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STOLZ ANGLE CONVERGENCE IN METRIC SPACES

L. E. SNYDER

A function / defined on the real line is said to be a Stolz
angle limit function if there is a function φ defined on the
upper half-plane with property that at each point (x, 0) there
is a Stolz angle such that the boundary limit of φ relative to
the Stolz angle exists and is equal to fix). In this paper the
notion of Stolz angle convergence is extended for functions
defined on metric spaces.

2* Definitions and notation* Let (X, p) be a metric space and
let R+ denote the positive real numbers. A set in XxR + of the form

{{y, r)eX x R+: p(x, y) £ a r} ,

where a is some positive real number and x is a point in X, is said
to be a Stolz cone with vertex x. We will denote such a set by
C(x, a).

If (X, p) is the real line with the usual metric, then a Stolz cone
is a Stolz angle in the upper halfplane which has its vertex on the
#-axis and which is symmetric about the line x = c if (c, 0) is its
vertex.

Let f:X—>R. Then ω(x,f) denotes the oscillation of / at x,
for x in X.

If (X, p) is a metric space, we metrize XxR+ with the metric
p defined by

p'((x, r ) , (y, s)) = m a x {p(x, y ) , \ r - s\} .

3* Continuous extensions* In the first theorem it is shown
that a function / in the first Baire class defined on a compact metric
pace X can be extended to a continuous function Φ on XxR+ such
that / is the "nontangential" boundary limit of Φ.

THEOREM 1. If X is a compact metric space and if f X-^R
is in the first Baire class, then there is a continuous function
φ : Xx R+ —* R such that for each x e X,

lim φ(u, r) = f(x) as (u, r) —> (x, 0)

relative to any Stolz cone C(x, a).

Proof. Let {fn} be a sequence of continuous real-valued functions
on X such that fn(x) ->f(x) for each x in X. Define H: X x (0,1] -> R
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as follows:

let jH(X,
n)
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- Λ(s) for n — 1, 2,

and extend linearly between (x, 1/n) and (x, 1/n + 1). Clearly H is
continuous on X x [0,1], and lim H(x,r) = f(x) as r —> 0+ for each
x in X.

For each w = 1, 2, and ε > 0, let δn(e) be a positive number
such that p(x, y) < δn(e) implies \fn(x) — fn(y) \ < e for all x and y in
X We let ζλ = min {^(1), δ2(l), 1} and inductively define

ζn = ) f δ u j \ %
nJ \nJ 2

Then {ζ%} is a decreasing sequence with limit zero. We define a func-
tion τ : i 2 + —(0,1] by setting τ(r) = 1 if r ^ ζu and τ(r) = 1/k if
r = ζfc and by extending linearly for r between ζfc+1 and ζfc. This
function τ is continuous. Also, the function Φ : X x R+ —> R defined
by

Φ(x, r) = H(x, τ(r))

is continuous.
We will verify that for each xe X, lim Φ(w, r ) = f(x) as (w, r)-^(x, 0)

relative to C(x, 1). To this end let xQ be a fixed point in X, and
suppose that {(xn, rn)} is an arbitrary sequence of points in C(x0,1)
such that lim rn = 0 and hence lim scn = x0. Let ε be an arbitrary posi-

tive number. There is a positive integer K such that l/i£ < ε/2, and
there is a positive integer JVΊ such that n> Nλ implies r% ^ ζκ. Thus
τ(rw) ^ 1/JB: for n > Nλ. Then from the definitions of {ζΛ} and the
function H and from the fact that p(x0, xn) ^ rΛ, it follows that

(1) I H(» , τ(O) - H{x0, τ(r J) | g 1 < | -

for w > iVi.
Since lim τ(rn) = 0, it follows from the definition of H that

•71—•oo

lim H(x0, τ(rn)) = f(xQ) .

Hence there is a positive integer N2 such that n > N2 implies

(2) \H(xo,τ(rn))-f(xQ)\<^.

Let JV = ma,x{Nl9 N2), and let n> N. Then, as a consequence of (1)

and (2), we have
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Φ(Xn, r n ) - f(Xo) I = I H ( x n , τ ( r n ) ) - f(x0) \ < ε .

Therefore,

lim Φ(xn, rn) = f(x0) .
n—>oo

The function Φ converges for the Stolz cones of the form C(x, 1).
We compose Φ with the homeomorphism T: X x R+ —>Ix R + which

is defined by T(x, r) = (x, η/r), and we let φ denote the resulting func-

tion on X x i?+, i.e., φ(y, r) = Φ(y, V~)

Let x0 be a fixed point in X and let C(x0, a) be any Stolz cone

with vertex xQ. Suppose {(x.n, rn)} is a sequence of points in C(x0, a)

with (xQ9 0) as limit. By definition of C(x0, a), we have p(xQ, xn) <£ a rn.

Also, for rn ^ 1/α2, we have a-rn ̂  i/^n Consequently, 7Xccn, rw) is

in C(x0,1) for rw ̂  1/α2, and Γ(a?Λ, r J ^ (x0, 0). Therefore,

lim 97(a?w> rn) = lim

which concludes the proof.
It is interesting to note that when X is a compact interval in

Rn, the results obtained above are more general then Theorem 6 in [5].
Here it is shown that every Baire class one function / of n real
variables is a boundary limit of a continuous function of (n + 1) real
variables, whereas in [5] / is shown to be a boundary limit of a
continuous function of 2n variables.

From the proof of Theorem 1, we see that the boundary limit of
<p exists relative to the set

T-^dx, 1)] for each xeX .

This leads us to the following definition and corollary.

DEFINITION. Let g:[0, <χ>)—•[(), <*>) be a homeomorphism. A set
in X x R+ of the form

{(y,r) eXxR+:p(x,y)^g(r)}

is called a generalized Stolz cone with vertex x e X, and this set is
denoted by G(x, g).

COROLLARY. Let X be a compact metric space and f: X—+ R a
function in the first Baire class. Suppose that g : [0, oo)—> [0, oo)
is a homeomorphism. Then there is a continuous function

<p:X x R+->R

with the property that for each x e X, lim φ(u, r) = f(x) as (u, r) —> (x, 0)
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relative to G(x, g).

Proof. Define T : X x R + — X x R + by T(x, r) = (x, g-1 (r)).
Clearly T is a homeomorphism. Also it is easily verified that T(C(x, 1)) =
G(x, g). Thus it suffices for the proof to define φ = Φ o T*1, where
Φ is the continuous function constructed in the proof of Theorem 1.

4* Boundary functions. A function /defined on a metric space
X is said to be a boundary function for the function Φ defined on
X x R + if for each xe X, lim Φ(u, r) = f(x) as (u, r) approaches (x, 0)
relative to some set in X x i?+, which has (x, 0) as a boundary point
in X x [0, oo).

In these considerations we concern ourselves only with metric
spaces which are Fu spaces. An Fn metric space is defined by
Hausdorff ([1], p. 165) to be a metric space for which every closed
subset is second category in itself. It was proved by Hurewicz [2]
that a space is an Fn space if and only if every nonempty perfect
set is uncountable. Also, it is clear that any complete space is an
Fjjr space.

THEOREM 2. Let X be a Fn metric space. Suppose there is a
function Φ : X x R+ —• R with the property that for each x e X there
is a homeomorphism hx:[0, oo)—>[0, oo) such that lim Φ(u, r) exists
as (u9r) approaches (x, 0) relative to the generalized Stolz cone
G(x, hx). Then the boundary function f determined by this family
of generalized Stolz cones is in the first Baire class.

Proof. For the proof we will verify that for any nonempty
perfect set P, f\P has a point of continuity. Thus, by Baire's
theorem (see [1], p. 288 or [3], p. 301, 2nd ed.), / is in the first Baire
class.

Suppose that P c X is a nonempty perfect set and that /1 P has
no point of continuity. Let

Dn - ixe P:ω(f\p,x) ^ —}
I ni

Since f\P has no points of continuity, it follows that P— \JDn.

Since X is an Fn space, P is of the second category in itself, so
there exists an integer n0 and an open sphere σ such that D%0 is dense
in a n P and σ Γ) P is nonempty. However, each Dn is closed as the
oscillation function is upper semi-continuous. Thus DnQ i)σ f] P. Let
Q = I(P n σ). Then Q is also a perfect set and ω(f\Q,x)^ l/nQ for
x e σ n P.
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Let

G(hm, x)n = Uy, r) e G(hx, x): r ^ 1
I n

and let

An = {xeQ:qe G(hx, x)n => \ f{x) - Φ{q)

where K = 16 n0. Since the Stolz limit of Φ equals f(x) at each point,
it follows that Q = U ^ Q being of the second category in itself

implies that there exists an integer k and an open shere τ such that
Q Π τ is nonempty and Ak is dense in Q n r.

Let £ e A*. Π τ Π cr be fixed. Then G(hz, z)k Π G(hX9 x)k Φ ψ for any
x for which p(z, x) rg hz(l/k). In particular the point (#, 1/Zc) is in
G(hΛ, x)k and also is in G(hz, z) since p(z, x) ^ hz(l/k). Let o*' be the
open sphere with center z and radius hz(l/k), and let F = σ Π τ Π σ\

For each ^ e Q, let tι(aj) denote the smallest positive integer ^ for
which xeAn. Suppose that {x2} is any sequence of points in P with
2 as limit. Then there is an integer N such that i > N implies x{

is in V. Let i > N be fixed, and set m = max {̂ (.τ, ), A}. Since Ak

is dense in V P\Q, there is a /̂ e A& n V such that ^(cc^ ̂ /) g hx.(l/m).
This implies that the point ξ = (y, 1/m) is in G(hyi y)m and also in
G(hx., Xi)m. Moreover, it is true that η = (y, 1/k) is in

G(hy, y)k n G(h9, z)ky

for y is in Ak (Ί F. Thus it follows that

|/(2) - /(^) I ̂  \f(z) - Φ{η) I + I φ(η) - f(y) \

But this last inequality implies that ω(f\ P, z) ^ l/2w0, which is a
contradiction.

It is of interest to note that the function φ in Theorem 2 need
not be continuous, and in fact, Φ need not even be measurable in the
case where X is ^-dimensional euclidean space. For the case where
X = R2 (with the usual metric) we mention the following as a corollary.

COROLLARY. Let Φ;R2xR+->R have the property that for
each point (α?, y, 0) in the plane z = 0 there is a cone in R2 x [0, oo),
with vertex at (a?, T/, 0) αmZ wiί/z, ίίs cms of symmetry perpendicular
to the plane z = 0, suc& that lim <P (w, v, w) exists as (u, v, w) appro-
aches (x, y, 0) relative to the cone. If f is the boundary function of
Φ relative to these conesf then f is in the first Baire class. (Observe
that Stolz cones in R2 x R+ are just ordinary cones.)
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It is also possible to modify Theorem 2 for a function Φ defined
on a spherical ball in 3-space. That is, if Φ is any function defined
on a ball in 3-space and if at each point of the boundary of the ball
the limit of Φ exists relative to a cone whose axis of symmetry is a
radius of the ball, then the boundary function thus obtained is in the
first Baire class.

Concerning the corollary, it is natural to ask about the possibility
of taking limits relative to cones which are "tilted." It is of course
easy to see that this would result in non-Baire measurable functions.
However, it is possible to allow some varying in the sets on which
the limits are taken (see [5], Th. 2 and Th. 3), and in fact it is pos-
sible to allow the use of more general sets on which the limits are
taken, that is, not just Stolz cones or generalized Stolz cones. This
is the subject of the next theorem, but first it is necessary to recall
some definitions.

Let (X, p) be a bounded metric space and let J^he the collection
of all closed nonempty subsets of X. For Fe^anά e positive, let

V(F, s) = {xeX: p(x, F)< ε} .

For F, Ke J^ set h(Ff K) = inf {ε : ε > 0,

Fa V{K, ε) and K(z V(F, ε)} .

Then h is the Hausdorff metric on ^"determined by p.
Let (X, p) be a metric space, and

p'((x, r), {y, s)) = max {p(x, y), \ r - s [}

be the metric on X x [0, oo). Then let & be the collection of open
sets G in X x [0, oo) such that dG f] (X x {0}) = {(x, 0)} for some x e X,
where dG denotes the boundary of G. Then let ^ be the collection
of all Closure (G)fGe^. With the induced Hausdorff ΐnetric & be-
comes a metric space.

THEOREM 3. Let X he a hounded Fn metric space and let 6? he
as above. Suppose that G: X—> έ? is a continuous mapping such that
G(x) Π (X x {0}) = {(x, 0)} for each xeX, and suppose there is a func-
tion Φ : X x R+ —> R such that for each x e X, lim Φ(u, r) exists as
(u, r) approaches (x, 0) relative to the set G(x). Then the boundary
function f of Φ for this collection of sets is in the first Baire class
on X.

Proof. Let P be a nonempty perfect subset and suppose /1 P has
no point of continuity. Then let DnJDnQσ, and Q be as in the proof
of Theorem 2.
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In the same fashion as before we let

G(x)n = {(y, r) e G(x) :r£±-

and set

e Q : q 6 G(x)n - | f(x) - Φ{q) 1 } ,
oo

where M = 16 w0. It follows that Q = \JAn, and since X is an Fu
n=l

space, Q is of the second category in itself. Thus there is an integer
k and an open sphere τ such that Q Π T is nonempty and Ak is dense
in Q fl τ.

Let 2 be a fixed point in Ak Π T Π tf, and let ζ e Int. (G(«)Λ). There
is an open sphere in 1 x β + with center ζ and radius ε which is con-
tained in Int. (G(Z)k). Since G:X-^έ7 is continuous, there is an
open sphere F i n I with center z such that xe V implies

h(G(z), G(x)) < ±
Δ

(where h denotes the Hausdorίf metric). Consequently, pf(ζ, G(x)) < ε/2
for x e V. Thus G(x)k n G(z)k Φ 0 for any xeV.

The remainder of the proof is essentially the same as the latter
part of the proof of Theorem 2 and so is omitted.

It would also be possible to use & in place of ^ i n Theorem 3
and require that G:X—>^be continuous relative to the Hausdorίf
pseudo-metric on ^ . We also remark that the sets G(x) in Theorem
3 need not be connected, whereas in [5] the sets on which the limits
were taken were always connected or had just two components. In
his thesis the author gave an example of a function Φ : R x R+ —> R
such that the characteristic function of any subset of R can be ob-
tained as a boundary function of Φ by using open sets whose closures
are connected as the sets on which the boundary limits are taken.
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