-1} d\left(B_{k}\right) d\left(T_{n}\right)
$$

and the theorem is proved, since by the induction hypothesis

$$
\prod_{k=1}^{n-1} d\left(B_{k}\right) \leqq \prod_{k=1}^{n-1} d\left(T_{k}\right)
$$

Definition (2.3). A point set T will be called a broken ray provided
(i) for every $r \geqq 0$ there is a point $z \in T$ such that: $|z|=r$.
(ii) the set of numbers $r \geqq 0$ for which there is more than one point $z \in T$ such that: $|z|=r$ is a set of measure zero.

Definition (2.4). Let T be a subset of a broken ray. The point sets: $\eta_{1} T, \eta_{2} T, \cdots, \eta_{n} T$ where $\left\{\eta_{k}\right\}_{1}^{n}$ are the n-th roots of unity, will be called symmetric images of T. The point set: $\left\{\bigcup_{k=1}^{n} \eta_{k} \cdot T\right\}$ will be called the set of n-fold symmetry generated by T and will be denoted by $T^{(n)}$. Subsets of $T^{(n)}$ will be denoted by $\widetilde{T}^{(n)}$.

Definition (2.5). Let T be a subset of a broken ray, $T^{(n)}$ the set of n-fold symmetry generated by T and $\widetilde{T}^{(n)}$ a subset of $T^{(n)}$. We define the circular projection of $\widetilde{T}^{(n)}$ as a subset, $\widetilde{\tau}^{(n)}$, of the set of n-fold symmetry, $\tau^{(n)}$, generated by the positive real axis, τ. A point $z=\eta_{k} \cdot r$ will belong to the projection $\widetilde{\tau}^{(n)}$ if and only if there is a point: $\zeta \in \eta_{k} \cdot T \cap \widetilde{T}^{(n)}$ such that $|\zeta|=r$.

Definition (2.6). Let $\tilde{\tau}^{(n)}$ be a set such as described in definition (2.5). We will use the symbol l_{k} to denote the measure of the set of real numbers $r, 0 \leqq r<\infty$ such that at least k of the symmetric images of r lie in $\widetilde{\tau}^{(n)}$.

Remark (2.7). Let L denote the linear measure of $\widetilde{\tau}^{(n)}$; that is, the sum of the linear measures of the n legs of $\widetilde{\tau}^{(n)}$. Then

$$
\sum_{k=1}^{n} l_{k}=L .
$$

The reason is that if I is a set of real numbers which have symmetric images on exactly k legs of $\widetilde{\tau}^{(n)}$ the measure of I is included in: $l_{1}, l_{2}, \cdots, l_{k}$; that is, it is counted k times in: $\sum_{k=1}^{n} l_{k}$.

The following theorem of Fekete is essential to our work [2; page 259].

Theorem (2.8). Let E be a compact set and $p(z)$ a polynomial of degree n :

$$
p(z)=z^{n}+c_{1} z^{n-1}+\cdots+c_{n}
$$

Let E_{0} be the set of all points z such that $p(z)$ lies in E; we will call E_{0} a root set of E. Then: $d\left(E_{0}\right)=d(E)^{1 / n}$.

Theorem (2.9). Suppose $\widetilde{T}^{(n)}$ is a subset of a set of n-fold symmetry with: $d\left(\widetilde{T}^{(n)}\right)=1$, and $\widetilde{\tau}^{(n)}$ its circular projection. If $l_{k}(k=$ $1,2, \cdots, n)$ represent the measures defined in (2.6), then:

$$
\prod_{k=1}^{n} l_{k} \leqq 4
$$

Equality occurs when $\widetilde{T}^{(n)}$ is itself a set of n-fold symmetry, consisting of a single component and identical with its circular projection: $\quad \widetilde{T}^{(n)}=\widetilde{\tau}^{(n)}$.

Proof. Let $T_{k}=\eta_{k} \cdot \widetilde{T}^{(n)},(k=1,2, \cdots, n)$. Clearly:

$$
\begin{equation*}
d\left(T_{k}\right)=d\left(\widetilde{T}^{(n)}\right)=1 \quad(k=1,2, \cdots, n) \tag{4}
\end{equation*}
$$

since the transfinite diameter is unaffected by rigid motions.

Let C_{k} be the set of all points contained in at least k of the T_{j} 's; that is, the set of all points z such that at least k of the symmetric images of z lie in $\widetilde{T}^{(n)}$. Each of the sets C_{k} is a set of n-fold symmetry.

Let γ_{k} be the circular projection of C_{k}. In view of our description of the sets C_{k} it is not difficult to see that the measure of a leg of γ_{k} is l_{k}.

Let B_{k} be the set of which C_{k} is the root set with respect to the polynomial $p(z)=z^{n}$. Since C_{k} is a set of n-fold symmetry B_{k} is a subset of a single broken ray. Let β_{k} be the set of which γ_{k} is the root set with respect to the polynomial $p(z)=z^{n}$. As above, β_{k} will be a subset of a single broken ray; in this case the positive real axis.

Since γ_{k} is the circular projection of C_{k} it follows that β_{k} is the circular projection of B_{k}. When $n=1$ circular projection is the same transformation as circular symmetrization. Therefore:

$$
\begin{aligned}
d\left(C_{k}\right) & =d\left(B_{k}\right)^{1 / n} & & \text { by Theorem (2.8) } \\
& \geqq d\left(\beta_{k}\right)^{1 / n} & & \text { by Theorem (1.6) } \\
& \geqq\left[\frac{\left(l_{k}\right)^{n}}{4}\right]^{1 / n}=\frac{l_{k}}{\sqrt[n]{4}} & &
\end{aligned}
$$

since β_{k} has linear measure no less than: $\left(l_{k}\right)^{n}$. So finally we have:

$$
\begin{aligned}
1 & =d\left(\widetilde{T}^{(n)}\right)=\prod_{k=1}^{n} d\left(T_{k}\right) & & \text { by (4) } \\
& \geqq \prod_{k=1}^{n} d\left(C_{k}\right) & & \text { by Theorem (2.2) } \\
& \geqq \prod_{k=1}^{n} \frac{l_{k}}{\sqrt[n]{4}}=\frac{1}{4} \prod_{k=1}^{n} l_{k} & & \text { by (5). }
\end{aligned}
$$

This is the desired result: $4 \geqq \prod_{k=1}^{n} l_{k}$.
This theorem contains as a special case a result of G. Szegö [7]; in our notation his result reads: Suppose that $\widetilde{T}^{(n)}=\widetilde{\tau}^{(n)}$ (i.e., it consists of straight line segments) and that $\widetilde{T}^{(n)}$ is a connected set. Then $\prod_{k=1}^{n} L_{k} \leqq 4$ where L_{k} is the linear measure of the k-th leg of $\widetilde{T}^{(n)}$, ($k=1,2, \cdots, n$).

Proof. In this case: $L_{k}=l_{k}$.
The next theorem establishes bounds on the content of a set lying on a circle as a function of the radius and the transfinite diameter of the set.

THEOREM (2.10). Let $A_{1}^{\prime}, A_{2}^{\prime}, \cdots, A_{n}^{\prime}, A_{k}^{\prime} \supseteq A_{k+1}^{\prime}$ be a nested sequence of arcs on the circle $|z|=R$ where the central angle swept out by
A_{k}^{\prime} is $\theta_{k}, \quad 0<\theta_{k} \leqq 2 \pi / n$. Let $\eta_{1}, \eta_{2}, \cdots, \eta_{n}$ denote the n-th roots of unity and let $\alpha(i)$ be a mapping of the set of integers $\{1,2, \cdots, n\}$ onto itself. Define:

$$
A_{k}=\eta_{\alpha(k)} A_{k}^{\prime} \quad(k=1,2, \cdots, n)
$$

and let: $A=A_{1} \cup A_{2} \cup \cdots \cup A_{n}$. Then:

$$
\prod_{k=1}^{n} \sin \frac{n \theta_{k}}{4} \leqq\left[\frac{d(A)}{R}\right]^{n^{2}}
$$

Proof. $d(A)=d\left(\eta_{k} \cdot A\right)(k=1,2, \cdots, n)$. Therefore:

$$
\begin{equation*}
[d(A)]^{n}=\prod_{k=1}^{n} d\left(\eta_{k} \cdot A\right) \tag{6}
\end{equation*}
$$

Let C_{k} be the set of all points contained in at least k of the sets: $\eta_{j} \cdot A$. It follows from our hypothesis that the sets A_{k}^{\prime} are nested that:

$$
C_{k}=\eta_{1} \cdot A_{k} \cup \eta_{2} A_{k} \cup \cdots \cup \eta_{n} A_{k}
$$

for each $k, 1 \leqq k \leqq n$. Thus C_{k} is the root set with respect to the polynomial $w(z)=z^{n}$ of an arc on the circle $|w|=R^{n}$ of central angle $n \cdot \theta_{k}$. The transfinite diameter of such an arc is, by virtue of the equality: $d(c \cdot E)=|c| \cdot d(E)$ (c a constant) given by: $R^{n} \cdot \sin \left(n \cdot \theta_{k} / 4\right)$. Therefore by Theorem (2.8):

$$
\begin{equation*}
d\left(C_{k}\right)=\left(R^{n} \cdot \sin \left(n \theta_{k} / 4\right)\right)^{1 / n} . \tag{7}
\end{equation*}
$$

Also, by virtue of Theorem (2.2) we have that:

$$
\begin{equation*}
\prod_{k=1}^{n} d\left(\eta_{k} \cdot A\right) \geqq \prod_{k=1}^{n} d\left(C_{k}\right) \tag{8}
\end{equation*}
$$

Combining inequalities (6), (7) and (8) we conclude:

$$
[d(A)]^{n} \geqq \prod_{k=1}^{n}\left[R^{n} \cdot \sin \left(n \theta_{k} / 4\right)\right]^{1 / n}
$$

or

$$
[d(A) / R]^{n^{2}} \geqq \prod_{k=1}^{n} \sin \left(n \theta_{k} / 4\right)
$$

as claimed.
III. Covering theorems. The class of functions regular and univalent in $|z|<1$ whose expansion is of the form: $f(z)=z+a_{2} z^{2}+\cdots$ will be denoted by S. Let D_{w} be the image of the unit disk under the mapping $w=f(z) \in S$. A classical result of Koebe and Bieberbach states that D_{w} contains the disk $|w|<1 / 4$ irrespective of the mapping
function $w=f(z)$ [2; page 41]. G. Szegö later noted that [8]: If α, β are two values lying in the complement of D_{w} and if the segment connecting α and β passes through the origin, then: $|\alpha|+|\beta| \geqq 1$.

Generalizing these results, Michael Fekete made the following conjecture: Given n rays issuing from the origin $w=0$ at equal angles $2 \pi / n$, let L denote the linear measure of the intersection of these rays with D_{w}. Then: $L \geqq n \cdot \sqrt[n]{1 / 4}$. The theorems of Koebe-Bieberbach and Szegö are the cases $n=1$ and $n=2$. For arbitrary n the inequality was proved in 1964 by Marcus [4].

Our first theorem in this section further generalizes these results by considering a more general class of curves issuing from the origin in place of the n rays of Fekete's conjecture. The results of the preceding section will be used to prove this as well as various other covering theorems for the class S.

Theorem (3.1). Let $f(z) \in S$ and let D_{w} be the image of the disk $|z|<1$ under the mapping $w=f(z)$. Let $S^{(n)}$ be a set of n-fold symmetry generated by an arbitrary broken ray; $\widetilde{S}^{(n)}$, a subset of $S^{(n)}$ defined by: $\widetilde{S}^{(n)}=D_{w} \cap S^{(n)}$ and $\widetilde{\sigma}^{(n)}$ the circular projection of $\widetilde{S}^{(n)}$. Denote by L the linear measure of $\tilde{\sigma}^{(n)}$. Then $L \geqq n \cdot \sqrt[n]{1 / 4}$.

Proof. Let E_{ζ} represent the image of the complement of D_{w} under the transformation: $\zeta=1 / w$. Then by Theorem (1.3) it follows that: $d\left(E_{\zeta}\right)=1$. Let $T^{(n)}$ denote the set of n-fold symmetry that is the image of $S^{(n)}$ under the transformation $\zeta=1 / w$ and let $\widetilde{T}^{(n)}$ denote the subset of $T^{(n)}$ defined by: $\widetilde{T}^{(n)}=E_{\zeta} \cap T^{(n)}$. Denote by $\widetilde{\tau}^{(n)}$ the circular projection of $\widetilde{T}^{(n)}$. It is clear from the definition of the sets involved that $\widetilde{T}^{(n)}$ is the complement with respect to $T^{(n)}$ of the image of $\widetilde{S}^{(n)}$ under the transformation $\zeta=1 / w$ and consequently, that $\widetilde{\tau}^{(n)}$ is the complement with respect to $\tau^{(n)}=\sigma^{(n)}$ of the image of $\widetilde{\sigma}^{(n)}$ under the transformation: $\zeta=1 / w$.

Let $l_{1}, l_{2}, \cdots, l_{n}$ be measures defined on $\tilde{\tau}^{(n)}$ as in definition (2.6); let $h_{1}, h_{2}, \cdots, h_{n}$ be measures defined on $\tilde{\sigma}^{(n)}$ in the same way. Since $d\left(E_{\zeta}\right)=1$ it follows by Theorem (2.9) that: $\prod_{k=1}^{n} l_{k} \leqq 4$. The points that contribute to the measure l_{n-k+1} are points in the complement of the image of the set of points contributing to h_{k} under $\zeta=1 / w$. For fixed h_{k}, the measure l_{n-k+1} is minimized when the set whose measure is h_{k} is the segment $\left[0, h_{k}\right]$ in which case: $l_{n-k+1}=1 / h_{k}$. Thus:

$$
\prod_{k=1}^{n} l_{k} \geqq \prod_{k=1}^{n} \frac{1}{h_{k}}
$$

and so:

$$
4 \geqq \prod_{k=1}^{n} \frac{1}{h_{k}} \quad \text { or: } \quad\left(\prod_{k=1}^{n} h_{k}\right)^{1 / n} \geqq \sqrt[n]{\overline{1 / 4}}
$$

Since the arithmetic mean exceeds the geometric mean:

$$
\frac{1}{n} \sum_{k=1}^{n} h_{k} \geqq \sqrt[n]{1 / 4}
$$

According to Remark (2.7): $\sum_{k=1}^{n} h_{k}=L$, the linear measure of $\tilde{\sigma}^{(n)}$. Thus: $L \geqq n \cdot \sqrt[n]{1 / 4}$ as claimed.

Theorem (3.2) Let $w(z) \in S$ and D_{w} the image of $|z|<1$ under $w(z)$. Suppose $D_{w} \cap\{|w|=R\}$ consists of n disjoint arcs $\left\{B_{k}\right\}_{1}^{n}$ where
(i) The angle subtended by the arc separating B_{k} and B_{k+1} is no greater than: $2 \pi / n$.
(ii) If $\left\{A_{k}^{*}\right\}_{1}^{n}$ are the n arcs in the complement of $\bigcup_{k=1}^{n} B_{k}$ with respect to the circle $|w|=R$ the related set of arcs: $\left\{\eta_{k} \cdot A_{k}^{*}\right\}_{1}^{n}$ are nested.
Let the endpoints of the arc B_{k} be given by: $R \cdot e^{i \theta_{2 k-1}}$ and $R \cdot e^{i \theta_{2 k}}$ ($k=1,2, \cdots, n$).

Then:

$$
\prod_{k=1}^{n} \sin \left[n\left(\theta_{2 k+1}-\theta_{2 k}\right) / 4\right] \leqq R^{n^{2}}, \quad \theta_{2 n+1}=\theta_{1}+2 \pi
$$

Proof. Let A_{k}^{*} be the arc lying between B_{k} and B_{k+1}. The central angle subtended by A_{k}^{*} is: $\theta_{2 k+1}-\theta_{2 k}$ which by hypothesis is no greater than $2 \pi / n$. Let A_{k} be the image of A_{k}^{*} under the transformation $\zeta=1 / w$. The arcs A_{k}^{*} all lie in the complement of D_{w}. Hence: $A=$ $\bigcup_{k=1}^{n} A_{k} \subseteq E_{\zeta}$ and so $d(A) \leqq d\left(E_{\zeta}\right)=1$. The sets A_{k} lie on the circle: $|\zeta|=1 / R$. The central angle subtended by A_{k} is $\theta_{2 k+1}-\theta_{2 k}$; the same as that subtended by A_{k}^{*}. Finally, the arcs A_{k} have the nested property hypothesized for the sets A_{k}^{*}. Since all this is so, Theorem (2.10) is applicable; therefore:

$$
\prod_{k=1}^{n} \sin \frac{n\left(\theta_{2 k+1}-\theta_{2 k}\right)}{4} \leqq[d(A) /(1 / R)]^{n^{2}} \leqq R^{n^{2}}
$$

as claimed.
This past theorem takes no account of the fact that the complement of D_{w} is a continuum containing the point at infinity. A sharpened version which takes this into account is the following:

$$
d\left(0,1, \theta_{3}-\theta_{2}\right) \cdot \prod_{k=2}^{n} \sin \frac{n\left(\theta_{2 k+1}-\theta_{2 k}\right)}{4} \leqq R^{n^{2}}
$$

where $d(a, b, \theta)$ is as defined in $\S 1$. Actually, both Theorems (3.1) and (3.2) are generalized (in a sense, combined) in the following theorem, which takes the above fact into account. The techniques used to
prove the theorem are essentially the same as those of the foregoing proofs and so just a statement of the result will be given.

Theorem (3.3). Let $f(z) \in S$ and D_{w} be the image of $|z|<1$ under $w=f(z)$. Let C be a circle of radius $R, 0<R<\infty$ and n an arbitrary natural number. Let $\left\{B_{n}\right\}_{1}^{n}$ be a sequence of arcs on the circle C satisfying the conditions of Theorem (3.2), $S^{(n)}$ a set of n-fold symmetry generated by a broken ray and $\widetilde{S}^{(n)}$ a subset of $S^{(n)}$ defined by: $\widetilde{S}^{(n)}=S^{(n)} \cap D_{w} \cap\{|w| \leqq R\}$. Let $\widetilde{\sigma}^{(n)}$ denote the circular projection of $\widetilde{S}^{(n)}$ and $\left\{h_{k}\right\}_{1}^{n}$ a sequence of measures on $\widetilde{\sigma}^{(n)}$ such as defined in definition (2.6).

Then:

$$
d\left(0,\left[\frac{R}{h_{n}}\right]^{n}, n\left[\theta_{3}-\theta_{2}\right]\right) \cdot \prod_{k=2}^{n} d\left(1,\left[\frac{R}{h_{n-k+1}}\right]^{n}, n\left[\theta_{2 k+1}-\theta_{2 k}\right]\right) \leqq R^{n^{2}}
$$

One final application will be given.
Theorem (3.4). Let $f(z) \in S$ and D_{w} the image of the disk $|z|<1$ under $w=f(z)$. Let L_{1}, L_{2} denote straight lines intersecting at $w=0$ at an angle of $\pi \alpha, 0<\alpha<1$. Let $L=L\left(D_{w} \cap\left\{L_{1} \cap L_{2}\right\}\right.$ denote the linear measure of $D_{w} \cap\left\{L_{1} \cup L_{2}\right\}$. Then:

$$
L \geqq \frac{2}{\alpha^{\alpha / 2}(1-\alpha)^{(1-\alpha) / 2}}
$$

Proof. There is no loss in generality in assuming L_{1} and L_{2} are symmetric images of one-another with respect to the real axis.

A set of four points on the four legs determined by $L_{1} \cup L_{2}$, each lying at a distance r_{0} from the origin, will be called a "radially symmetric set"; the points themselves will be called radially symmetric images of one-another and of the point $w=r_{0}$.

We define $h_{k}(k=1,2,3,4)$ as the measure of the set of real numbers $r, 0 \leqq r<\infty$ such that at least k of the radially symmetric images of r (in $L_{1} \cup L_{2}$) lie in D_{w}. Then:

$$
\begin{equation*}
L\left(D_{w} \cap\left\{L_{1} \cup L_{2}\right\}\right)=\sum_{k=1}^{4} h_{k} \tag{9}
\end{equation*}
$$

Map by $\zeta=1 / w$ and let E_{ζ} represent the complement of the image of D_{w} under this map. Then $d\left(E_{\zeta}\right)=1$. Notice that $L_{1} \cup L_{2}$ is mappped onto itself. Let l_{k} be the measure of the set of real numbers r such that at least k of the radially symmetric images of r (in $L_{1} \cup L_{2}$) lie in E_{ζ}. Then:

$$
\begin{equation*}
\prod_{k=1}^{4} l_{k} \geqq \prod_{k=1}^{4} \frac{1}{h_{k}} \tag{10}
\end{equation*}
$$

Let $T_{1}=E_{\zeta} \cap\left\{L_{1} \cup L_{2}\right\}$; let T_{2} be the reflection of T_{1} in the imaginary axis; let T_{3} be the reflection of T_{2} in the real axis; let T_{4} be the reflection of T_{3} in the imaginary axis. Clearly:

$$
\begin{equation*}
d\left(T_{1}\right)=d\left(T_{2}\right)=d\left(T_{3}\right)=d\left(T_{4}\right) \tag{11}
\end{equation*}
$$

Let C_{k} be the set of all points contained in at least k of the T_{j} 's. The set C_{k} is a radially symmetric set; that is, it consists of all radially symmetric images of those points ζ such that at least k of radially symmetric images of ζ lie in T_{1}. Thus the measure of a leg of C_{k} is l_{k}. Let B_{k} be the set consisting of four segments lying on the four rays determined by $L_{1} \cup L_{2}$, each of length l_{k}, the intersection of the four being the point $\zeta=0$. Since the shift of segments that transforms C_{k} into B_{k} can only bring extremal points closer together, it follows that: $d\left(C_{k}\right) \geqq d\left(B_{k}\right)$. Using the mapping lemma (1.5) and Fekete's theorem (2.8) the transfinite diameter of B_{k} can be calculated:

$$
d\left(B_{k}\right)=\frac{l_{k}}{2 \alpha^{\alpha / 2}(1-\alpha)^{(1-\alpha) / 2}}
$$

We have

$$
\begin{array}{rlrl}
1 & =d\left(E_{\zeta}\right) \geqq d\left(T_{1}\right) & & \text { since: } T_{1} \subseteq E_{\zeta} \\
& =\left[\prod_{k=1}^{4} d\left(T_{k}\right)\right]^{1 / 4} \geqq\left[\prod_{k=1}^{4} d\left(C_{k}\right)\right]^{1 / 4} & & \text { by Theorem (2.2) } \\
& \geqq\left[\prod_{k=1}^{4} d\left(B_{k}\right)\right]^{1 / 4}=\left[\prod_{k=1}^{4} \frac{l_{k}}{2 \alpha^{\alpha / 2}(1-\alpha)^{(1-\alpha) / 2}}\right]^{1 / 4} \\
& \geqq \frac{1}{2 \alpha^{\alpha / 2}(1-\alpha)^{(1-\alpha) / 2}}\left[\prod_{k=1}^{4} \frac{1}{h_{k}}\right]^{1 / 4} & \\
& \geqq \frac{1}{2 \alpha^{\alpha / 2}(1-\alpha)^{(1-\alpha) / 2}} \cdot \frac{4}{\sum_{k=1}^{4} h_{k}} & &
\end{array}
$$

since the arithmetic mean exceeds the geometric mean;

$$
=\left[2 /\left(\alpha^{\alpha / 2}(1-\alpha)^{(1-x) / 2}\right)\right] \cdot(1 / L) .
$$

This sequence of inequalities means:

$$
L \geqq\left[2 /\left(\alpha^{\alpha / 2}(1-\alpha)^{(1-\alpha) / 2}\right)\right] .
$$

Remark. When $\alpha=1 / 2$ that is, when $L_{1} \cup L_{2}$ is a set of 4 -fold symmetry, the result of the theorem reads: $L \geqq 2 /(1 / 4)^{1 / 4}=4(1 / 4)^{1 / 4}$ in agreement with Theorem (3.1).

I am grateful to the referee for supplying an abbreviated proof for Theorem (2.2).

References

1. M. Fekete, Über der Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z. 17 (1923), 228-249.
2. G. M. Golusin, Geometrische Funktionentheorie, Veb. Deutscher Verlag der Wissenschaften, Berlin, (1957).
3. W. K. Hayman, Some applications of the transfinite diameter to the theory of functions, J. Analyse Math. 1 (1951), 155-159.
4. M. Marcus, Transformations of domains in the plane and applications in the theory of functions, Pacific J. Math. 14 (1964), 613-626.
5. G. Polya, and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Princeton, 1951.
6. H. Renngli, An inequality for logarithmic capacities, Pacific J. Math. 11 (1961), 313-314.
7. G. Szegö, On a certain kind of symmetrization and its applications, Ann. Math. Pura Appl. (4) 40 (1955), 113-119.
8. -, Jber Deutsch. Math.-Verein. 32 (1923), 45.

Received August 22, 1966. This research was supported by the National Science Foundation under research grant NSF-G24469 with the University of Maryland. The paper is a part of the author's dissertation, written under the direction of Professor Mishael Zedek.

New York University
University Heights

