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KERNEL REPRESENTATIONS OF OPERATORS
AND THEIR ADJOINTS

F. DENNIS SENTILLES

If S is a locally compact and Hausdorff space and A is a
continuous linear operator from C0(S) into the space C(T)
with the supremum norm topology then the Riesz Representa-

tion Theorem yields the formula [Af](x) = \ f(y)λ(x, dy), where
JS

for each xe T λ{x, •) is a complex-valued regular Borel measure
on S. More generally a study is made of kernel functions /
such that I f(y)λ(-, dy)eC(T) for / of compact support on S.

It is shown that λ( ,E) is measurable for each Borel set E

and that μ(E) = \ λ(x, E)v(dx) is a regular measure on S yield-

ing the adjoint formula A*v = μ. Necessary and sufficient

conditions are given on λ so that A**(C(S)) c C(T) and that

A** be continuous from C(S)β to C(T)β when £ is paracompact.

Furthermore, kernel representations of /9-continuous operators

are studied with applications to semi-groups of operators in

CQ(S) and C(S)β when S is locally compact.

We point out that as a consequence of our work the condition
(1.7) in the paper by Foguel [7] follows from (1.6) when the space is
locally compact and Hausdorff. Further the regularity of the above
measure yields the more specific vector-valued measure representation
of A, μ(E) = λ( ,£ r) in the sense of [5, Th. 2, p. 492].

DEFINITION AND NOTATION. If X is a locally compact Hausdorff
space we denote by C(X), CQ(X) and CC(X)+ the collection of all
bounded continuous complex-valued functions on X, those vanishing at
infinity, and those nonnegative functions of compact support, respec-
tively. The σ-algebra of Borel sets is the σ-algebra generated by the
open subsets of X. We denote by M(X) the space of bounded regular
Borel measures on X with variation norm and by B(X) the space of
bounded Borel measurable functions on X. Let M(X)+ denote the
nonnegative measures in M(X). We give B(X), C0(X) and C(X) the
supremum norm topology and | | / | | = &vp{\f(x)\:xeX}.

We wish to consider two further topologies on the space C(X).
We denote by C(X)β the space C(X) with the locally convex topology
defined by the collection of seminorms Pφ(f) = || φf\\, ψe CQ(X). Buck
[1] has shown that C(X)β has adjoint or dual space M(X). We denote
by C(X)β, the space C(X) with the locally convex topology whose
base of neighborhoods at the origin consists of all convex, balanced,
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absorbent sets V such that for each r > 0 there is a β neighborhood of
the origin, W, such t h a t Wf)Br<zV where Br = {fe C(X): \\f\\ ^ r}.

In a recently submitted paper Dorroh [4] introduces this topology and
shows that C(X)β, has dual M(X) and that β = β' for X a para-
compact space. Further results on C(X)β and C(X)β, have been recently
obtained by Collins and Dorroh in [2]. A set HczM(X) is /2-equi-
continuous (/S'-equicontinuous) if there is a β(β') neighborhood of 0,

W, such that If fdμ ^ 1 for all fe W and μ e H. The /3-equicon-
I Jx

tinuous sets of M(X) have been characterized by Conway [3] who has
shown that H is /3-equicontinuous if and only if H is uniformly bounded
and for each ε > 0 there is a compact set KaX such that the varia-
tion of μ on X — K is less than ε for all μ e H. Since β' is a finer
topology than β any /3-equicontinuous set is /S'-equicontinuous and
these are the same when X is paracompact.

Suppose S and T are locally compact and Hausdorff. Let A denote
the collection of open sets in S and σ(Δ) the collection of Borel sets.
We consider complex-valued functions X defined on T x σ(Δ) such that
X(x) = X(x, •) 6 M(S). For brevity we will denote this by λ: Γ-> Λf(S).
We denote the norm of the measure λ(a ) by ||λ(.τ)|| and set | | λ | | =
sup {|| \(x) | ! : X G T } . If fe B(S) we write λ(/) for the function defined

by λ(/)(x) = I f(y)Mχ> dy) a n d M > E) i s ^he function whose value at
is

x is X(x, E) for Eeσ(Δ). We let |λ | (x, £7) be the variation of the
measure X(x, •) on the set E. We will say that the kernel λ satisfies
condition E(E') if {X(x):xeK} is /3-equicontinuous (/9'-continuous) for
each compact set KaT.

Finally we take our topology from [8] and topological vector space
terminology from [9]. We make use of the Riesz Representation
theorem throughout and in particular its corollary:

\μ\(U) = sup{| \fdμ\:feC.(S), \\f\\ £ 1, support (/) c [/}

for each open set U.
We prove the following theorems.

THEOREM 1. (1) If λ:T-+ M(S)+ and λ(/) is lower semi-continu-
ous for each feCc(S)+ then λ( ,i?) is Borel measurable for each
Eeσ(Δ).

(2) // λ:T->M(S) and X(f)eC(T) for all feCc(S) thenX{-,E)
and \X\(*,E) are measurable for each Eeσ(Δ).

(3) If X satisfies (1) or (2) and | | λ | | < <χ> then X(f)eB(T) for
feB(S).

THEOREM 2. If X satisfies (3) of Theorem 1 then for each veM(T)
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the formula μ(E) = \ \(x, E)v(dx) defines a regular Borel measure

on S such that | μ \ (E) <£ \ | λ | (x, E) \ v \ (dx) and for fe B(S) we have

THEOREM 3. Suppose A is a continuous linear operator from the
space X to the space Y where X denotes C0(S), C(S)β or C(S)β, and
Y denotes C(T), C(T)β or C(S)β,. Then there is a unique mapping
λ: T-+M(S) such that

(1) Af = λ(/) for all feX and

\\\\\ = sap{\\Af\\:feX,

(2) The adjoint of A, A*, takes M(T) into M(S) and is given by

(A*μ)(E) = \ \(x, E)μ(dx).

(3) Under the natural imbeddings of B{S) and B{T) into
and M(T)* respectively we have for feB(S)

χ(f) = A**f where A** is the adjoint of A* restricted to M(T)
Hence A**(B{S))aB(T) and A** defines a continuous extension
of A to B(S) into B(T).

THEOREM 4. Let \:T-+M(S). If \(f)eC(T) for all feCc(S)
and λ satisfies condition E' then λ(/) is a continuous function on T
for feC(S). Conversely, if S is paracompact and λ(/) is continuous
for feC(S) then λ satisfies condition E.

THEOREM 5. Let λ: T~-+ M(S) and A the linear operator on C(S)
defined by Af = λ(/). Then A is a continuous operator from C(S)β>
into C{T)βf orC(T)βifandonlyif\\X\\< oo, λ(/) eC(T) for feCc(S)
and λ satisfies condition Er.

COROLLARY 1. Let A:C0(S)—> Y where Y is as in Theorem 3.
Then A ^ is α continuous operator from C(S)β, into C(T)βf if and
only if the kernel λ satisfies condition E'. Moreover A** is the only
extension of A to C(S) given by a kernel and consequently is the
only β or β' continuous extension of A to C(S).

Proof of Theorem 1. Let U be an open subset of S and let χ
denote its characteristic function. Since X(x) is regular it follows that
X(x, U) = sup {λ(/)(a?): 0 ^ / ^ χ, / G CC(S)+}. Since λ(/) is lower semi-
continuous for each /eC c(S)+, then λ( , U) is lower semi-continuous
and hence Borel-measurable. Let Σ denote the class of Borel sets E
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for which λ( ,J5) is measurable. Then Σ contains all open sets and
is closed under countable unions of mutually disjoint sets EeΣ and,
if A, BeΣ and AZDB then A - BeΣ. It now follows from [6, p. 2]
that Σ = σ(Δ) and (1) is proven.

We now prove (2). If U is an open set then as a consequence of
the Riesz Representation Theorem we have

|λ | ( s , U) = sup{|λ(/)(aO|:/eCβ(S), | | / | | - 1 and support (/) c U)
for each xeT.

This means that | λ | ( , U) is lower semi-continuous and as in the
proof of (1) that | λ | ( ,J£) is measurable for each Borel set E.

We can suppose for the remainder of the proof that X(x) is a
real signed measure for each xe T and we then have [5, p. 123] that
X(x) = X(x)+ - x(x)~ where X(x)+, X(x)~ e M(S)+ and | X(x) \ = X(x)+ + X(x)~
for all xe T. We show that λ+, λ" satisfy condition (1).

Let feCc(S)+ and set μ(x, E) = \ f(y)X(x,dy). Then for each
J E

x, μ(x)eM(S) and for

g e CC(S), μ(g) = ( g(y)f(y)X(x, dy) = x(gf).

Hence μ(g) is continuous for each geCc(S) and therefore from what
we have just shown | μ | ( , S) is lower-semicontinuous since S is open.

But I μ I (x, S) = \ f(y) \X\(x, dy) and therefore | X \ (/) is lower semi-
continuous for each fe CC(S)+. Since | X | (x) = X+(x) + X~~(x) and X(x) —
X+(x) - X-(x) it now follows that for fe CC(S)+, λ+(/) and λ~(/) are lower
semi-continuous. But then it follows from (1) that λ+( ,E), λ~( , E) and
hence X( ,E) are measurable for each Borel set E.

Condition (3) easily follows for we can approximate λ(/) uniformly
by means of measurable functions of the form Σ?=i#*M'>-E*)-

REMARK 1. T need not be Hausdorff or locally compact in Theo-
rem 1.

Proof of Theorem 2. It is well known that μ(E) = I X(x, E)v(dx)
r r )τ

defines a measure on S such that I fdμ — \ X(f)dv for feB(S).
JS }τ

Hence we will only show that μ is regular.
We can assume that v is real and | |u | | = 1. Further we can

suppose that X(x) e M(S)+ for each xeT. For we can first assume
that X(x) is a real signed measure, and writing X(x) = X(x)+ — X(x)~,
the proof of Theorem 1 shows that for feCc(S)+,X+(f) and λ~(/)
are lower semi-continuous. Hence we have the condition (1) of Theo-
rem 1 and additionally, | |λ | | = sup{||λ(#) ||: xe S} < oo.
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LEMMA 1. Let U be an open set in S, χ its characteristic func-
tion. Let X = {fe CC(S): 0 ^ / ^ χ}, Y = {g e CC(T): 0 ^ g ^ λ( , U)}.
Then

Proof. Let g eY, s > 0 and let g vanish outside the compact set
K and fix xeK.

Since g eY then g(x) — e/2 < X(x, U) and hence there is a func-
tion / e l such that g(x) — e/2 < X(f)(x). Since λ(/) is lower semi-
continuous there is a neighborhood V of x such that for te V one
has g(x) — e/2 < λ(/)(ί). But also there is a neighborhood V of a?
such that if teV then </(£) — ε < #($) — e/2. Hence there is a neigh-
borhood W oΐ x such that for t e W, g(t) - ε < X(f)(t). We extract
a finite cover of sets W of K with associated functions feX. If we
let fe be the pointwise maximum of the corresponding functions / then
he X and for teK we have

g(t) - ε

Hence 1 gdv — e < \ X(h)dv and the proof is complete.

LEMMA 2. \ \(x, U)v(dx) ^ sup It gdv .ge Y\.
}τ IJT )

Proof. Let ε > 0 and n be an integer such that ne > 11 λ 11 ^
(w - l)ε. Then set

Ek = {xe T: kε < \(χ, U) ^ (fe + l)e} for fe = 0,1, , n - 1.

Then {Ek} is a partition of T by Borel sets and

( 1 ) 0 ^ ( λ(aj, U)v(dx) - Σ,kεv(Ek) < e .
JT k=0

Let

Uk = {x: λ(a;, C/) > feε}.

Then Uk is an open set and Ek = Uk — Uk+1. Since v is regular then
for each fe there is a compact set Kk c ^ such that v(Ek — iΓfc) < ε/n2.
We can then find for each fe an open set Vk with compact closure
contained in Uk and containing Kk. Further there exist functions
fk e CC(T)+ for fe = 0, , n - 1 such that /fc(a;) = feε for x e Kk, fk(x) = 0
for x e T - Vk and 0 ^ fk(x) ^ feε for all xeT. Therefore fk(x) ^
feε < X(x, U) for x e Uk and hence fk e Y. We let
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f(x) = max {ft(x): 0 ^ k £ n - 1}

It follows that / e F and

where χk denotes the characteristic function of the set Ek. We then
have

0 ^ ( Σkεχkdv - \ fdv
}τ o }τ

^ Σ ( (kε - fk)dι>
0 J E Λ.

= Σ ( (ke - fk)dv
0 ΪEk-Kk

n-1 Γ

^ Σ 1 kedv
0 JEk—Kk

^ Σ kε2/n2 ^ e 2 .
0

But

( Σ,
JT 0

and applying (1) we have

( ^ ε2 + ε0 ^ ( λ(&, C7)v(ώ) - (

completing the proof.

LEMMA 3. μ(U) — supil fdμ:feX> and μ is regular.

Proof. Combining Lemma 1 and Lemma 2 we have

μ(U) ^ sapl\\(f)dv:fex\ .

But \ fdμ = \ \{f)dv and therefore

μ(U) £ eap^fdμ fex} £ μ(U).

Now the mapping /—• I fdμ defines a bounded linear form on the space
JS r r

C0(S) and hence there is a measure ω e M(S)+ such that I fdμ = \ fdω
is is

for all feC0(S) and since ω is regular
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ω(U) = supjj /dω:/exj = μ(U).

This means the collection Σ of all Borel sets E for which ω(E) = μ(E)
contains all open sets and it follows from [6, p. 2] as in the proof of
(1) Theorem 1 that Σ is the class of all Borel sets. Hence μ is the

regular measure ω. It is easily seen that \u\(E) ^ \ \X\(x,E)\v\ (dx)
JT

and the proof is complete.

Proof of Theorem 3. From [1], [4] and the Riesz Representation
Theorem, X* = M(S) and 7 * D I ( Γ ) , From [9, pp. 38-39]

A*(M(T)) DM(S)

and the formula X(x) = A*x, where x(E) = 1 if x e Ef 0 if x & E, de-
fines a map λ: T—+ M(S) satisfying (3) of Theorem 1 since | | λ | | =
sup {| I Af 11: 11 /11 ^ 1, / e C0(S)} < oo because the norm, β and β' bounded
sets are the same (see [1] and [4]) and from [9, p. 45] A takes
bounded sets into bounded sets. Furthermore Af = X(f) for feX and
if v{E) = \ X(x, E)μ(dx) then

JT

\fdv=\ \(f)dμ = \ Afdμ = \ fd(A*μ)
JS JT }T Js

for all feX and consequently A*μ = v since v is regular. Finally if
A** is the adjoint of A* restricted to M(T) then for μeM(T) and

feB(S) [A**f](μ) = f(A*μ) = \ fd(A*μ) = ( X(f)dμ =
JS JT

since X(f)eB(T). This holds for all ueM(T) and consequently
A**f=\(f). Hence A**(B(S)) czB(T) and | |A**| | - | | λ | | .

REMARK 2. If for each te[O, oo], T(t) is a continuous operator

from X t o Xand T(t + u) = T(t)T(u) then Γ(t + u)** = T(ί)**Γ(u)**.

If we then write [T(£)/](α?) = \ f(y)\(x,dy), then by the above theo-

rem Xt(f) = Γ(ί)**/ for feB(S). If χ is the characteristic function

of the Borel set E we have

Wχ) = MK(

or the Chapmann-Kolmogorov equation

λί+u(a;, S ) = I Xu(y, E)Xt(x, dy).
Js

Consequently a transition function Xt(x, .) can be obtained fora semi-
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group of β or βf continuous operators on the space C(S) when S is
locally compact.

REMARK 3. One can obtain a kernel λ satisfying (1) under the
weaker condition that A have range B(T) and domain C0(S). For the
set of linear mappings f~*Mf)(%) for xe T is pointwise bounded and
hence uniformly bounded since CQ(S) is a Banach space.

Proof of Theorem 4. For each compact set KaS there is a
function φκeCc{S) such that φκ = 1 on K. If feC(S) then the net
{<Pκf} c CC(>S) converges /?' to / since it is uniformly bounded and β
convergent to /. Consequently CC(S) is βr dense in C(S). If x e T
and U is a neighborhood of a? with compact closure then {K(xa) :xaeU}
is a /9'-equicontinuous set of linear functionals on C(S) for any net
{xa} c U converging to x. By hypothesis X(xa) —> λ(sc) on Cβ(S). Since
Ce(S) is /S' dense and {λ(#α)} is /3'-equicontinuous, X(xa) —> λ(α?) on C(S).
Hence λ(/) is continuous at x for all feC(S).

Conversely if λ(/)eC(T) for feC(S) then for any compact set
Kcz T {X(x): xeK} is weak-* compact as as ubset of the dual of C(S)β
and, as Conway [3] has shown, must be /3-equicontinuous.

Proof of Theorem 5. Suppose that A is continuous from C(S)β,
to C(T)β, or C(T)β. Then || λ || < co by Theorem 3 and if K is a compact
set in T and V is the /5 neighborhood of 0 defined by some function
φeCQ(T) identically 1 on K there is a β' neighborhood of 0, £7, such
that A(U) c V. That is, | \(f)(x) | ^ 1 for all / e 17 and xeK. Con-
sequently λ satisfies condition E\

Conversely, let us show A is continuous from C(jS)β* into C{T)β,
Let V be a /9' neighborhood of 0 in C( Γ) and r > 0. We show there
is a /3 neighborhood Z7 of 0 in C(S) such that A"\V)z>Br Π ί7 thus
showing that A - 1(F) is a β' neighborhood.

Let v = r || λ ||. There is a 0 e C0(Γ) such that

F D 5 P n {#: Pφ(flr) ^ 1} and ^ ^ 0 .

Let K = {ί: I ̂ (ί) | ^ l/(p + 1)}. Since λ satisfies condition E' there
is a /3' neighborhood Uo in C(S) such that |λ(/)(a?)| ^ 1 for all/6 Uo

andxeK. Let W = {feC(S):\\φ\\feU}. Then A~\V) z> Br f) W foτ
if feBrΠW then Λ / e B p and |ψ(x)[Af](x) \< pf(p + 1) for xiK
w h i l e f o r a? e JBΓ, | ^(»)[A/](a j ) | ^ || ^ || | [Af](x) \ ^ 1 s i n c e \\φ\\feU0.
H e n c e

A - W 3 A - 1 ^ ) Π A-^g: PΦ(g) ^ 1}Z) Brn(Brf] W) = Brn W.

We then choose a /3 neighborhood U such that W =) Br Π Z7 completing
the proof.
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REMARK 4. If A is continuous from C(S)β into C(T)β, it follows
that λ satisfies E.

The proof of Corollary 1 is almost immediate. As a consequence
of Theorem 3 and Theorem 5 continuity from C(S)S, to C(T)β, is
equivalent to condition E'. If A' is an extension of A to C(S) into
C(T) given by a kernel μ then μ — λ on C0(S) and consequently μ = X
on C(S) and A = A'. Since by Theorem 3 any β or β' continuous
extension is given by a kernel this shows that A** is unique.

It should be noted that if S is paracompact and A is any operator
on C(S) into C(T) given by a bounded kernel λ then by Theorems 4
and 5, A is continuous from C(S)β to C(T)β,.

We conclude with a brief remark on operators from M(T) into
Λf(S). Suppose B is such a linear operator and 5* its adjoint on
B(S). Define λ: T—> ikf(S) by λ(aj) = Bx where x is the measure defined
in the proof of Theorem 3. If B is bounded and J3*(CC(S)) c C(T)
then B*(B(S)) c B(T) by Theorem 1. By Theorem 2,

= ί (Bx)(E)μ(dx).
JT

If λ satisfies condition Er then by Theorem 5 B is the adjoint of the
continuous operator JB* from C(S)β, to C(T)β,. Thus f> is completely
determined by its action on the point measures {x: x e T}.

REMARK 5 (added January 13, 1967). One can amplify Remark 4
by observing that if, moreover, λ satisfies E then Theorem 5 remains
true with βr replaced by β. For then A is continuous from C(S)β, to
C(T)β and using condition E, [3], part (2) of Theorem 3 and [9, p.
39] it follows that A* takes /9-equicontinuous sets of M(T) into β-
equicontinuous sets of M(S) making A continuous on C(S)β into C(T)β.

REMARK 6. It has recently come to the author's attention that a
version of Theorem 2 can be found on page 176 of the recent book
by P. A. Meyer, Probability and Potentials, Blaisdell, Waltham,
Massachusetts, 1966, under the conditions that S be ^-compact,
λ:S — M(S)+, λ(/) be continuous for all feCc(S)+ and that v have
compact support.
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